首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
尉东胶  邱金桓 《大气科学》2000,24(2):145-151
通过对比观测实验,分析了宽谱方法与总辐射-直射比方法对大气气溶胶折射率虚部的反演结果。对比结果表明:两种方法对虚部的反演结果分别为0.012±0.003和0.011±0.004。另外,本文直接利用气象台站的辐射观测资料计算了北京1992年的大气气溶胶折射率虚部,并分析了北京地区气溶胶的局地辐射气候效应,发现北京气溶胶的辐射气候效应在冬季是倾向于加热的,而其他季节则倾向于冷却。  相似文献   

2.
通过对比观测实验,分析了宽谱方法与总辐射-直射比方法对大气气溶胶折射率虚部的反演结果.对比结果表明:两种方法对虚部的反演结果分别为0.012±0.003和0.011±0.004.另外,本文直接利用气象台站的辐射观测资料计算了北京1992年的大气气溶胶折射率虚部,并分析了北京地区气溶胶的局地辐射气候效应,发现北京气溶胶的辐射气候效应在冬季是倾向于加热的,而其他季节则倾向于冷却.  相似文献   

3.
通过对比观测实验 ,分析了宽谱方法与总辐射 -直射比方法对大气气溶胶折射率虚部的反演结果。对比结果表明 :两种方法对虚部的反演结果分别为 0 0 1 2± 0 0 0 3和 0 0 1 1± 0 0 0 4。另外 ,本文直接利用气象台站的辐射观测资料计算了北京 1 992年的大气气溶胶折射率虚部 ,并分析了北京地区气溶胶的局地辐射气候效应 ,发现北京气溶胶的辐射气候效应在冬季是倾向于加热的 ,而其他季节则倾向于冷却。  相似文献   

4.
新书架     
《气象》2018,(2)
正《大气气溶胶及其气候效应》张华王志立赵树云等编著该书介绍了基于国家气候中心自主研发的大气辐射传输模式、气溶胶/大气化学-辐射-气候双向耦合模式并结合卫星等观测资料获得的气溶胶的分布、辐射强迫和气候效应等方面的研究结果,旨在对气溶胶的变化特点及其对气候的影响提供比较全面和系统的认识。该书重点对以下问题做  相似文献   

5.
对气溶胶气候效应开展分类评估并探讨诊断方法的合理性。人为气溶胶辐射效应对计算云辐射强迫的影响为0.38 W·m~(-2)。诊断评估气溶胶对云辐射强迫的影响需要排除这个偏差。两种基于不同试验设计诊断得出的半直接效应分别为0.21和0.09 W·m~(-2),存在显著差异。主要原因可能是人为气溶胶影响云辐射强迫的不同机制之间在模式模拟过程中不断地相互交织,不是简单的线性叠加关系。模式诊断得出的Twomey效应不仅包括Twomey效应本身,还包括Twomey效应引起的部分快速调整。总之,利用模式评估分析人为气溶胶气候效应需要注意审查试验设计和诊断方法的合理性。  相似文献   

6.
气溶胶可以多种途径改变云特征来影响气候。作为凝结核,气溶胶可以增加暖云的云滴数和寿命,间接影响辐射和降水,即为气溶胶的第一间接效应和第二间接效应。观测(包括地面和卫星)和数值模拟是研究间接效应最主要的两种手段,目前这两种方法大多同时采用。本文介绍了气溶胶间接效应的原理及研究方法,并回顾国内一些研究和成果。   相似文献   

7.
黑碳气溶胶气候效应的研究进展   总被引:10,自引:0,他引:10       下载免费PDF全文
 黑碳气溶胶能吸收从可见光到红外波段的太阳辐射,已经被部分研究认为是造成全球变暖的一个潜在因子。黑碳气溶胶既可以通过直接气候效应改变地-气系统的辐射平衡,又可以作为云凝结核或冰核改变云的微物理特性,间接影响区域或全球气候。对黑碳气溶胶的辐射强迫及其气候效应的研究现状进行总结和分析后,指出了目前黑碳气溶胶气候效应研究中存在的不确定性,并对未来的相关研究提出了一些建议。  相似文献   

8.
《山西气象》2012,(3):47-48
1RegCM3引入气溶胶间接气候效应模拟效果对比 气象与环境学报2012年第l期徐萌柳浙江国际海运职业技术学院316021 摘要:采用高分辨率模式和最新资料对硫酸盐的辐射强迫和气候效应重新评估很有意义。利用2006年区域气候模式RegCM3和Streets气溶胶排放源清单,在原模式中引入间接气候效应模块,改进云降水方案,对硫酸盐气溶胶的时空分布、辐射强迫效应进行了模拟研究。  相似文献   

9.
利用MODIS-GOCART同化的2001年逐月气溶胶光学厚度资料,在修改区域气候模式RegCM2辐射方案的基础上,连续积分5年获得平均的中国东部地区气溶胶短波和长波直接辐射效应,并通过数值试验研究了气溶胶垂直分布对辐射强迫及其气候响应的影响。结果表明:气溶胶的短波辐射效应能冷却地表、加热大气;长波辐射效应能加热地表、冷却大气;大气顶净辐射强迫年平均为-4.1W/m^2;辐射强迫绝对值在春季最大,夏季次之,冬季最小;模拟区域中最大辐射强迫值主要位于华北、华南地区及四川盆地;气溶胶垂直分布是影响气溶胶辐射强迫的重要因素。总体上气溶胶层越靠近地面,大气顶辐射强迫绝对值越大,地表辐射强迫绝对值越小,大气顶辐射强迫对垂直分布较敏感;气候系统的反馈作用会放大气溶胶垂直分布对辐射气候效应的影响。  相似文献   

10.
气溶胶有效辐射强迫是评估气溶胶气候效应的有效指标。本文利用国际耦合模式比较计划(CMIP5)中7个模式的模拟结果,评估了模式对东亚地区气溶胶光学厚度和有效辐射强迫的模拟水平,并分析了东亚地区平均地表温度对局地人为气溶胶强迫的响应。研究结果显示,大部分模式低估了中国东部和西南部污染地区的气溶胶光学厚度,这可能与模式中气溶胶局地排放、化学过程以及模式分辨率有关;多模式平均的东亚地区气溶胶有效辐射强迫为.4.14 W m.2,气溶胶在东亚地区有明显的降温效应,1850–2005年气溶胶浓度增加使得东亚地区降温.1.05°C。  相似文献   

11.
Atmospheric aerosols influence the earth's radiative balance directly through scattering and absorbing solar radiation, and indirectly through affecting cloud properties. An understanding of aerosol optical properties is fundamental to studies of aerosol effects on climate. Although many such studies have been undertaken, large uncertainties in describing aerosol optical characteristics remain, especially regarding the absorption properties of different aerosols. Aerosol radiative effects are considered as either positive or negative perturbations to the radiation balance, and they include direct, indirect (albedo effect and cloud lifetime effect), and semi-direct effects. The total direct effect of anthropogenic aerosols is negative (cooling), although some components may contribute a positive effect (warming). Both the albedo effect and cloud lifetime effect cool the atmosphere by increasing cloud optical depth and cloud cover, respectively. Absorbing aerosols, such as carbonaceous aerosols and dust, exert a positive forcing at the top of atmosphere and a negative forcing at the surface, and they can directly warm the atmosphere. Internally mixed black carbon aerosols produce a stronger warming effect than externally mixed black carbon particles do. The semi-direct effect of absorbing aerosols could amplify this warming effect. Based on observational (ground-and satellite-based) and simulation studies, this paper reviews current progress in research regarding the optical properties and radiative effects of aerosols and also discusses several important issues to be addressed in future studies.  相似文献   

12.
The direct and semi-direct radiative effects of anthropogenic aerosols on the radiative transfer and cloud fields in the Western United States (WUS) according to seasonal aerosol optical depth (AOD) and regional climate are examined using a regional climate model (RCM) in conjunction with the aerosol fields from a GEOS-Chem chemical-transport model (CTM) simulation. The two radiative effects cannot be separated within the experimental design in this study, thus the combined direct- and semi-direct effects are called radiative effects hereafter. The CTM shows that the AOD associated with the anthropogenic aerosols is chiefly due to sulfates with minor contributions from black carbon (BC) and that the AOD of the anthropogenic aerosol varies according to local emissions and the seasonal low-level winds. The RCM-simulated anthropogenic aerosol radiative effects vary according to the characteristics of regional climate, in addition to the AOD. The effects on the top of the atmosphere (TOA) outgoing shortwave radiation (OSRT) range from ?0.2?Wm?2 to ?1?Wm?2. In Northwestern US (NWUS), the maximum and minimum impact of anthropogenic aerosols on OSRT occurs in summer and winter, respectively, following the seasonal AOD. In Arizona-New Mexico (AZNM), the effect of anthropogenic sulfates on OSRT shows a bimodal distribution with winter/summer minima and spring/fall maxima, while the effect of anthropogenic BC shows a single peak in summer. The anthropogenic aerosols affect surface insolation range from ?0.6?Wm?2 to ?2.4?Wm?2, with similar variations found for the effects on OSRT except that the radiative effects of anthropogenic BC over AZNM show a bimodal distribution with spring/fall maxima and summer/winter minima. The radiative effects of anthropogenic sulfates on TOA outgoing longwave radiation (OLR) and the surface downward longwave radiation (DLRS) are notable only in summer and are characterized by strong geographical contrasts; the summer OLR in NWUS (AZNM) is reduced (enhanced) by 0.52?Wm?2 (1.14?Wm?2). The anthropogenic sulfates enhance (reduce) summer DLRS by 0.2?Wm?2 (0.65?Wm?2) in NWUS (AZNM). The anthropogenic BC affect DLRS noticeably only in AZNM during summer. The anthropogenic aerosols affect the cloud water path (CWP) and the radiative transfer noticeably only in summer when convective clouds are dominant. Primarily shortwave-reflecting anthropogenic sulfates decrease and increase CWP in AZNM and NWUS, respectively, however, the shortwave-absorbing anthropogenic BC reduces CWP in both regions. Due to strong feedback via convective clouds, the radiative effects of anthropogenic aerosols on the summer radiation field are more closely correlated with the changes in CWP than the AOD. The radiative effect of the total anthropogenic aerosols is dominated by the anthropogenic sulfates that contribute more than 80% of the total AOD associated with the anthropogenic aerosols.  相似文献   

13.
气溶胶气候效应的一维模式分析   总被引:4,自引:1,他引:4  
赵凤生  石广玉 《大气科学》1994,18(Z1):902-909
本文首先采用一线辐射对流模式,分析了乡村型、城市型气溶胶和平流层气溶胶含量增加对全球地表气温的直接影响以及硫酸盐粒子含量增加对全球地表气温的间接影响。然后利用考虑了海洋热惯性作用的EBM/BD模式,模拟了近百年来由于大气中硫酸盐粒子含量变化、火山爆发和大气温室气体浓度增加共同引起的全球地表平均气温变化。结果表明:气溶胶的气候效应在地气系统辐射收支和全球气温变化研究中起着非常重要的作用。  相似文献   

14.
RegCM4.3, a high-resolution regional climate model, which includes five kinds of aerosols(dust, sea salt,sulfate, black carbon and organic carbon), is employed to simulate the East Asian summer monsoon(EASM) from 1995 to 2010 and the simulation data are used to study the possible impact of natural and anthropogenic aerosols on EASM.The results show that the regional climate model can well simulate the EASM and the spatial and temporal distribution of aerosols. The EASM index is reduced by about 5% by the natural and anthropogenic aerosols and the monsoon onset time is also delayed by about a pentad except for Southeast China. The aerosols heat the middle atmosphere through absorbing solar radiation and the air column expands in Southeast China and its offshore areas. As a result, the geopotential height decreases and a cyclonic circulation anomaly is generated in the lower atmosphere. Northerly wind located in the west of cyclonic circulation weakens the low-level southerly wind in the EASM region. Negative surface radiative forcing due to aerosols causes downward motion and an indirect meridional circulation is formed with the low-level northerly wind and high-level southerly wind anomaly in the north of 25° N in the monsoon area, which weakens the vertical circulation of EASM. The summer precipitation of the monsoon region is significantly reduced,especially in North and Southwest China where the value of moisture flux divergence increases.  相似文献   

15.
The climatic effects of the atmospheric boundary aerosols are studied by the use of a three-dimensional climatemodel.Simulated results show that the climate states both at the surface and in the atmosphere change remarkably whenthe aerosols with different optical thicknesses and properties are introduced into the atmospheric boundary layer of themodel.The aerosols absorb and scatter the solar shortwave radiation,therefore,they reduce the solar energy reachingthe ground surface and decrease the surface and the soil temperatures.The temperature in the boundary layer increasesbecause of the supplementary absorption of radiation by the boundary aerosols.In the atmosphere,the temperatures atall isobaric surfaces rise up except for the 100 hPa level.The atmospheric temperatures below the 500 hPa level aredirectly influenced by the boundary aerosols,while the atmospheric temperatures above the 500 hPa level are influencedby the heating due to convective condensation and the changes in the vertical motion field.Cyclonic differential circula-tions appear over the desert areas at the low levels,and anticyclonic differential circulations exist at the upper levels inthe horizontal flow fields.The vertical motions change in correspondence with the differential circulations.The changesin precipitation are directly related to that of vertical motions.The mechanisms of climate effects of the boundaryaerosols are also discussed in this paper.  相似文献   

16.
The climatic effects of the atmospheric boundary aerosols are studied by the use of a three-dimensional climate model.Simulated results show that the climate states both at the surface and in the atmosphere change remarkably when the aerosols with different optical thicknesses and properties are introduced into the atmospheric boundary layer of the model.The aerosols absorb and scatter the solar shortwave radiation,therefore,they reduce the solar energy reaching the ground surface and decrease the surface and the soil temperatures.The temperature in the boundary layer increase because of the supplementary absorption of radiation by the boundary aerosols.In the atmosphere,the temperatures at all isobaric surfaces rise up except for the 100 hPa level.The atmospheric temperatures below the 500 hPa level are directly influenced by the boundary aerosols,while the atmospheric temperatures above the 500 hPa level are influenced by the heating due to convective condensation and the changes in the vertical motion field.Cyclonic differential circulations appear over the desert areas at the low levels,and anticyclonic differential circulations exist at the upper levels in the horizontal flow fields.The vertical motions change in correspondence with the differential circulations.The changes in precipitation are directly related to that of vertical motions.The mechanisms of climate effects of the boundary aerosols are also discussed in this paper.  相似文献   

17.
Why Is the Climate Forcing of Sulfate Aerosols So Uncertain?   总被引:2,自引:0,他引:2  
l. IntroductionAlthough the aerosol has been recognized as an important factor which has innuence onthe past, present and future climate for a long time, it still has much uncertainty in assessingits climate forcing. The direct radiative forcing of sulfate aerosols has been estimated rangingfrom --0.3 W/ m2 to --0.9 W/ m2 in recent publications (Charlson et al., l992, Kiehl andBriegleb l993; Taylor and Penner 1994, Boucher and Anderson l995, Kieh1 and Rodhe l995;Chuang et al., l997, Penne…  相似文献   

18.
人为气溶胶的直接辐射效应及其对南亚冬季风的影响   总被引:2,自引:0,他引:2  
运用区域气候模式RegCM4.0(Regional Climate Model Verson 4.0)耦合入一个化学过程,对硫酸盐、黑碳、有机碳这3种人为气溶胶的时空分布特征和直接辐射效应进行了数值模拟,进而研究了气溶胶对南亚冬季风的影响。结果表明:光学厚度和地表短波辐射强迫的时空变化可能主要受硫酸盐气溶胶的影响。在南亚夏季风向冬季风转换时期和南亚冬季风盛行时期,大气层顶和地表的负短波辐射强迫分布与气溶胶分布基本一致,地表辐射强迫强度绝对值比大气层顶辐射强迫强度绝对值大得多。相关分析和合成分析表明:在南亚夏季风向冬季风转换时期和南亚冬季风盛行时期,南亚人为气溶胶主要分布区中的气溶胶柱浓度含量与南亚冬季风的建立和强度有反相关关系。这与气溶胶吸收太阳辐射,从而引起气温和位势高度的变化有关。  相似文献   

19.
Predictions of expected climate changes are mainly based on the use of large climate models. In the results of these models, it is difficult sometimes to single out the effects and role of separate climate-forming factors. The estimates of such effects are needed for the activities on the mitigation of negative consequences of climate changes on various temporal and spatial scales. Therefore, the methods of computation and comparison of climate-forming factor indices such as the radiative forcing, global warming potential, climate forcing efficiency, et al. are of special importance. Presented is a brief review of indices of principal anthropogenic factors influencing the atmospheric radiation regime on global and local scales such as greenhouse gases, atmospheric aerosols, and radiative properties of the Earth??s surface. The rates of changes in these indices are assessed, as well as their contribution to the variations of climatic characteristics. The examples of these rates are given.  相似文献   

20.
Aerosol effects on warm (liquid-phase) cumulus cloud systems may have a strong radiative influence via suppression of precipitation in convective systems. A consequence of this suppression of precipitation is increased liquid water available for large-scale stratiform clouds, through detrainment, that in turn affect their precipitation efficiency. The nature of this influence on radiation, however, is dependent on both the treatment of convective condensate and the aerosol distribution. Here, we examine these issues with two climate models—CSIRO and GISS, which treat detrained condensate differently. Aerosol–cloud interactions in warm stratiform and cumulus clouds (via cloud droplet formation and autoconversion) are treated similarly in both models. The influence of aerosol–cumulus cloud interactions on precipitation and radiation are examined via simulations with present-day and pre-industrial aerosol emissions. Sensitivity tests are also conducted to examine changes to climate due to changes in cumulus cloud droplet number (N c); the main connection between aerosols and cumulus cloud microphysics. Results indicate that the CSIRO GCM is quite sensitive to changes in aerosol concentrations such that an increase in aerosols increases N c, cloud cover, total liquid water path (LWP) and reduces total precipitation and net cloud radiative forcings. On the other hand, the radiative fluxes in the GISS GCM appear to have minimal changes despite an increase in aerosols and N c. These differences between the two models—reduced total LWP in the GISS GCM for increased aerosols, opposite to that seen in CSIRO—appear to be more sensitive to the detrainment of convective condensate, rather than to changes in N c. If aerosols suppress convective precipitation as noted in some observationally based studies (but not currently treated in most climate models), the consequence of this change in LWP suggests that: (1) the aerosol indirect effect (calculated as changes to net cloud radiative forcing from anthropogenic aerosols) may be higher than previously calculated or (2) lower than previously calculated. Observational constrains on these results are difficult to obtain and hence, until realistic cumulus-scale updrafts are implemented in models, the logic of detraining non-precipitating condensate at appropriate levels based on updrafts and its effects on radiation, will remain an uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号