首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
人为气溶胶对中国东部冬季风影响的模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用美国国家大气研究中心(NCAR)的公共大气模式CAM5.1研究了人为气溶胶排放增加对中国东部冬季风的影响,同时通过对比中国东部地区不同人为气溶胶排放源的敏感性试验结果,探讨了人为硫酸盐、黑碳及总人为气溶胶(硫酸盐+黑碳)增加对东亚冬季风的影响。结果表明:冬季硫酸盐气溶胶排放增加的直接和第一间接效应减少了到达地表的短波辐射通量,引起了陆地地表和对流层低层降温,海平面气压升高,增加了海陆间气压梯度,使得东亚冬季风增强。其第二间接效应导致中国南部大尺度降水率减少;黑碳气溶胶排放增加导致到达地表的短波辐射通量减少和大气中短波辐射通量增加,其半直接效应部分抵消了直接效应,故地表温度变化微小且不显著。加热的对流层低层导致中国南部对流活动和对流降水率增加;总人为气溶胶排放增加导致的大气温度变化表现为弱的降温作用,引起中国北部对流和大尺度降水率减少,而南部对流降水率增加。总人为气溶胶和黑碳气溶胶排放增加是导致中国北(南)部的东亚冬季风增强(减弱)的重要因素。  相似文献   

2.
气溶胶间接效应通过对云的作用来影响气候,其过程复杂且不确定性较大。本研究利用美国国家大气研究中心(NCAR)的公共大气模式CAM5.1,通过改变模式中硫酸盐气溶胶转化为云凝结核数浓度的数量,设计了硫酸盐气溶胶间接效应的敏感性试验,通过与控制试验对比来研究其间接效应对中国东部地区冬季云、降水和季风强度的影响。结果表明:在东亚地区云凝结核形成过程中,硫酸盐气溶胶占绝对的主导地位。硫酸盐气溶胶间接效应导致中国东部地区冬季云凝结核和云滴数浓度显著增加,海洋和陆地低层的云滴有效半径减小和总云液水路径的增加,导致了云反照率的增加。引起的负辐射强迫使地表和大气降温,海平面气压升高,增加的海陆气压梯度导致中国南方地区东亚冬季风增强,总降水率减少。硫酸盐气溶胶间接效应可能不是东亚冬季风在20世纪80年代中期年际变率减弱的原因。  相似文献   

3.
This study investigated the second indirect climatic effect of anthropogenic aerosols,including sulfate,organic carbon(OC) ,and black carbon(BC) ,over East Asia.The seasonal variation of the climatic response to the second indirect effect was also characterized.The simulation period for this study was 2006.Due to a decrease in autoconversion rate from cloud water to rain as a result of aerosols,the cloud liquid water path(LWP) ,and radiative flux(RF) at the top of the atmosphere(TOA) changed dramatically,increasing by 14.3 g m-2 and decreasing by-4.1 W m-2 in terms of domain and annual average.Both LWP and RF changed most in autumn. There were strong decreases in ground temperature in Southwest China,the middle reaches of the Yangtze River in spring and autumn,while maximum cooling of up to-1.5 K occurred in the Chongqing district.The regional and annual mean change in ground temperature reached-0.2 K over eastern China.In all seasons except summer,precipitation generally decreased in most areas north of the Yangtze River,whereas precipitation changed little in South China.Precipitation changed most in summer,with alternating bands of increasing(~40 mm) and decreasing(~40 mm) precipitation appearing in eastern China.Precipitation decreased by 1.5-40 mm over large areas of Northeast China and the Huabei Plain.The domain and annual mean change in precipitation was approximately-0.3 mm over eastern China.The maximum reduction in precipitation occurred in summer,with mean absolute and relative changes of-1.2 mm and-3.8%over eastern China.This study revealed considerable climate responses to the second indirect effect of aerosols over specific regions of China.  相似文献   

4.
The National Center for Atmospheric Research Community Atmosphere Model (version 3.5) coupled with the Morrison?CGettelman two-moment cloud microphysics scheme is employed to simulate the aerosol effects on clouds and precipitation in two numerical experiments, one representing present-day conditions (year?2000) and the other the pre-industrial conditions (year?1750) over East Asia by considering both direct and indirect aerosol effects. To isolate the aerosol effects, we used the same set of boundary conditions and only altered the aerosol emissions in both experiments. The simulated results show that the cloud microphysical properties are markedly affected by the increase in aerosols, especially for the column cloud droplet number concentration (DNC), liquid water path (LWP), and the cloud droplet effective radius (DER). With increased aerosols, DNC and LWP have been increased by 137% and 28%, respectively, while DER is reduced by 20%. Precipitation rates in East Asia and East China are reduced by 5.8% and 13%, respectively, by both the aerosol??s second indirect effect and the radiative forcing that enhanced atmospheric stability associated with the aerosol direct and first indirect effects. The significant reduction in summer precipitation in East Asia is also consistent with the weakening of the East Asian summer monsoon, resulting from the decreasing thermodynamic contrast between the Asian landmass and the surrounding oceans induced by the aerosol??s radiative effects. The increase in aerosols reduces the surface net shortwave radiative flux over the East Asia landmass, which leads to the reduction of the land surface temperature. With minimal changes in the sea surface temperature, hence, the weakening of the East Asian summer monsoon further enhances the reduction of summer precipitation over East Asia.  相似文献   

5.
In this paper,the RIEMS 2.0 model,source emission in 2006 and 2010 are used to simulate the distributions and radiative effects of different anthropogenic aerosols over China.The comparison between the results forced by source emissions in 2006 and 2010 also reveals the sensitivity of the radiative effects to source emission.The results are shown as follows:(1) Compared with those in 2006,the annual average surface concentration of sulfate in 2010 decreased over central and eastern China with a range of-5 to 0 μg/m~3;the decrease of annual average aerosol optical depth of sulfate over East China varied from 0.04 to 0.08;the annual average surface concentrations of BC,OC and nitrate increased over central and eastern China with maximums of 10.90,11.52 and 12.50μg/m~3,respectively;the annual aerosol optical depths of BC,OC and nitrate increased over some areas of East China with extremes of 0.006,0.007 and 0.008,respectively.(2)For the regional average results in 2010,the radiative forcings of sulfate,BC,OC,nitrate and their total net radiative forcing at the top of the atmosphere over central and eastern China were-0.64,0.29,-0.41,-0.33 and-1.1 W/m~2,respectively.Compared with those in 2006,the radiative forcings of BC and OC in 2010 were both enhanced,while that of sulfate and the net radiative forcing were both weakened over East China mostly.(3)The reduction of the cooling effect of sulfate in 2010 produced a warmer surface air temperature over central and eastern China;the maximum value was 0.25 K.The cooling effect of nitrate was also slightly weakened.The warming effect of BC was enhanced over most of the areas in China,while the cooling effect of OC was enhanced over the similar area,particularly the area between Yangtze and Huanghe Rivers.The net radiative effect of the four anthropogenic aerosols generated the annual average reduction and the maximum reduction were-0.096 and-0.285 K,respectively,for the surface temperature in 2006,while in 2010 they were-0.063 and-0.256 K,respectively.In summary,the change in source emission lowered the cooling effect of anthropogenic aerosols,mainly because of the enhanced warming effect of BC and weakened cooling effect of scattering aerosols.  相似文献   

6.
The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/aerosol model,which includes major anthropogenic aerosols(sulfate,black carbon,and organic carbon) and natural aerosols(soil dust and sea salt) .Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report(IPCC AR5) ,whereas natural aerosols are calculated online in the model.The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9--33 W m-2 over most areas of China,with maxima over the Gobi desert of West China,and-12 W m-2 to-24 W m-2 over the Sichuan Basin,the middle and lower reaches of the Yellow River and the Yangtze River.Aerosols caused surface cooling in most areas of East Asia,with maxima of-0.8-C to-1.6-C over the deserts of West China,the Sichuan Basin,portions of central China,and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China,with maxima of-90 mm/year to-150 mm/year over the Sichuan Basin,the middle reaches of the Yangtze River and the lower reaches of the Yellow River.Interdecadal variation of the climate response to the aerosol direct radiative effect is evident,indicating larger decrease in surface air temperature and stronger perturbation to precipitation in the 1990s than that in the 1980s,which could be due to the interdecadal variation of anthropogenic emissions.  相似文献   

7.
利用耦合化学过程的区域气候模式RegCM3,模拟研究3种主要人为排放气溶胶(硫酸盐、黑碳、有机碳)对东亚区域气候的影响.计算分析近20 a来3种气溶胶的时空分布、综合辐射强迫作用及其对地面气温和降水的影响.模拟结果表明:3种气溶胶冬夏季分布有所不同,冬季气溶胶大值区主要分布在南方地区,而夏季大值区北移;气溶胶短波辐射强迫在大气层顶和地面均为负值;气溶胶的加入对东亚地区地表气温有明显影响,冬季降温中心位于四川盆地,夏季降温大值区位于华北地区.气溶胶直接气候效应使得冬季东亚大部分地区降水减少,夏季东亚地区降水与中国南方地区夏季气溶胶浓度有较好的相关关系,中国东部雨带有南移趋势.  相似文献   

8.
Influences of the mixing treatments of anthropogenic aerosols on their effective radiative forcing (ERF) and global aridity are evaluated by using the BCC_AGCM2.0_CUACE/Aero, an aerosol–climate online coupled model. Simulations show that the negative ERF due to external mixing (EM, a scheme in which all aerosol particles are treated as independent spheres formed by single substance) aerosols is largely reduced by the partial internal mixing (PIM, a scheme in which some of the aerosol particles are formed by one absorptive and one scattering substance) method. Compared to EM, PIM aerosols have much stronger absorptive ability and generally weaker hygroscopicity, which would lead to changes in radiative forcing, hence to climate. For the global mean values, the ERFs due to anthropogenic aerosols since the pre-industrial are–1.02 and–1.68 W m–2 for PIM and EM schemes, respectively. The variables related to aridity such as global mean temperature, net radiation flux at the surface, and the potential evaporation capacity are all decreased by 2.18/1.61 K, 5.06/3.90 W m–2, and 0.21/0.14 mm day–1 since 1850 for EM and PIM schemes, respectively. According to the changes in aridity index, the anthropogenic aerosols have caused general humidification over central Asia, South America, Africa, and Australia, but great aridification over eastern China and the Tibetan Plateau since the pre-industrial in both mixing schemes. However, the aridification is considerably alleviated in China, but intensified in the Arabian Peninsula and East Africa in the PIM scheme.  相似文献   

9.
This paper addresses the interannual variation of winter air temperature over Northeast China and its connection to preceding Eurasian snow cover.The results show that there is a significant negative correlation between October Eurasian snow cover and following-winter air temperature over Northeast China.The snow cover located in eastern Siberia and to the northeast of Lake Baikal plays an important role in the winter air temperature anomaly.More(less)eastern Siberia snow in October can cause an atmospheric circulation anomaly pattern in which the atmospheric pressure is higher(lower)than normal in the polar region and lower(higher)in the northern mid-high latitudes.Due to the persistence of the eastern Siberia snow from October to the following winter,the winter atmospheric anomaly is favorable(unfavorable)to the widespread movement of cold air masses from the polar region toward the northern mid-high latitudes and,hence,lower(higher)temperature over Northeast China.Simultaneously,when the October snow cover is more(less),the SST in the northwestern Pacific is continuously lower(higher)as a whole; then,the Aleutian low and the East Asia trough are reinforced(weakened),favoring the lower(higher)temperature over Northeast China.  相似文献   

10.
运用区域气候模式RegCM3耦合入一个化学过程,对东亚地区三类人为排放气溶胶(硫酸盐、黑碳和有机碳)的时空分布特征及其对夏季风环流的影响进行了数值模拟研究。模拟结果显示,气溶胶的引入会引起东亚地区夏季850 hPa风场发生改变,我国江淮以东洋面上空出现了一个气旋式距平环流中心,中心以西的偏北风气流将削弱东亚地区夏季西南季风。通过讨论春季中国地区气溶胶浓度与夏季东亚地区850 hPa经向风的时滞关系,以及夏季中国地区气溶胶浓度与同期东亚地区850 hPa经向风的关系,可以发现,春、夏季中国地区气溶胶浓度均与夏季东亚地区850 hPa经向风有很好的负相关关系,当春季中国北方和夏季中国南方地区气溶胶浓度增加时,中国东部地区夏季偏南季风减弱。这可能与气溶胶改变了大气层顶和地表的辐射强迫,进而引起了海陆气压差异和位势高度场的变化有关。  相似文献   

11.
运用区域气候模式RegCM3耦合入一个化学过程,对东亚地区三类人为排放气溶胶(硫酸盐、黑碳和有机碳)的时空分布特征及其对夏季风环流的影响进行了数值模拟研究.模拟结果显示,气溶胶的引入会引起东亚地区夏季850 hPa风场发生改变,我国江淮以东洋面上空出现了一个气旋式距平环流中心,中心以西的偏北风气流将削弱东亚地区夏季西南季风.通过讨论春季中国地区气溶胶浓度与夏季东亚地区850 hPa经向风的时滞关系,以及夏季中国地区气溶胶浓度与同期东亚地区850 hPa经向风的关系,可以发现,春、夏季中国地区气溶胶浓度均与夏季东亚地区850hPa经向风有很好的负相关关系,当春季中国北方和夏季中国南方地区气溶胶浓度增加时,中国东部地区夏季偏南季风减弱.这可能与气溶胶改变了大气层顶和地表的辐射强迫,进而引起了海陆气压差异和位势高度场的变化有关.  相似文献   

12.
A physically based cloud nucleation parameterization was introduced into an optical properties/radiative transfer module incorporated with the off-line air quality modeling system Regional Atmospheric Modeling System (RAMS)-Models-3 Community Multi Scale Air Quality (CMAQ) to investigate the distribution features of the first indirect radiative effects of sulfate, nitrate, and ammonium-sulfate-nitrate (ASN) over East Asia for the years of 2005, 2010, and 2013. The relationship between aerosol particles and cloud droplet number concentration could be properly described by this parameterization because the simulated cloud fraction and cloud liquid water path were generally reliable compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved data. Simulation results showed that the strong effect of indirect forcing was mainly concentrated in Southeast China, the East China Sea, the Yellow Sea, and the Sea of Japan. The highest indirect radiative forcing of ASN reached ?3.47 W m?2 over Southeast China and was obviously larger than the global mean of the indirect forcing of all anthropogenic aerosols. In addition, sulfate provided about half of the contribution to the ASN indirect forcing effect. However, the effect caused by nitrate was weak because the mass burden of nitrate was very low during summer, whereas the cloud fraction was the highest. The analysis indicated that even though the interannual variation of indirect forcing magnitude generally followed the trend of aerosol mass burden from 2005 to 2013, the cloud fraction was an important factor that determined the distribution pattern of indirect forcing. The heaviest aerosol loading in North China did not cause a strong radiative effect because of the low cloud fraction over this region.  相似文献   

13.
The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach 5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.  相似文献   

14.
利用1948—2011年NCEP/NCAR月平均再分析资料和1951—2010年我国160站降水量资料,研究了冬季亚洲—太平洋区域的大气遥相关及其与东亚冬季风和降水的关系。结果表明:冬季在亚洲—西太平洋与中、东太平洋中低纬度对流层上层扰动温度之间存在类似于夏季的亚洲—太平洋涛动 (APO) 现象,即当东亚中低纬度对流层中、上层偏暖时,中东太平洋中低纬度对流层中上层温度偏冷,反之亦然。冬季APO可以反映冬季亚洲—太平洋东西向热力差异强度变化,与夏季相比,冬季APO遥相关在亚洲的中心位置略偏南、偏东,且冬季APO与大气环流关系与夏季也有所不同;当冬季APO指数偏高时,对流层上层东亚大槽位置偏西,而东亚热带地区的高压向北伸展,导致我国南方对流层为深厚的异常反气旋系统所控制,此时南方地区对流层低层盛行异常的偏东北气流,并伴随水汽辐散和异常下沉运动,南方降水偏少;冬季APO指数与ENSO有紧密联系。  相似文献   

15.
亚洲地区人为气溶胶对东亚冬季风影响的研究   总被引:6,自引:3,他引:3  
利用耦合化学过程的区域气候模式RegCM4.0,研究亚洲地区硫酸盐、黑碳和有机碳3种人为气溶胶的直接气候效应对东亚冬季风的影响;并运用相关分析与合成分析方法,研究了东亚人为气溶胶主要分布区中人为气溶胶浓度变化对东亚冬季风的影响。结果表明:人为气溶胶对东亚热带和副热带冬季风均起增强作用;人为气溶胶使得中国南方东部地区的冬季降水减少。2000—2007年,秋、冬季东亚人为气溶胶主要分布区中,人为气溶胶总体呈现减少的趋势,分别导致了东亚冬季风建立的推迟和东亚冬季风的减弱。相关分析和合成分析也表明:在东亚人为气溶胶主要分布区中的人为气溶胶柱浓度含量增加,东亚冬季风的建立提前并且东亚冬季风加强,反之亦然。人为气溶胶引起陆地地表降温,而对海洋温度几乎没有影响,使低层海陆温差加大,从而导致低层海陆气压差加大,东亚冬季风的增强可能与此有关。  相似文献   

16.
The present study defines a low-latitude component (regionally averaged winter 1000-hPa V-winds over 10 25°N, 105 135°E) and a mid-high-latitude component (regionally averaged winter 1000-hPa V-winds over 30 50°N, 110 125°E) of the East Asian winter monsoon (EAWM), which are denoted as EAWM-L and EAWM-M, respectively. The study examines the variation characteristics, reflecting variations in winter climate over eastern China, and associated atmospheric circulations corresponding to the two components. The main results are as follows: 1) the EAWM-L and EAWM-M have consistent variation in some years but opposite variations in other years; 2) the EAWM-M index mainly reflects the extensive temperature variability over eastern China, while the EAWM-L index better reflects the variation in winter precipitation over most parts of eastern China; and 3) corresponding to the variation in the EAWM-M index, anomalous winds over the mid-high latitudes of East Asia modulate the southward invasion of cold air from the high latitudes and accordingly affect temperatures over eastern China. In combination with the variation in the EAWM-L index, anomalous low-latitudinal winds regulate the water vapor transport from tropical oceans to eastern China, resulting in anomalous winter precipitation. These pronounced differences between the EAWM-L and the EAWM-M suggest that it is necessary to explore the monsoons' individual features and effects in the EAWM study.  相似文献   

17.
利用NCAR的新一代GCM CAM3.0模式离线耦合一个气溶胶同化系统,模拟研究了中国区域硫酸盐气溶胶的直接气候效应对东亚夏季风及其降水的影响。结果显示:中国区域硫酸盐气溶胶引起全球平均的直接辐射强迫为-0.25 W/m2,中国内陆约25°N以北普遍降温,而海表温度升高。由此导致海陆温差缩小,东亚夏季风强度减弱,中国地区季风降水明显减少,而尤以积云降水减少起主要作用。硫酸盐气溶胶对中国地区的对流活动起抑制作用。  相似文献   

18.
中国东部冬季温度异常偶极型模态的一个前兆信号   总被引:3,自引:1,他引:2  
利用中国160站逐月温度、NCEP再分析、NOAA-CIRES 20世纪再分析以及NOAA海表温度等资料,分析了中国东部(100°E以东地区)冬季温度年际变化的主要模态,并重点研究了其中第2模态(即偶极型模态)的成因机理和前期信号。同时,也以2012~2013年冬季为例,探讨了这一温度异常模态的预测方法。研究主要发现:除中国东部大范围一致偏冷或偏暖模态以外,110°E以东的北方地区偏冷(暖)还经常对应着华南和110°E以西地区的偏暖(冷),构成温度异常反向变化的偶极型模态。这种偶极型模态也是冬季气候变化的一个主要模态,2012~2013年冬季温度异常即属于这一模态。中国东部冬季温度一致型模态主要与前期秋季中东太平洋海温异常、亚洲大陆北部积雪,及其邻近的北冰洋地区海冰密集度异常联系紧密。而对于偶极型模态,海温的影响并不明显,前期秋季的东亚中纬度地区积雪、北冰洋斯瓦尔巴群岛、法兰士约瑟夫地群岛附近海域的海冰密集度异常,以及它们引起的表面温度异常分布可能具有重要贡献,其中北冰洋海冰密集度异常导致的该地区表面温度异常的影响可能更为重要。综合了海冰和积雪信号的前期秋季北冰洋—东亚温度差异(Arctic Ocean-East Asian temperature contrast,简称AE)指数与中国东部冬季温度异常偶极型模态具有显著联系,可以作为一个重要的预测因子。2012年秋季赤道中东太平洋海温的正常状态以及北冰洋暖异常和东亚中纬度地区冷异常的表面温度分布特征,都不利于中国东部冬季温度南北一致型异常的发生,而是有利于偶极型异常分布。利用AE指数可以有效地预测2012~2013年中国东部冬季温度异常特征。  相似文献   

19.
 利用NCAR的新一代GCM CAM3.0模式离线耦合一个气溶胶同化系统,模拟研究了中国区域硫酸盐气溶胶的直接气候效应对东亚夏季风及其降水的影响。结果显示:中国区域硫酸盐气溶胶引起全球平均的直接辐射强迫为-0.25 W/m2,中国内陆约25°N以北普遍降温,而海表温度升高。由此导致海陆温差缩小,东亚夏季风强度减弱,中国地区季风降水明显减少,而尤以积云降水减少起主要作用。硫酸盐气溶胶对中国地区的对流活动起抑制作用。  相似文献   

20.
利用大气环流模式NCAR CAM3,通过比较敏感性试验与控制试验的结果,讨论青藏高原大地形高度对南海北部冷涌事件及环流的可能影响。结果表明,地形的绕流作用对阿留申低压和东亚大槽的产生有着重要作用,当大地形不存在时,两者消失。地形高度变化对大陆冷高压的强度有影响,随着地形高度的降低大陆冷高压强度减弱。即大地形对中高纬行星尺度平均槽脊具有重要作用,地形高度降低会导致中高纬环流经向度减小,不利于冷空气南下,从而影响冷涌事件的强度和发生频率。当地形高度减半时,由于大陆东部地势相对平坦,南海北部北风强度增加,使得南海北部冷涌的出现频率略有增加。当无地形存在时,由于无青藏高原大地形的存在,使得东亚中高纬环流的经向度显著减小,冷空气南下活动明显减弱;同时没有大地形激发冷锋后的Kelvin波向南运动,导致南海北部北风强度减弱,南海北部冷涌的出现频率也显著减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号