首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A fast coupled global climate model (CGCM) is used to study the sensitivity of El Ni?o Southern Oscillation (ENSO) characteristics to a new interactive flux correction scheme. With no flux correction applied our CGCM reveals typical bias in the background state: for instance, the cold tongue in the tropical east Pacific becomes too cold, thus degrading atmospheric sensitivity to variations of sea surface temperature (SST). Sufficient atmospheric sensitivity is essential to ENSO. Our adjustment scheme aims to sustain atmospheric sensitivity by counteracting the SST drift in the model. With reduced bias in the forcing of the atmosphere, the CGCM displays ENSO-type variability that otherwise is absent. The adjustment approach employs a one-way anomaly coupling from the ocean to the atmosphere: heat fluxes seen by the ocean are based on full SST, while heat fluxes seen by the atmosphere are based on anomalies of SST. The latter requires knowledge of the model??s climatological SST field, which is accumulated interactively in the spin-up phase (??training??). Applying the flux correction already during the training period (by utilizing the evolving SST climatology) is necessary for efficiently reducing the bias. The combination of corrected fluxes seen by the atmosphere and uncorrected fluxes seen by the ocean implies a restoring mechanism that counteracts the bias and allows for long stable integrations in our CGCM. A suite of sensitivity runs with varying training periods is utilized to study the effect of different levels of bias in the background state on important ENSO properties. Increased duration of training amplifies the coupled sensitivity in our model and leads to stronger amplitudes and longer periods of the Nino3.4 index, increased emphasis of warm events that is reflected in enhanced skewness, and more pronounced teleconnections in the Pacific. Furthermore, with longer training durations we observe a mode switch of ENSO in our model that closely resembles the observed mode switch related to the mid-1970s ??climate shift??.  相似文献   

2.
IAP第四代大气环流模式的耦合气候系统模式模拟性能评估   总被引:7,自引:2,他引:5  
本文首先扼要介绍了基于中国科学院大气物理研究所(简称IAP)第四代大气环流模式的新气候系统模式-CAS-ESM-C(中国科学院地球系统模式气候系统模式分量)的发展和结构,之后主要对该模式在模拟大气、海洋、陆面和海冰的气候平均态、季节循环以及主要的年际变率等方面的能力做一个初步的评估.结果表明:模式没有明显的气候漂移,各...  相似文献   

3.
Associated with the double Inter-tropical convergence zone problem, a dipole SST bias pattern (cold in the equatorial central Pacific and warm in the southeast tropical Pacific) remains a common problem inherent in many contemporary coupled models. Based on a newly-developed coupled model, we performed a control run and two sensitivity runs, one is a coupled run with annual mean SST correction and the other is an ocean forced run. By comparison of these three runs, we demonstrated that a serious consequence of this SST bias is to severely suppress the thermocline feedback in a realistic simulation of the El Ni?o/Southern Oscillation. Firstly, the excessive cold tongue extension pushes the anomalous convection far westward from the equatorial central Pacific, prominently diminishing the convection-low level wind feedback and thus the air-sea coupling strength. Secondly, the equatorial surface wind anomaly exhibits a relatively uniform meridional structure with weak gradient, contributing to a weakened wind-thermocline feedback. Thirdly, the equatorial cold SST bias induces a weakened upper-ocean stratification and thus yields the underestimation of the thermocline-subsurface temperature feedback. Finally, the dipole SST bias underestimates the mean upwelling through (a) undermining equatorial mean easterly wind stress, and (b) enhancing convective mixing and thus reducing the upper ocean stratification, which weakens vertical shear of meridional currents and near-surface Ekman-divergence.  相似文献   

4.
In this study, the impact of the ocean–atmosphere coupling on the atmospheric mean state over the Indian Ocean and the Indian Summer Monsoon (ISM) is examined in the framework of the SINTEX-F2 coupled model through forced and coupled control simulations and several sensitivity coupled experiments. During boreal winter and spring, most of the Indian Ocean biases are common in forced and coupled simulations, suggesting that the errors originate from the atmospheric model, especially a dry islands bias in the Maritime Continent. During boreal summer, the air-sea coupling decreases the ISM rainfall over South India and the monsoon strength to realistic amplitude, but at the expense of important degradations of the rainfall and Sea Surface Temperature (SST) mean states in the Indian Ocean. Strong SST biases of opposite sign are observed over the western (WIO) and eastern (EIO) tropical Indian Ocean. Rainfall amounts over the ocean (land) are systematically higher (lower) in the northern hemisphere and the south equatorial Indian Ocean rainfall band is missing in the control coupled simulation. During boreal fall, positive dipole-like errors emerge in the mean state of the coupled model, with warm and wet (cold and dry) biases in the WIO (EIO), suggesting again a significant impact of the SST errors. The exact contributions and the distinct roles of these SST errors in the seasonal mean atmospheric state of the coupled model have been further assessed with two sensitivity coupled experiments, in which the SST biases are replaced by observed climatology either in the WIO (warm bias) or EIO (cold bias). The correction of the WIO warm bias leads to a global decrease of rainfall in the monsoon region, which confirms that the WIO is an important source of moisture for the ISM. On the other hand, the correction of the EIO cold bias leads to a global improvement of precipitation and circulation mean state during summer and fall. Nevertheless, all these improvements due to SST corrections seem drastically limited by the atmosphere intrinsic biases, including prominently the unimodal oceanic position of the ITCZ (Inter Tropical Convergence Zone) during summer and the enhanced westward wind stress along the equator during fall.  相似文献   

5.
State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities.Significantly weak ENSO asymmetry and weakly nonlinear air–sea interaction over the tropical Pacific was found in CMIP5(Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air–sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air–sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni o events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni o events, especially the extreme El Ni o events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure(especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.  相似文献   

6.
F. Codron 《Climate Dynamics》2001,17(2-3):187-203
 The changes of the variability of the tropical Pacific ocean forced by a shift of six months in the date of the perihelion are studied using a coupled tropical Pacific ocean/global atmosphere GCM. The sensitivity experiments are conducted with two versions of the atmospheric model, varied by two parametrization changes. The first one concerns the interpolation scheme between the atmosphere and ocean models grids near the coasts, the second one the advection of water vapor in the presence of downstream negative temperature gradients, as encountered in the vicinity of mountains. In the tropical Pacific region, the parametrization differences only have a significant direct effect near the coasts; but coupled feedbacks lead to a 1 °C warming of the equatorial cold tongue in the modified (version 2) model, and a widening of the western Pacific large-scale convergence area. The sensitivity of the seasonal cycle of equatorial SST is very different between the two experiments. In both cases, the response to the solar flux forcing is strongly modified by coupled interactions between the SST, wind stress response and ocean dynamics. In the first version, the main feedback is due to anomalous upwelling and leads to westward propagation of SST anomalies; whereas the version 2 model is dominated by an eastward-propagating thermocline mode. The main reason diagnosed for these different behaviors is the atmospheric response to SST anomalies. In the warmer climate simulated by the second version, the wind stress response in the western Pacific is enhanced, and the off-equatorial curl is reduced, both effects favoring eastward propagation through thermocline depth anomalies. The modifications of the simulated seasonal cycle in version 2 lead to a change in ENSO behavior. In the control climate, the interannual variability in the eastern Pacific is dominated by warm events, whereas cold events tend to be the more extreme ones with a shifted perihelion. Received: 14 December 1999 / Accepted: 24 May 2000  相似文献   

7.
The 1960-1991 monthly mean FSU (Florida State University)wind stress data are decomposed into a vortical and a divergent component with each of which to force the model ocean in the context of a two-layer tropical Pacific model.Evidence suggests that for the seasonal variation the ocean forcing does not produce a realistic cold tongue using either of the components and the tongue will not be effectively improved in its intensity and pattern even if the components are doubled or halved:the utilization of climatic mean wind stress(no decomposition is done of the wind stress)that contains its seasonal variation will lead to a realistic SST distribution on which is imposed,separately,the interannual anomalies of each of the components so as to get the SSTA pattern:under the action of the interannual anomaly of the vortical(divergent)component there arises qnite intense SSTA oscillation marked by noticeable ENSO periods(feeble SSTA with higher oscillation frequency for obscure ENSO periods),thereby illustrating that the roles of the two components differ from each other in the genesis of SST variation on a seasonal and an interannual basis such that a realistic cold tongue pattern follows under the joint effects on the model ocean of the two components of wind stress while rational E1 Nino/La Nina phenomena result under the forcing of an anomalous wind stress vortical component.Moreover,the divergent component is innegligible in generating a mean climatic condition of the ocean sector but of less importance compared to the vortical component in ENSO development.  相似文献   

8.
将 1 960~ 1 991年的月平均 FSU风应力资料分解为旋转部分和辐散辐合部分 ,分别用以强迫模式海洋。所用的模式为一个 2层热带太平洋区域海洋模式。结果表明 ,就季节变化而言 ,不论是用旋转分量还是散合分量强迫海洋 ,都不能产生合理的冷舌 ,哪怕将旋转或散合分量放大一倍或缩小二分之一 ,也不能使冷舌的强度和分布得到合理的改善。若采用气候平均的含有季节变化的风应力 (未对旋转和辐散分量进行分离 ) ,则可产生与实际相符的海表温度分布。在此基础上 ,分别叠加旋转和辐散分量的年际异常部分 ,通过对海洋的强迫 ,可产生海表温度异常。在年际异常旋转分量的强迫下 ,可产生较强的 SSTA振荡且具有明显的 ENSO周期 ;而在辐散辐合年际异常风应力的强迫下 ,则产生较弱的 SSTA,且振荡频率较高 ,ENSO周期不很明显。这些结果说明 ,风应力的涡旋和辐散辐合分量在海温季节变化和年际变化的形成中具有不同的作用 ,即合理的冷舌分布需要风应力旋转分量和散合分量同时作用于海洋方可产生 ,而仅有异常风应力的旋转强迫就可产生合理的 EL Nino/ La Nina现象。同时 ,风应力的辐散辐合分量在海洋平均状态的形成过程中是重要的 ,但在 EN-SO过程中就对海洋的作用而言则不如旋转分量重要。  相似文献   

9.
The 1960-1991 monthly mean FSU (Florida State University)wind stress data aredecomposed into a vortical and a divergent component with each of which to force the model oceanin the context of a two-layer tropical Pacific model.Evidence suggests that for the seasonalvariation the ocean forcing does not produce a realistic cold tongue using either of the componentsand the tongue will not be effectively improved in its intensity and pattern even if the componentsare doubled or halved:the utilization of climatic mean wind stress(no decomposition is done of thewind stress)that contains its seasonal variation will lead to a realistic SST distribution on which isimposed,separately,the interannual anomalies of each of the components so as to get the SSTApattern:under the action of the interannual anomaly of the vortical(divergent)component therearises qnite intense SSTA oscillation marked by noticeable ENSO periods(feeble SSTA withhigher oscillation frequency for obscure ENSO periods),thereby illustrating that the roles of thetwo components differ from each other in the genesis of SST variation on a seasonal and aninterannual basis such that a realistic cold tongue pattern follows under the joint effects on themodel ocean of the two components of wind stress while rational E1 Nino/La Nina phenomenaresult under the forcing of an anomalous wind stress vortical component.Moreover,the divergentcomponent is innegligible in generating a mean climatic condition of the ocean sector but of lessimportance compared to the vortical component in ENSO development.  相似文献   

10.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   

11.
杨修群  谢倩 《气象学报》1996,54(1):42-52
利用发展的包含海洋表面边界展和大气辐合反馈过程的热带太平洋海气耦合距平模式,对ENSO循环进行了模拟。通过30a积分,用合模式所展示的热带太平洋海气耦合系统的ENSO循环的水平结构演变特征和观测事实甚为一致,成功地模拟出了ENSO循环的冷暖态的发生发展、衰亡及相互转换等各个位相的动力和热力场的水平结构及其对季节循环的依赖性特征。本文数值模拟结果表明,ENSO循环的主要动力学过程可由热带海气相互作用系统自身所确定。ENSO循环的正确模拟是揭示其形成机制的前提。  相似文献   

12.
Many climate models strongly underestimate the two most important atmospheric feedbacks operating in El Niño/Southern Oscillation (ENSO), the positive (amplifying) zonal surface wind feedback and negative (damping) surface-heat flux feedback (hereafter ENSO atmospheric feedbacks, EAF). This hampers a realistic representation of ENSO dynamics in these models. Here we show that the atmospheric components of climate models participating in the 5th phase of the Coupled Model Intercomparison Project (CMIP5) when forced by observed sea surface temperatures (SST), already underestimate EAF on average by 23%, but less than their coupled counterparts (on average by 54%). There is a pronounced tendency of atmosphere models to simulate stronger EAF, when they exhibit a stronger mean deep convection and enhanced cloud cover over the western equatorial Pacific (WEP), indicative of a stronger rising branch of the Pacific Walker Circulation (PWC). Further, differences in the mean deep convection over the WEP between the coupled and uncoupled models explain a large part of the differences in EAF, with the deep convection in the coupled models strongly depending on the equatorial Pacific SST bias. Experiments with a single atmosphere model support the relation between the equatorial Pacific atmospheric mean state, the SST bias and the EAF. An implemented cold SST bias in the observed SST forcing weakens deep convection and reduces cloud cover in the rising branch of the PWC, causing weaker EAF. A warm SST bias has the opposite effect. Our results elucidate how biases in the mean state of the PWC and equatorial SST hamper a realistic simulation of the EAF.  相似文献   

13.
The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean–atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000 m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator.  相似文献   

14.
The cold equatorial SST bias in the tropical Pacific that is persistent in many coupled OAGCMs severely impacts the fidelity of the simulated climate and variability in this key region, such as the ENSO phenomenon. The classical bias analysis in these models usually concentrates on multi-decadal to centennial time series needed to obtain statistically robust features. Yet, this strategy cannot fully explain how the models errors were generated in the first place. Here, we use seasonal re-forecasts (hindcasts) to track back the origin of this cold bias. As such hindcasts are initialized close to observations, the transient drift leading to the cold bias can be analyzed to distinguish pre-existing errors from errors responding to initial ones. A time sequence of processes involved in the advent of the final mean state errors can then be proposed. We apply this strategy to the ENSEMBLES-FP6 project multi-model hindcasts of the last decades. Four of the five AOGCMs develop a persistent equatorial cold tongue bias within a few months. The associated systematic errors are first assessed separately for the warm and cold ENSO phases. We find that the models are able to reproduce either El Niño or La Niña close to observations, but not both. ENSO composites then show that the spurious equatorial cooling is maximum for El Niño years for the February and August start dates. For these events and at this time of the year, zonal wind errors in the equatorial Pacific are present from the beginning of the simulation and are hypothesized to be at the origin of the equatorial cold bias, generating too strong upwelling conditions. The systematic underestimation of the mixed layer depth in several models can also amplify the growth of the SST bias. The seminal role of these zonal wind errors is further demonstrated by carrying out ocean-only experiments forced by the AOCGCMs daily 10-meter wind. In a case study, we show that for several models, this forcing is sufficient to reproduce the main SST error patterns seen after 1 month in the AOCGCM hindcasts.  相似文献   

15.
Regional climate projections in the Pacific region are potentially sensitive to a range of existing model biases. This study examines the implications of coupled model biases on regional climate projections in the tropical western Pacific. Model biases appear in the simulation of the El Niño Southern Oscillation, the location and movement of the South Pacific Convergence Zone, rainfall patterns, and the mean state of the ocean–atmosphere system including the cold tongue bias and erroneous location of the edge of the Western Pacific warm pool. These biases are examined in the CMIP3 20th century climate models and used to provide some context to the uncertainty in interpretations of regional-scale climate projections for the 21st century. To demonstrate, we provide examples for two island nations that are located in different climate zones and so are affected by different biases: Nauru and Palau. We discuss some of the common approaches to analyze climate projections and whether they are effective in reducing the effect of model biases. These approaches include model selection, calculating multi model means, downscaling and bias correcting.  相似文献   

16.
Understanding the sources of systematic errors in climate models is challenging because of coupled feedbacks and errors compensation. The developing seamless approach proposes that the identification and the correction of short term climate model errors have the potential to improve the modeled climate on longer time scales. In previous studies, initialised atmospheric simulations of a few days have been used to compare fast physics processes (convection, cloud processes) among models. The present study explores how initialised seasonal to decadal hindcasts (re-forecasts) relate transient week-to-month errors of the ocean and atmospheric components to the coupled model long-term pervasive SST errors. A protocol is designed to attribute the SST biases to the source processes. It includes five steps: (1) identify and describe biases in a coupled stabilized simulation, (2) determine the time scale of the advent of the bias and its propagation, (3) find the geographical origin of the bias, (4) evaluate the degree of coupling in the development of the bias, (5) find the field responsible for the bias. This strategy has been implemented with a set of experiments based on the initial adjustment of initialised simulations and exploring various degrees of coupling. In particular, hindcasts give the time scale of biases advent, regionally restored experiments show the geographical origin and ocean-only simulations isolate the field responsible for the bias and evaluate the degree of coupling in the bias development. This strategy is applied to four prominent SST biases of the IPSLCM5A-LR coupled model in the tropical Pacific, that are largely shared by other coupled models, including the Southeast Pacific warm bias and the equatorial cold tongue bias. Using the proposed protocol, we demonstrate that the East Pacific warm bias appears in a few months and is caused by a lack of upwelling due to too weak meridional coastal winds off Peru. The cold equatorial bias, which surprisingly takes 30 years to develop, is the result of an equatorward advection of midlatitude cold SST errors. Despite large development efforts, the current generation of coupled models shows only little improvement. The strategy proposed in this study is a further step to move from the current random ad hoc approach, to a bias-targeted, priority setting, systematic model development approach.  相似文献   

17.
The sensitivity of tropical Atlantic climate to upper ocean mixing is investigated using an ocean-only model and a coupled ocean–atmosphere model. The upper ocean thermal structure and associated atmospheric circulation prove to be strongly related to the strength of upper ocean mixing. Using the heat balance in the mixed layer it is shown that an excessively cold equatorial cold tongue can be attributed to entrainment flux at the base of the oceanic mixed layer, that is too large. Enhanced entrainment efficiency acts to deepen the mixed layer and causes strong reduction in the upper ocean divergence in the central equatorial Atlantic. As a result, the simulated sea surface temperature, thermocline structure, and upwelling velocities are close to the observed estimates. In the coupled model, the seasonal migration of the Intertropical Convergence Zone (ITCZ) reduces when the entrainment efficiency in the oceanic mixed layer is enhanced. The precipitation rates decrease in the equatorial region and increase along 10°N, resulting in a more realistic Atlantic Marine ITCZ. The reduced meridional surface temperature gradient in the eastern tropical Atlantic prohibits the development of convective precipitation in the southeastern part of the tropical Atlantic. Also, the simulation of tropical Atlantic variability as expressed in the meridional gradient mode and the eastern cold tongue mode improves when the entrainment efficiency is enhanced.  相似文献   

18.
The seasonal cycle and interannual variability in the tropical oceans simulated by three versions of the Flexible Ocean-Atmosphere-Land System (FGOALS) model (FGOALS-g1.0, FGOALS-g2 and FGOALSs2), which have participated in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), are presented in this paper. The seasonal cycle of SST in the tropical Pacific is realistically reproduced by FGOALS-g2 and FGOALSs2, while it is poorly simulated in FGOALS-g1.0. Three feedback mechanisms responsible for the SST annual cycle in the eastern Pacific are evaluated. The ocean-atmosphere dynamic feedback, which is successfully reproduced by both FGOALS-g2 and FGOALS-s2, plays a key role in determining the SST annual cycle, while the overestimated stratus cloud-SST feedback amplifies the annual cycle in FGOALS-s2. Because of the serious warm bias existing in FGOALS-g1.0, the ocean-atmosphere dynamic feedback is greatly underestimated in FGOALS-g1.0, in which the SST annual cycle is mainly driven by surface solar radiation. FGOALS-g1.0 simulates much stronger ENSO events than observed, whereas FGOALS-g2 and FGOALSs2 successfully simulate the observed ENSO amplitude and period and positive asymmetry, but with less strength. Further ENSO feedback analyses suggest that surface solar radiation feedback is principally responsible for the overestimated ENSO amplitude in FGOALS-g1.0. Both FGOALS-g1.0 and FGOALS-s2 can simulate two different types of El Ni-no events — with maximum SST anomalies in the eastern Pacific (EP) or in the central Pacific (CP) — but FGOALS-g2 is only able to simulate EP El Ni-no, because the negative cloud shortwave forcing feedback by FGOALS-g2 is much stronger than observed in the central Pacific.  相似文献   

19.
气候系统模式FGOALS_gl模拟的赤道太平洋年际变率   总被引:4,自引:1,他引:3  
满文敏  周天军  张丽霞 《大气科学》2010,34(6):1141-1154
本文分析了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室 (LASG/IAP) 发展的气候系统模式FGOALS_gl对赤道太平洋年际变率的模拟能力。结果表明, FGOALS_gl可以较好地模拟出赤道太平洋SST异常年际变率的主要特征, 但模拟的ENSO事件振幅偏大, 且变率周期过于规则。耦合模式模拟的气候平均风应力在热带地区比ERA40再分析资料的风应力强度偏弱30%左右, 由此引起的海洋平均态的变化, 是造成模拟的ENSO振幅偏强的主要原因。FGOALS_gl模拟的ENSO峰值多出现在春季或夏季, 原因可归之于模式模拟的SST季节循环偏差。耦合模式可以合理再现ENSO演变过程, 但观测中SST异常的东传特征在模式中没有得到再现, 这与模拟的ENSO发展模态表现为单一的 “SST模态” 有关。模拟的ENSO位相转换机制与 “充电—放电” 概念模型相符合, 赤道太平洋热含量的变化是维持ENSO振荡的机制。在ENSO暖位相时期, 赤道中东太平洋与印度洋—西太平洋暖池区的海平面气压距平型表现为南方涛动型 (SO型), 200 hPa位势高度分布表现为太平洋—北美遥相关型 (PNA型)。  相似文献   

20.
热带太平洋线性海气耦合系统的主模与ENSO   总被引:2,自引:0,他引:2  
谢倩  杨修群 《大气科学》1996,20(5):547-555
本文利用包含海洋表面边界层、线性海洋大气动力学以及完整的关于不均匀气候态线性化SST预报方程的热带太平洋海气耦合模式, 在真实的气候背景态和参数域内,研究了海气耦合系统的特征值问题,确定了线性耦合系统主模的特征周期及其稳定性特征,进而揭示了主模和ENSO的关系。结果表明:准两年振荡是线性海气耦合系统中的最不稳定模态,且只有该模态类似于ENSO水平结构。因此,准两年振荡很可能是海气耦合系统固有的最根本性的振荡过程。本文也对准两年振荡的形成与年循环的关系以及它在ENSO时间尺度形成中的作用进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号