首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为深入认识当前人工影响天气作业中广泛使用的AgI焰剂的成冰特性, 利用电子显微镜对含AgI焰剂产生的人工冰核粒子尺度特征进行分析研究。利用环境场扫描电镜对焰剂颗粒的尺度分布和形态学特征进行研究, 利用场发射高分辨透射电镜纳米区域的X射线成分分析 (EDS) 对实验样品的颗粒结构特点和主要组成成分进行研究。实验结果表明:不同配方焰剂燃烧产生的颗粒谱分布特征有明显差异, 所取5种焰剂产生的颗粒平均谱分布, 其直径在0.02~0.50 μm之间的粒子数占98.96%, 即产生粒子绝大部分都可直接参加云内的成冰核化过程, 但其谱宽、峰值直径, 分布特征都不相同。透射电镜结果表明:焰剂颗粒的主要组成是KCl, 其表面附着AgI小颗粒, 该结构特征可能更有利于焰剂颗粒的成冰核化。利用中国气象科学研究院1 m3等温冷云室对AgI焰剂阈温对比实验表明:5种焰剂的成冰阈温在-3.5~-4.4 ℃范围内, 不同焰剂配方的阈温不同, 最大相差1 ℃。焰剂成冰核化速率主要由颗粒的大小 (均立方根直径) 决定, 同时受到谱宽、主峰位置等多种分布特征量影响, 改进配方时应综合考虑。同时, 由于高于-4.4 ℃时, 焰剂产生颗粒接触过冷水滴缺少活性, 即含AgI焰剂不适于云中较暖区的催化。  相似文献   

2.
Aerosol particles were collected on filters for studies of their ability to nucleate ice during the second Arctic Gas and Aerosol Sampling Program (AGASP-II) in April, 1986. The ice nuclei (IN) samples were collected from an aircraft at altitudes ranging from the surface to the vicinity of the tropopause in Arctic locations over Alaska, northern Canada and Greenland. Samples of other components of the aerosol were collected and measurements were made of other properties of the aerosol coincident in time with the IN samples. The IN filters were exposed to water saturation in a dynamic developing chamber at –15° C and –25° C. Ice crystals grew on the IN and were counted on the filters at discrete time intervals during the exposure period to determine the rate of ice nucleation and the final concentration of (IN). Results show that Arctic haze aerosol, identified by pollutant signatures, had lower IN concentrations, a lower IN to total aerosol fraction and slower ice nucleation rates than aerosol which had a chemical signature more indicative of the remote unpolluted troposphere. These observations suggest that the Arctic haze aerosol does not efficiently form ice in the arctic troposphere. This may be a factor contributing to the long-range transport of Arctic haze.  相似文献   

3.
The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangshan Mountains in Southeast China from May to September 2011.The results showed that the mean total number concentration of IN on the highest peak of the Huangshan Mountains at an activation temperature (Ta) of-20℃C was 16.6 L-1.When the supersaturation with respect to water (Sw) and with respect to ice (Si) were set to 5%,the average number concentrations of IN measured at an activation temperature of-20℃C by the static diffusion cloud chamber were 0.89 and 0.105 L-1,respectively.A comparison of the concentrations of IN at three different altitudes showed that the concentration of IN at the foot of the mountains was higher than at the peak.A further calculation of the correlation between IN and the concentrations of aerosol particles of different size ranges showed that the IN concentration was well correlated with the concentration of aerosol particles in the size range of 1.2-20 μtm.It was also found that the IN concentration varied with meteorological conditions,such as wind speed,with higher IN concentrations often observed on days with strong wind.An analysis of the backward trajectories of air masses showed that low IN concentrations were often related to air masses travelling along southwest pathways,while higher IN concentrations were usually related to those transported along northeast pathways.  相似文献   

4.
The hail cloud modification is carried out by means of the cloud seeding with AgI particles of submicron sizes, in order to create nuclei competing with the natural ones for supercooled liquid droplet water, or in order to accelerate precipitation generation. However, scientific research confirmed a primary role of giant and supergiant particles in generation of nuclei of convective precipitation and hail. Such particles occur also at high levels (5 km and more). As the cloud and precipitation particles grow mainly through coagulation, one can hardly expect a high success from the cloud seeding with AgI submicron particles for hail suppression. In the hail process modification, the Ag particles settle down not at the nuclei but in the hailstone layers. So, AgI is spent not for additional hail nuclei creation, but for intensification of coagulation growth of natural cloud and precipitation particles. This can represent one of the main mechanisms for cloud modification.  相似文献   

5.
This paper presents airborne measurements of ice nuclei (IN) number concentration and elemental composition from the mixed-phase Arctic cloud experiment (M-PACE) in northern Alaska during October 2004. Although the project average IN concentration was low, less than 1 L−1 STP, there was significant spatial and temporal variability, with local maximum concentrations of nearly 60 L−1 STP. Immersion and/or condensation freezing appear to be the dominant freezing mechanisms, whereas mechanisms that occur below water saturation played a smaller role. The dominant particle types identified as IN were metal oxides/dust (39%), carbonaceous particles (35%) and mixtures of metal oxides/dust with either carbonaceous components or salts/sulphates (25%), although there was significant variability in elemental composition. Trajectory analysis suggests both local and remote sources, including biomass burning and volcanic ash. Seasonal variability of IN number concentrations based on this study and data from SHEBA/FIRE-ACE indicates that fall concentrations are depleted relative to spring by about a factor of five. Average IN number concentrations from both studies compare favorably with cloud ice number concentrations of cloud particles larger than 125 μm, for temperatures less than −10 °C. Cloud ice number concentrations also were enhanced in spring, by a factor of ∼2, but only over a limited temperature range.  相似文献   

6.
南京地区冬季大气冰核特征及其与气溶胶关系的研究   总被引:6,自引:1,他引:5  
杨磊  银燕  杨绍忠  苏航  蒋惠 《大气科学》2013,37(5):983-993
2011年11月15日~12月2日期间对南京地区近地面大气气溶胶和冰核进行了同步观测,综合分析了 冰核浓度的特征及其与气溶胶粒子浓度的关系。结果表明:活化温度Ta为-20℃,水面过饱和度为1%时,南京地区冰核浓度NIN为0.352 L-1,与0.01~10 μm气溶胶数浓度比值仅为4×10-8。冰核活化温度越低,湿度越大,冰核浓度越高。雾和降雨对冰核都有明显的清除作用。对比不同气团对南京地区冰核的影响发现,偏东方向的污染气团中冰核以及气溶胶的浓度最高,但是来自西北地区的气团中冰核占气溶胶的比例最高,这可能是由于冰相核化能力较强的沙尘气溶胶导致的。分析冰核与不同粒径段气溶胶的相关性发现,较大粒径气溶胶的表面积浓度与冰核相关性更高,本文也得到了由活化温度Ta和粒径大于0.5 μm气溶胶数浓度N0.5~10 μm共同计算冰核浓度的经验公式。  相似文献   

7.
刘卫国  陶玥  周毓荃  党娟  谭超  高扬 《气象学报》2021,79(2):340-358
层状云降水效率通常较低,但却具有较高的云水资源开发潜力,是人工增雨作业的重要对象。随着中国南方地区生态改善、水库增蓄、抗旱等社会需求的增加,针对这些地区降水云系的人工增雨研究显得愈发重要。使用三维中尺度冷云催化模式,对2018年10月21日湖北省一次层状云飞机人工增雨作业过程进行了数值模拟研究,并将模拟结果与卫星、降水和机载云物理观测数据进行了对比。模式合理地模拟出了云和降水的主要宏、微观特征,观测和模拟结果均显示作业云区具有较好的冷云催化条件,在此基础上,按照实际作业中的飞机播撒轨迹,完整地模拟了此次催化作业过程。对数值模拟结果的分析表明:凝结冻结核化和凝华核化是碘化银催化剂的主要核化方式;90%以上碘化银粒子的局地活化比为0.01%—2%,平均活化比为0.07%—0.27%;云系降水是由冷云降水和暖云降水两种机制共同作用的结果,催化作业使两种降水机制均有增强,增雨效果明显;催化后4 h,整个评估区内的累计净增雨量为2.12×108 kg,局地增雨率为?51.1%—306.7%,区域平均增雨率为8.1%;催化作业也使部分地区出现减雨,主要是由于催化过程中的潜热释放引起过冷层动力场扰动,一部分云区的上升气流减弱,从而导致降水粒子的成长减弱,地面出现减雨;在过冷云区,碘化银核化使冰晶浓度升高,导致冰晶-雪、雪-霰的转化过程增强,雪、霰粒子总量增加,更多的雪、霰粒子从冷区落入暖区,在暖区上层产生更多的大雨滴,从而使暖区的云雨粒子碰并过程增强,最终地面降水增加,这是此次催化作业导致增雨的主要微物理链条。   相似文献   

8.
南京地区大气冰核浓度的测量及分析   总被引:5,自引:2,他引:3  
杨磊  银燕  杨绍忠  蒋惠  肖辉  陈倩  苏航  陈聪 《大气科学》2013,37(3):579-594
2011年5~8月期间使用5L混合型云室以及静力扩散云室对南京不同成核机制的大气冰核进行了观测,进而分析了近地层冰核浓度特征。结果表明:活化温度为-20°C时,5L混合型云室观测的总冰核浓度为20.11个/L,静力扩散云室模拟高水汽(计算的云室内水面过饱和度为5%)和低水汽(计算的云室内冰面过饱和度为5%)条件下冰核浓度分别为0.93个/L以及0.29个/L。晴好条件下冰核浓度具有明显的日变化特征,白天冰核浓度高于夜间;在下午时段冰核浓度达到全天最高值,这说明大气冰核可能与大气湍流强度、人类活动以及工业污染有关。降水对冰核的清除作用明显,台风系统过程中冰核浓度明显增加。南京地区冰核浓度随温度降低和湿度增加而增加。后向轨迹模式分析表明东北海洋气团冰核浓度最高,不同气团中冰核浓度的差异随着活化温度的降低而减小。个例分析秸秆燃烧生成的PM1(大气中直径小于或者等于1 μm的颗粒物)与冰核关系发现燃烧产物对冰核有一定的贡献。  相似文献   

9.
一次降雹过程的AgI系列催化模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
云数值模拟是研究降雹过程和人工防雹试验的重要手段。利用三维冰雹云AgI催化模式,对北京1996年6月10日的一次降雹过程进行AgI不同催化高度、催化剂量和催化时间的系列催化模拟试验,并优选催化方案,为外场防雹设计和作业提供依据。在催化系列模拟中发现,不同催化高度的催化剂均在上升到-5℃高度后开始核化。在2.1~4.9 km高度范围内催化,AgI成核率比较高,防雹效果较好。核化的人工冰晶有效弥补了该高度上自然冰晶的不足。小剂量催化,可在减雹的同时增加部分降雨量,而大剂量催化,在减雹的同时会减少降雨。在催化时间、剂量和高度的系列催化试验中得出,采用在模拟的第15分钟在5 km高度附近播撒AgI,连续4次以5×106 kg-1的催化剂量进行催化,催化效果较好,可减少降雹量约60%,同时可避免降雨量的大幅减少。  相似文献   

10.
This study investigates the cloud macro- and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018, based on the observations from the aircraft, the Suomi National Polar-Orbiting Partnership (NPP) satellite, and the high-resolution Himawari-8 (H8) satellite. The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region. This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat, resulting in strengthened updrafts, enhanced radar echoes, higher cloud tops, and more and larger precipitation particles. In contrast, in the stratiform cloud region, after the Silver Iodide (AgI) seeding, the radar echoes become significantly weaker at heights close to the seeding layer, with the echo tops lowered by 1.4–1.7 km. In addition, a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km, and features such as icing seeding tracks appear. These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part. The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding; while in the stratiform region, a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding, which moves along the wind direction as width increases.  相似文献   

11.
An Aerodyne quadruple aerosol mass spectrometer (Q-AMS) has been used to provide on-line measurements of size dependent chemical composition of fine aerosol particles (PM1) at the Air Pollution Research Station in Preila, Lithuania, representing the east Baltic region. The size dependent chemical composition measurements by AMS have revealed that in marine air masses 118?nm mode organics-containing particles were fresher compared to sulfate-containing particles (295?nm), likely originated as secondary aerosol from forest emissions or produced by primary sea spray over the Baltic Sea. In polluted continental air masses sulfate and organics were highly internally mixed and aged. The mass spectral results indicated that the major components of organic compounds were oxygenated organic species with strong signals at m/z 18, 43, 44 with several specific features. Positive matrix factorization (PMF) of AMS organic mass spectral data has identified three factors: aged oxygenated low-volatility organic aerosol (LV-OOA), less oxygenated semi-volatile organic aerosol (SV-OOA), and biogenic organic aerosol (BGOA) of either terrestrial or marine origin. The measurements were compared with a real-time particulate matter Beta Absorption Monitor (Thermo ESM Andersen) and Micro Orifice Uniform Deposit Impactor (MOUDI) data. The intercomparison showed a good correlation and a stable ratio between PM1 and PM2.5 concentrations. A comparison of the on-line Q-AMS data and the off-line MOUDI fine particle (<1???m) data yielded a reasonable agreement in size distributions but not the absolute mass concentrations due to sampling conditions, evaporation of acidic species from sampling substrates and bounce of the particles in the MOUDI.  相似文献   

12.
利用三维全弹性冰雹云模式,对2008年5月24日山东境内一次受高空冷涡影响的大范围冰雹天气过程进行模拟,分析了冰雹的形成机制和催化防雹机理。结果表明:该过程过冷雨水中心位于最大上升气流中心下方,不存在过冷雨累积区,过冷雨水含量最大值仅为4.9gm-3,但雹云中过冷雨水含量仍然丰富,对雹胚的形成及增长起着重要作用。雹胚以冻滴为主,冻滴胚来源于冰雪晶与过冷雨水碰撞冻结以及雨滴核化过程。冻滴形成后主要以碰并过冷雨水、云水增长。冻滴胚自动转化过程是冰雹数量、质量的主要来源;冰雹形成后,前期主要靠碰并冻滴、霰和过冷雨水增长,后期主要靠碰并过冷云水增长。催化试验表明,播撒57.5g催化剂足以通过"竞争"减雹50%以上,增加AgI剂量,防雹的同时能够兼顾增雨。催化剂用量为230g时,催化后液态降水有所增加,固态降水量及占总降水量的比例减少显著,特别是冰雹。AgI主要以凝华核的作用产生人工冰晶,冰晶凝华增长导致过冷云水、雨水含量降低。催化后雹胚特别是冻滴胚数量增多,对过冷云水、雨水的竞争增强;其平均尺度、质量的减小,降低了向冰雹的转化率。冰雹碰并过冷云水、雨水增长过程被减弱,导致冰雹总质量进一步减少,达到消雹目的。  相似文献   

13.
减弱对流云降水的AgI催化原理的数值模拟研究   总被引:3,自引:0,他引:3  
楼小凤  孙晶  史月琴  张邢 《气象学报》2014,72(4):782-793
在对流云模式中增加了AgI两个预报量,耦合了考虑受水汽过饱度和温度影响的4种核化机制的AgI催化模块,使其具备了对AgI类催化剂的模拟能力,能够研究AgI类催化剂对对流云系统的影响。利用该模式对一次华南对流云降水过程进行了AgI催化数值模拟试验,对人工减缓对流云降水的可能性及原理进行了研究。模拟结果表明,在适当的时机对适当的部位进行大剂量的催化,可以减少总降水量,也可以减少最大降水中心的雨强。当催化浓度达到2×10~8 kg~(-1)时,可以减少32%的降水量,具备有效减缓对流云降水的可能性。大剂量催化后,大量的AgI粒子在冷区核化后,消耗了大量的过冷水。催化后霰粒子的落速和雨水的落速减小。催化阶段由于霰融化成雨水减少而使降水减弱。催化结束后在霰融化成雨水增多的情况下,雨水的蒸发大幅增加,从而导致了降水量的持续减少。AgI在模拟的强对流云中主要以受过饱和度影响的凝结冻结和催化剂长时间作用的浸没冻结这两种方式成核。研究所用催化方法在外场作业中具有技术可行性。  相似文献   

14.
气溶胶影响云和降水的机理和观测研究进展   总被引:5,自引:3,他引:2  
李军霞  银燕  李培仁  徐芬 《气象科学》2014,34(5):581-590
气溶胶对云和降水的影响,对于气候系统、大气环境以及水循环至关重要。气溶胶粒子作为云凝结核和大气冰核影响云的微物理过程,进而影响雨、雪、雹和其他形式的降水。近年来,在理解气溶胶的化学成分,气溶胶微物理特性以及气溶胶作为云凝结核和大气冰核影响云降水等方面已取得重大进展。本文对于气溶胶的概念、来源以及气溶胶的直接和间接效应进行了简要概述,重点总结了国内外在气溶胶影响云和降水的机理研究方面的成果,回顾了近年来利用卫星、地面观测设备、机载探测设备等对气溶胶和云进行遥感观测和直接观测所获得的观测事实并讨论了其可能的物理机制,在总结前人研究成果的基础上对未来的研究方向进行了讨论。  相似文献   

15.
为了研究吸湿性催化剂、碘化银催化剂及两者的联合催化效果,利用双参数三维对流云催化模式,对浙江南部一次对流云降雨过程分别进行盐粉暖云催化、碘化银冷云催化和冷暖混合催化试验,对比研究不同催化方案对对流云降雨的可能影响。结果表明:盐粉催化导致先增雨后减雨,主要通过盐溶滴与云滴碰并增长,及雨滴碰并和霰粒子碰冻过程消耗。在上升气流区和降雨前期进行催化的增雨效果更好,30 μm粒径的盐粉催化剂量为12.5/L时,可增加降雨量17.8%。在降雨过程的不同发展阶段进行AgI催化,表现出先减雨后增雨的催化效果。盐粉和碘化银的联合催化,由于两者催化效果的不同步,使得不同吸湿性催化剂和碘化银催化剂量配置会导致不同的催化效果。当30 μm的盐粉,催化剂量12.5/L,联合碘化银100/L的冷区催化,可取得19%的增雨效果。  相似文献   

16.
Systematic year-round observations of submicron aerosols were carried out at Syowa Station (69°00'S, 39°35'E) in 1978. On the basis of the results of these observations, it is concluded that two types of aerosols originating from different sources are present in the Antarctic croposphere. With the intrusion of maritime air, mostly in the polar night months, sea salt particles and ammonium sulfate particles contained originally in the clean maritime air are dominant. The size distribution of such aerosols is monomodal, having a single mode at around 0.03 m in radii. On the other hand, in the sunlit months, sulfuric acid droplets are predominant and the size distribution is bimodal, having an additional mode at around 0.005 m in radii. Those sulfuric acid particles seem to be formed photochemically within a specific layer in the mid to lower troposphere over Antarctica. Most Antarctic submicron particles are of tropospheric origin, not of stratospheric nor anthropogenic origin.  相似文献   

17.
Some cloud condensation nuclei (CCN) constitute a reservoir of latent ice-forming nuclei (IFN) active by condensation-followed-by-freezing and by sorption. Evaporated droplets occasionally left aerosol particles that acted as sorption IFN at temperatures as high as −5°C and water vapor supersaturation over ice of 0.2%. The newly formed aerosol particles (residues of evaporated droplets) are all mixed particles. The discovery of IFN produced from CCN promotes new insights into the process of ice formation in clouds; in an evaporating parcel of a cloud the rate of formation of ice particles will be enhanced by continuous production of IFN. Aerosol particles left behind after evaporation of a cloud may provide a source of IFN for formation of some of the cirrus clouds.  相似文献   

18.
Primary biological aerosol particles including pollen, spores, plant debris, epithelial cells, bacteria, algae, protozoa and viruses, are an ubiquitous component of the atmospheric aerosol, they are most probably present in all size ranges. Besides their effects on air hygiene and health, biological particles play an important role in cloud physics, for example some bacteria are able to accumulate water and act as ice nuclei. To sample aerosols a two-stage-slit-impactor and a wing-impactor are used to collect particles for a following single particle analysis. The coarse particles are sampled on dyed glycerine jelly. The biological particles become stained and can be distinguished in contrast to the non-dyed particles using a light microscope.The small particles are examined in a scanning-electron-microscope equipped with an energy dispersive X-ray spectrometer after sampling on graphitic foils. Three criteria were used to characterize the particles: the morphology, the elemental composition and the behaviour during the microanalysis.With this method the size distributions of the primary biological aerosol particles were determined in an urban/rural influenced region. Considering all measurements we calculated a mean number concentration of 1.9 cm−3 of biological aerosol particles ≈30% of the total aerosol particles. The mean volume concentration was about 15% of the total volume. A model size distribution for primary biological aerosol particles was obtained by performing a non-linear fitting procedure.  相似文献   

19.
The physical properties and the chemical composition of atmospheric aerosols have been studied in an equatorial region in the southern Congo (Africa). Field experiments were conducted between 1978 and 1983 in the equatorial forest of the Mayombe during periods where the influence of biomass burning was minimum. The results indicate that the forest is a net source of both fine particles resulting primarily from gas-to-particle conversion and coarse particles produced by mechanical processes. Carbonaceous matter is the major component of these biogenic particles but the forest is also a significant source of sulfate, nitrate, ammonium and potassium. Half of this carbon is attached to submicron particles and likely derives from organic gaseous precursors naturally emitted by the local biosphere.Presented at the international Symposium Influence of marine and terrestrial biosphere on the chemical composition of the atmosphere, held in Mainz, F.R.G., on 16–22 March 1986.  相似文献   

20.
We used both a conventional transmission electron microscope and an environmental transmission electron microscope (ETEM) to determine morphology, composition, and water uptake of 80 individual aerosol particles collected from the young smoke of flaming and smoldering fires during SAFARI-2000, a comprehensive air quality campaign in southern Africa. Six representative carbonaceous particle types are described, including soot, tar balls, and heterogeneously internally mixed particles containing C with S-, K-, Mg- or Na-rich inorganic phases. The hygroscopic behavior of these particles over the range 0–100% relative humidity (RH) was studied in detail. Soot and tar balls did not take up water, whereas the mixed organic–inorganic particles took up water between 55 and 100% RH, the exact value depending on the composition of their water-soluble phases. The inorganic phase appeared to determine the hygroscopic properties of all mixed organic–inorganic particles. Thus, incorporation of inorganic plant material or reactions with inorganic atmospheric components can dramatically alter the hygroscopic properties of carbonaceous particles in smoke plumes. The fraction of these mixed organic–inorganic particles plausibly increases with time, which will modulate the effects of smoke on radiative budgets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号