首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
胡帅  吴波  周天军 《大气科学》2019,43(4):831-845
印度洋偶极子(IOD)是热带印度洋年际变率主导模态之一,对于区域乃至全球气候有重要影响。准确预报IOD对于短期气候预测具有重要意义。中国科学院大气物理研究所最近建立了近期气候预测系统IAP-DecPreS,其初始化方案采用“集合最优插值—分析增量更新”(EnOI-IAU)方案,能够同化观测的海洋次表层温度廓线资料。本文分析了IAP-DecPreS季节回报试验对IOD的回报技巧,重点比较了全场同化和异常场同化两种初始化策略下预测系统对IOD的回报技巧。分析表明,8月起报秋季IOD,无论从确定性预报还是概率性预报的角度,基于全场同化的回报试验技巧均高于异常场同化的回报试验。对于5月起报的秋季IOD,基于两种初始化策略的回报试验技巧相当。研究发现,全场同化策略相对于异常场的优势主要源于它提高了对伴随ENSO发生的IOD的预报技巧。ENSO遥强迫触发的热带东印度洋“风—蒸发—SST”正反馈过程是IOD发展和维持的关键。采用全场同化策略的回报结果能够更好地模拟出IOD发展过程中ENSO遥强迫产生的异常降水场和异常风场的空间分布特征;而采用异常场同化策略,模拟的异常降水场和风场偏差较大。导致两种初始化策略预测结果技巧差异的主要原因是,全场同化能够减小模式对热带印度洋气候平均态降水固有的模拟偏差,从而提升了热带印度洋对ENSO遥强迫响应的模拟能力。而异常场同化由于在同化过程中保持了模式固有的气候平均态,因此模拟的热带印度洋对ENSO遥强迫的响应存在与模式自由积分类似的模拟偏差。  相似文献   

2.
海温异常对山东夏季降水的影响分析   总被引:1,自引:1,他引:0  
孟祥新  王娜  商林 《气象》2017,43(10):1259-1266
讨论了前期全球海温异常对山东夏季降水不同分布型的影响,找到了对汛期降水预测有指示意义的异常信号,并将这些异常信号与2016年的降水分布特征进行了验证。前期恩索(ENSO)处于发展状态时,易造成全省夏季降水一致的分布形势;前期ENSO处于衰减状态时,山东夏季降水易出现东西反向的分布形势。太平洋十年际振荡和热带印度洋全区一致海温模态位相与鲁东南和半岛的夏季降水存在高相关,而副热带南印度洋偶极子和热带印度洋偶极子位相对山东夏季降水的高影响区位于鲁西北。这些异常信号对山东夏季降水预测具有一定的指示意义。  相似文献   

3.
IAP数值气候预测系统对2004年中国夏季气候的预测   总被引:4,自引:3,他引:1  
通过1980~2000年共21年的集合后报试验,考察水平分辨率提高至2°×2.5°的IAP短期数值气候预测系统对中国夏季气候异常的预报技巧.后报试验结果表明:该预测系统对中国夏季气温异常具有较好的预报能力,此外对夏季降水异常也具有一定的预报能力.利用IAP ENSO预测系统,较好地预报出2004年3月以后热带太平洋海温的演变情况,并在此基础上,对2004年中国夏季气候进行了实时预测.与实况比较表明,IAP数值气候预测系统总体上较好地预报出2004年夏季我国大范围的降水和温度异常分布,特别是较好地预测出夏季我国北方大部、华南沿海等地区气温偏高,而黄淮以及长江中上游地区气温偏低的观测事实.预测的温度距平与中国地区160个站观测实况的距平相关系数可达0.39.  相似文献   

4.
针对四川汛期候降水距平百分率(PAP),采用距平相关系数(ACC)、时间相关系数(TCC)、符号一致率(SCR)和趋势异常综合评分(PS)4种预测评分方法对S2S计划中10个模式的预测技巧进行检验评估,并在误差分析的基础上提出“正负概率异常订正”方案对各模式候降水距平百分率预测结果进行订正。结果表明,随着预测时效延长,多数模式的预测技巧快速降低,模式间预测技巧的差距缩小。至第10天左右,各模式进入低技巧时段,预测技巧随时效变化的幅度减小,各模式仅对降水趋势异常有一定预测能力,其中BoM模式明显高于其他模式。除BoM模式外的其他模式对降水年际变化幅度都存在低估,降水距平百分率异常偏差为?33%—?18%,不随预测时效发生太大变化,但空间分布不均。经过误差订正各模式的距平相关系数和符号一致率有所提高,趋势异常综合评分有效提高,并且对次季节尺度的订正效果优于天气尺度。订正后,各模式在次季节尺度的平均趋势异常综合评分均高于76.8, 66.7%的模式评分为79.2—80.2,超过业务评分标准(72.0)近8分。订正效果在4 a独立样本检验中也得到验证。   相似文献   

5.
采用1991—2017年BCC_CSM1.1m季节预测模式的月降水预测数据及福建省前汛期(4—6月)66个国家气象站降水资料,利用距平相关系数(ACC)、时间相关系数(TCC)、平均方差技巧评分(MSSS)和趋势异常综合评分(Ps)等评估方法,检验评估了提前0、1、2和5个月模式对福建省前汛期降水的预测能力。采用系统偏差、一元线性回归和EOF-相似误差(EOFL和EOFNL)等4种统计方法对回报结果进行订正,并进行效果检验。BCC_CSM1.1m在不同起报时间对福建省前汛期降水的预测均能抓住降水的前两个主模态:全省一致和南北反向分布的空间特征,但预测的气候平均值较实况存在负偏差。模式在不同起报时间对前汛期降水预测的TCC高技巧区主要位于福建省北部,ACC技巧和Ps评分存在比较大的年际差异,负系统偏差的存在使得MSSS技巧不高。经订正后,模式的预测能力得到明显提升。系统偏差、线性回归、EOF相似误差线性和非线性订正方法提前2个月起报的2011—2017年平均Ps评分分别提高5.9、3.5、6.7和7.8分;不同起报时间线性回归订正的2011—2017年平均ACC技巧分别提高0.02、0.21、0.12和0.11;上述4种方法订正的MSSS评分均有了显著提高,其中系统偏差和线性回归订正后达正技巧。综合而言,线性回归订正较其他3种订正方法表现出更为稳定的订正技巧。  相似文献   

6.
利用北京气候中心(BCC)次季节-季节(Sub-seasonal to Seasonal,S2S)预测系统20年(1994-2013年)回报试验数据,在评估BCC S2S预测系统对中国西南地区夏季降水次季节预报性能基础上,进而采用基于奇异值分解(Singular Value Decomposition,SVD)的误差订正方案对预测结果进行订正。结果表明:BCC S2S预测系统对西南地区夏季降水的次季节预报技巧随起报时间的提前不断下降,在起报时间提前10天以内具有一定预报技巧,而在起报时间提前10天以上基本无技巧,同时存在明显的区域性和年际差异。采用SVD误差订正方案能够较好改善BCC S2S系统对西南地区夏季降水的次季节预测水平,起报时间提前0~10、11~20、21~30天原始预测结果与观测间的异常相关系数分别为0.50,0.31和0.25,订正后分别提高至0.70,0.75和0.70,同时订正后的预测结果与观测间的空间相关系数在起报时间提前0~10天提高了0.3左右,尤其对起报时间提前11~30天的预测结果改进更加明显,空间相关系数提高了0.6左右。  相似文献   

7.
张丹琦  孙凤华  张耀存 《高原气象》2019,38(6):1229-1240
利用BCC第二代气候预测模式系统1996-2015年提前1~3个月的回报试验结果,评估了模式在季节尺度上预测中国夏季降水空间分布和降水异常的能力,分析了模式预报效果的年际差异,并探讨了模式预测误差产生的可能原因。结果表明,模式对中国夏季降水的季节预测具有一定的技巧,西南至长江中下游南部、黄淮平原西部、东北北部及藏北高原等地区季节预测技巧较高,同时,模式对降水距平预报效果整体较好,其中在长江中下游、黄淮地区、华南地区、西北地区及东北北部距平符号一致率较高。而模式对降水季节预测的偏差主要表现为我国东部降水量强度预测偏小,对夏季降水异常的预报技巧有限,且不同年份模式的预测效果差异较大。模式对夏季西太平洋及印度洋高海温区范围预测偏小,对副热带高压和东亚地区低层水汽辐合的强度预测偏弱,从而导致风场与环流场的配置与观测不一致,使得模式对我国东部夏季降水预测显著偏少。从模式预测效果年际差异来看,当华南地区实况降水量偏多、长江中下游及东北地区降水量偏少时,模式具有较高的预测技巧,反之,模式的预报技巧较低。分析中国东部降水与海温的相关关系发现,夏季西北太平洋、热带西太平洋和北印度洋是影响中国东部夏季降水的关键区域,模式中西北太平洋海温偏低对模式预报技巧具有重要影响,海温场、高度场、风场及水汽通量散度场不同的相互配置导致中国东部夏季降水的分布及强度差异,而模式不能合理把握各物理量场间相互作用过程,从而影响模式的预报效果。因此,改进模式对外强迫因子与降水异常相关关系的预测能力是提高我国夏季降水季节预测技巧的主要途径。  相似文献   

8.
基于CFS模式的中国站点夏季降水统计降尺度预测   总被引:6,自引:2,他引:4  
刘颖  范可  张颖 《大气科学》2013,37(6):1287-1296
本研究针对中国夏季站点降水,研制建立了基于Climate Forecast System(CFS)实时预测数值产品及观测资料的统计降尺度预测系统。此预测系统选取了CFS模式中当年夏季500 hPa高度场和观测资料中前一年秋、冬季海表面温度场作为预测因子,两因子的关键区分别为泛东亚地区和热带太平洋地区。统计降尺度模型对1982~2011年中国夏季降水的回报效果较CFS模式原始结果显著提高,空间距平相关系数由0.03提高到0.31,时间相关系数在中国大部分地区显著提高,最大可达0.6。均方根误差较CFS模式原始结果明显降低,同时,此降尺度模型较好的回报出2011年汛期降水的距平百分率的空间分布型。  相似文献   

9.
我国春季沙尘天气趋势的数值气候预测试验   总被引:7,自引:3,他引:4  
利用IAP动力学气候预测系统(IAP DCP)对1980~2000年共21年进行了集合后报试验,首先考察了IAP DCP对我国春季气候异常的预测能力,并在此基础上利用该系统进行了春季沙尘天气异常的动力学气候预测试验.结果表明:该系统对我国春季气候具有一定的跨年度预测能力,特别是对春季西北地区降水异常和近地面风场具有较好的预报技巧.实时预测及其检验表明,IAP DCP对我国2003年春季沙尘的预测结果与实况比较一致.对2004年春季气候异常及沙尘趋势的实时预测结果表明,2004年春季我国北方,特别是西北及内蒙沙源地区降水偏多,冷空气势力较常年弱,因此2004年春季我国北方地区沙尘趋势应为正常或略偏弱.  相似文献   

10.
黄昕  周天军  吴波  陈晓龙 《大气科学》2019,43(2):437-455
本文通过与观测和再分析资料的对比,评估了LASG/IAP发展的气候系统模式FGOALS的两个版本FGOALS-g2和FGOALS-s2对南亚夏季风的气候态和年际变率的模拟能力,并使用水汽收支方程诊断,研究了造成降水模拟偏差的原因。结果表明,两个模式夏季气候态降水均在陆地季风槽内偏少,印度半岛附近海域偏多,在降水年循环中表现为夏季北侧辐合带北推范围不足。FGOALS-g2中赤道印度洋"东西型"海温偏差导致模拟的东赤道印度洋海上辐合带偏弱,而FGOALS-s2中印度洋"南北型"海温偏差导致模拟的海上辐合带偏向西南。水汽收支分析表明,两个模式中气候态夏季风降水的模拟偏差主要来自于整层积分的水汽通量,尤其是垂直动力平流项的模拟偏差。一方面,夏季阿拉伯海和孟加拉湾的海温偏冷而赤道西印度洋海温偏暖,造成向印度半岛的水汽输送偏少;另一方面,对流层温度偏冷,冷中心位于印度半岛北部对流层上层,同时季风槽内总云量偏少,云长波辐射效应偏弱,对流层经向温度梯度偏弱以及大气湿静力稳定度偏强引起的下沉异常造成陆地季风槽内降水偏少。在年际变率上,观测中南亚夏季风环流和降水指数与Ni?o3.4指数存在负相关关系,但FGOALS两个版本模式均存在较大偏差。两个模式中与ENSO暖事件相关的沃克环流异常下沉支和对应的负降水异常西移至赤道以南的热带中西印度洋,沿赤道非对称的加热异常令两个模式中越赤道环流季风增强,导致印度半岛南部产生正降水异常。ENSO相关的沃克环流异常下沉支及其对应的负降水异常偏西与两个模式对热带南印度洋气候态降水的模拟偏差有关。研究结果表明,若要提高FGOALS两个版本模式对南亚夏季风气候态模拟技巧,需减小耦合模式对印度洋海温、对流层温度及云的模拟偏差;若要提高南亚夏季风和ENSO相关性模拟技巧需要提高模式对热带印度洋气候态降水以及与ENSO相关的环流异常的模拟能力。  相似文献   

11.
BCC二代气候系统模式的季节预测评估和可预报性分析   总被引:6,自引:3,他引:3  
吴捷  任宏利  张帅  刘颖  刘向文 《大气科学》2017,41(6):1300-1315
本文利用国家气候中心(BCC)第二代季节预测模式系统历史回报数据,从确定性预报和概率预报两个方面系统地评估了该模式对气温、降水和大气环流的季节预报性能,并与BCC一代气候预测模式的结果进行了对比,重点分析了二代模式的季节可预报性问题。结果显示,BCC二代模式对全球气温、降水和环流的预报性能整体上优于一代模式,特别在热带中东太平洋、印度洋和海洋大陆地区的温度和降水的预报效果改进尤为明显。这些热带地区降水预报的改进,可以通过激发太平洋—北美型(PNA)、东亚—太平洋型(EAP)等遥相关波列提升该模式在中高纬地区的季节预报技巧。分析表明,厄尔尼诺和南方涛动(ENSO)信号在热带和热带外地区均是模式季节可预报性的重要来源,BCC二代模式能够较好把握全球大气环流对ENSO信号的响应特征,从而通过对ENSO预报技巧的改进有效地提升了模式整体的预报性能。从概率预报来看,BCC二代模式对我国冬季气温和夏季降水具备一定的预报能力,特别是对我国东部大部分地区冬季气温正异常和负异常事件预报的可靠性和辨析度相对较高。因此,进一步提高模式对热带大尺度异常信号和大气主要模态的预报能力、加强概率预报产品释用对提高季节气候预测水平具有重要意义。  相似文献   

12.
中国业务动力季节预报的进展   总被引:26,自引:9,他引:26  
利用动力模式开展季节到年际的短期气候预测 ,是目前国际上气候预测的发展方向。自 1996年以来 ,经过 8a多的研制和发展 ,国家气候中心已建立起第 1代动力气候模式预测业务系统 ,其中包括 1个全球大气 海洋耦合模式 (CGCM )、1个高分辨率东亚区域气候模式 (RegCM_NCC)和 5个简化的ENSO预测模式 (SAOMS) ,可用于季节—年际时间尺度的全球气候预测 ;全球海气耦合模式与区域气候模式嵌套 ,可以提供高分辨率的东亚区域气候模式制做季节预测。CGCM对 1982~ 2 0 0 0年夏季的历史回报试验表明 ,该模式对热带太平洋海表面温度和东亚区域的季节预测具有较好的预测能力。RegCM NCC的 5a模拟基本上能再现东亚地区主要雨带的季节进展。利用嵌套的区域气候模式RegCM NCC对 1991~ 2 0 0 0年的夏季回报表明 ,在预报主要季节雨带方面有一定技巧。 2 0 0 1~ 2 0 0 3年 ,CGCM和RegCM NCC的实时季节预报与观测相比基本合理。特别是 ,模式成功地预报了 2 0 0 3年梅雨季节长江和黄河之间比常年偏多的降水。SAOMS模式系统的回报试验表明 ,该系统对热带太平洋海表面温度距平有一定的预报能力 ,模式超前 6~ 12个月的回报与观测的相关系数明显高于持续预报。 1997~ 2 0 0 3年 ,SAOMS多模式集合实时预报与观测的相关系数达到  相似文献   

13.
Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Niño-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 1982–2004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.  相似文献   

14.
Shaolei TANG  Jing-Jia LUO  Jiaying HE  Jiye WU  Yu ZHOU  Wushan YING 《大气科学进展》2021,38(12):2023-2039,中插8-中插11
The extreme floods in the Middle/Lower Yangtze River Valley (MLYRV) during June?July 2020 caused more than 170 billion Chinese Yuan direct economic losses. Here, we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans. Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific, which brought tropical warm moisture northward that converged over the MLYRV. In addition, despite the absence of a strong El Ni?o in 2019/2020 winter, the mean SST anomaly in the tropical Indian Ocean during June?July 2020 reached its highest value over the last 40 years, and 43% (57%) of it is attributed to the multi-decadal warming trend (interannual variability). Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020 (albeit the magnitude of the predicted precipitation was only about one-seventh of the observed), sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods, compared to the contributions of SST anomalies in the Maritime Continent, central and eastern equatorial Pacific, and North Atlantic. Furthermore, both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods. Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.  相似文献   

15.
The Asian monsoon system, including the western North Pacific (WNP), East Asian, and Indian monsoons, dominates the climate of the Asia-Indian Ocean-Pacific region, and plays a significant role in the global hydrological and energy cycles. The prediction of monsoons and associated climate features is a major challenge in seasonal time scale climate forecast. In this study, a comprehensive assessment of the interannual predictability of the WNP summer climate has been performed using the 1-month lead retrospective forecasts (hindcasts) of five state-of-the-art coupled models from ENSEMBLES for the period of 1960–2005. Spatial distribution of the temporal correlation coefficients shows that the interannual variation of precipitation is well predicted around the Maritime Continent and east of the Philippines. The high skills for the lower-tropospheric circulation and sea surface temperature (SST) spread over almost the whole WNP. These results indicate that the models in general successfully predict the interannual variation of the WNP summer climate. Two typical indices, the WNP summer precipitation index and the WNP lower-tropospheric circulation index (WNPMI), have been used to quantify the forecast skill. The correlation coefficient between five models’ multi-model ensemble (MME) mean prediction and observations for the WNP summer precipitation index reaches 0.66 during 1979–2005 while it is 0.68 for the WNPMI during 1960–2005. The WNPMI-regressed anomalies of lower-tropospheric winds, SSTs and precipitation are similar between observations and MME. Further analysis suggests that prediction reliability of the WNP summer climate mainly arises from the atmosphere–ocean interaction over the tropical Indian and the tropical Pacific Ocean, implying that continuing improvement in the representation of the air–sea interaction over these regions in CGCMs is a key for long-lead seasonal forecast over the WNP and East Asia. On the other hand, the prediction of the WNP summer climate anomalies exhibits a remarkable spread resulted from uncertainty in initial conditions. The summer anomalies related to the prediction spread, including the lower-tropospheric circulation, SST and precipitation anomalies, show a Pacific-Japan or East Asia-Pacific pattern in the meridional direction over the WNP. Our further investigations suggest that the WNPMI prediction spread arises mainly from the internal dynamics in air–sea interaction over the WNP and Indian Ocean, since the local relationships among the anomalous SST, circulation, and precipitation associated with the spread are similar to those associated with the interannual variation of the WNPMI in both observations and MME. However, the magnitudes of these anomalies related to the spread are weaker, ranging from one third to a half of those anomalies associated with the interannual variation of the WNPMI in MME over the tropical Indian Ocean and subtropical WNP. These results further support that the improvement in the representation of the air–sea interaction over the tropical Indian Ocean and subtropical WNP in CGCMs is a key for reducing the prediction spread and for improving the long-lead seasonal forecast over the WNP and East Asia.  相似文献   

16.
Shaolei TANG  Jing-Jia LUO  Jiaying HE  Jiye WU  Yu ZHOU  Wushan YING 《大气科学进展》2021,38(12):2023-2039,中插8-中插11
The extreme floods in the Middle/Lower Yangtze River Valley (MLYRV) during June?July 2020 caused more than 170 billion Chinese Yuan direct economic losses. Here, we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans. Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific, which brought tropical warm moisture northward that converged over the MLYRV. In addition, despite the absence of a strong El Ni?o in 2019/2020 winter, the mean SST anomaly in the tropical Indian Ocean during June?July 2020 reached its highest value over the last 40 years, and 43% (57%) of it is attributed to the multi-decadal warming trend (interannual variability). Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020 (albeit the magnitude of the predicted precipitation was only about one-seventh of the observed), sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods, compared to the contributions of SST anomalies in the Maritime Continent, central and eastern equatorial Pacific, and North Atlantic. Furthermore, both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods. Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.  相似文献   

17.
东亚夏季环流变化对中国夏季降水的年际变化有重要影响,因此需要进一步理解季节预测模式对东亚夏季环流的预测能力。利用1991~2013年美国国家环境预测中心(NCEP)、中国气象局国家气候中心(NCC)和日本东京气候中心(TCC)的三个季节预测模式(CFS V2、BCC_CSM V2和MRI-CGCM)以及NCEP/NCAR再分析资料,定量评估了模式对东亚夏季风(EASM)和夏季西太平洋副热带高压(WPSH)强度的预测能力。在此基础上,分析了模式预测的EASM和WPSH对热带海温异常的响应能力,以及ENSO事件对EASM和WPSH预测的影响,阐述了预测误差产生的原因。结果表明:整体而言,三个模式对EASM和WPSH的预测技巧较高,但TCC模式对WPSH的预测技巧相对较低。三个模式预测的850 hPa风场在西北太平洋存在一个异常气旋,使得预测的EASM偏强和WPSH偏弱。同时,二者的年际变率整体比观测小。三个模式预测的EASM和WPSH对热带海洋海温异常的响应随季节演变特征与观测比较接近,但NCEP模式和TCC模式预测的EASM对前期热带太平洋和前期、同期热带印度洋的海温异常响应要强于观测,NCC模式预测的EASM对前期和同期的热带太平洋的海温异常响应明显比观测强。此外,三个模式预测的WPSH对前期和同期的热带太平洋、热带印度洋和热带大西洋的海温异常响应明显强于观测。三个模式预测的EASM和WPSH在ENSO年的平均绝对误差(MAE)整体而言要比正常年的小很多,NCEP模式和NCC模式预测的EASM和WPSH的MAE在La Ni?a年和El Ni?o年差别不大,而TCC模式预测的EASM和WPSH的MAE在El Ni?o年比在La Ni?a年大很多,表明ENSO事件是东亚夏季环流重要的可预报源。  相似文献   

18.
The predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP climate forecast system (CFS) are depicted by applying a maximized signal-to-noise empirical orthogonal function analysis. The CFS captures the two most dominant modes of observed climate patterns. The first most dominant mode is characterized by the climate features of the onset years of El Niño-Southern Oscillation (ENSO), with strong precipitation signals over the tropical eastern Indian and western Pacific oceans, Southeast Asia, and tropical Asian monsoon regions including the Bay of Bengal and the South China Sea. The second most dominant mode is characterized by the climate features of the decay years of ENSO, with weakening signals over the western-central Pacific and strengthening signals over the Indian Ocean. The CFS is capable of predicting the most dominant modes several months in advance. It is also highly skillful in capturing the air–sea interaction processes associated with the precipitation features, as demonstrated in sea surface temperature and wind patterns.  相似文献   

19.
studying the relationship between SST in the tropical Indian Ocean (TIO), tropical western Pacific (TWP), and tropical eastern Pacific (TEP) and East Asian summer rainfall (EASR), using data provided by NOAA/OAR/ESRL PSD and the National Climate Center of China for the period 1979-2008, an index, SSTDI, was defined to describe the SST difference between the TIO and TWP. In comparison with the winter ENSO, the spring SST contrast between the TIO and TWP was found to be more significantly associated with summer rainfall in East Asia, especially along the EASR band and in Northeast China. This spring SST contrast can persist into summer, resulting in a more significant meridional teleconnection pattern of lower-tropospheric circulation anomalies over the western North Pacific and East Asia. These circulation anomalies are dynamically consistent with the summer rainfall anomaly along the EASR band. When the SSTDI is higher (lower) than normal, the EASR over the Yangtze River valley, Korea, and central and southern Japan is heavier (less) than normal. The present results suggest that this spring SST contrast can be used as a new and better predictor of EASR anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号