首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 285 毫秒
1.
利用NCEP 1950—2004年逐日再分析资料,采用倒算法,对青藏高原大气热源的长期变化进行了计算,结果发现,青藏高原及附近地区上空大气春夏季热源在过去50年里,尤其是最近20年,表现为持续减弱的趋势。而1960—2004年青藏高原50站的冬春雪深却出现了增加,尤其是春季雪深在1977年出现了由少到多的突变。用SVD方法对高原积雪和高原大气热源关系的分析表明,二者存在非常显著的反相关关系,即高原冬春积雪偏多,高原大气春夏季热源偏弱。高原大气春夏季热源和中国160站降水的SVD分析表明,高原大气春夏季热源和夏季长江中下游降水呈反相关,与华南和华北降水呈正相关;而高原冬春积雪和中国160站降水的SVD分析显示,高原冬春积雪和夏季长江流域降水呈显著正相关,与华南和华北降水呈反相关。在年代际尺度上,青藏高原大气热源和冬春积雪与中国东部降水型的年代际变化(南涝北旱)有很好的相关。最后讨论了青藏高原大气热源影响中国东部降水的机制。青藏高原春夏季热源减弱,使得海陆热力差异减小,致使东亚夏季风强度减弱,输送到华北的水汽减少,而到达长江流域的水汽却增加;同时,高原热源减弱,使得副热带高压偏西,夏季雨带在长江流域维持更长时间。导致近20年来长江流域降水偏多,华北偏少,形成"南涝北旱"雨型。高原冬春积雪的增加,降低了地表温度,减弱了地面热源,并进而使得青藏高原及附近地区大气热源减弱。  相似文献   

2.
青藏高原积雪与亚洲季风环流年代际变化的关系   总被引:12,自引:1,他引:12  
利用高原测站的月平均雪深资料和NCEP/NCAR再分析资料,分析了20世纪70年代末以来,青藏高原积雪的显著增多与亚洲季风环流转变的联系。研究表明,高原南侧冬春季西风的增强及西风扰动的活跃是造成青藏高原冬春积雪显著增多的主要原因,高原积雪的增多与亚洲夏季风的减弱均是亚洲季风环流转变的结果;20世纪70年代末以来,夏季华东降水的增多、华南降水的减少及华北的干旱化与青藏高原冬春积雪增多及东亚夏季风的减弱是基本同步的,高原冬春积雪与华东夏季降水的正相关、与华北及华南夏季降水的负相关主要是建立在年代际时间尺度上,因此,高原积雪与我国夏季降水关系的研究应以亚洲季风环流的年代际变化为背景。  相似文献   

3.
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years.It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cover over QXP not only in the interannual variation but also in the decadal variation. A clear relationship exists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four climate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP.  相似文献   

4.
Snow cover on the Tibetan Plateau (TP) has been shown to be essential for the East Asian summer monsoon. In this paper, we demonstrate that tropical cyclone (TC) 04B (1999) in the northern Indian Ocean, which made landfall during the autumn of 1999, may have contributed to climate anomalies over East Asia during the following spring and summer by increasing snow cover on the TP. Observations indicate that snow cover on the TP increased markedly after TC 04B (1999) made landfall in October of 1999. Sensitivity experiments, in which the TC was removed from a numerical model simulation of the initial field, verified that TC 04B (1999) affected the distribution as well as increased the amount of snow on the TP. In addition, the short-term numerical modeling of the climate over the region showed that the positive snow cover anomaly induced negative surface temperature, negative sensible heat flux, positive latent heat flux, and positive soil temperature anomalies over the central and southern TP during the following spring and summer. These climate anomalies over the TP were associated with positive (negative) summer precipitation anomalies over the Yangtze River valley (along the southeastern coast of China).  相似文献   

5.
Based on observed snow and precipitation data and NCEP/NCAR reanalysis data,the relationship between the number of winter snow cover days in Northeast China and the following summer’s rainfall in the northern part of southern China is analyzed and the possible underlying mechanisms are discussed.The results indicate that a negative relationship is significant throughout the study period,especially more obvious after the 1980s.The pre-winter circulation patterns in years with more snow cover days and less summer rainfall in the south bank of the Yangtze River are almost the same.In years with more snow cover days,lower temperatures at the lower level over Northeast China are found in winter and spring.The winter monsoon is weaker and retreats later in these years than in those with fewer snow cover days.In spring of years with more snow cover days,anomalous cyclonic circulation is observed over Northeast China,and anomalous northerly wind is found in eastern China.In summer of these years,anomalous northeasterly wind at the lower level is found from the area south of the Yangtze River to the East China Sea and Yellow Sea;and with less southwesterly water vapor transport,the rainfall in the area south of the Yangtze River is less than normal,and the opposite patterns are true in years with fewer snow cover days.In recent years,the stable relationship between winter snow cover in Northeast China and summer rainfall in the Yangtze River basin can be used for summer rainfall prediction.The results are of great importance to short-term climate prediction for summer rainfall.  相似文献   

6.
杨凯  胡田田  王澄海 《大气科学》2017,41(2):345-356
青藏高原冬、春积雪有着显著的南、北空间差异,本文利用通用地球系统模式(CESM)设计了增加高原南、北冬、春积雪的敏感性试验,结果表明:当高原南部冬、春积雪异常偏多,长江及其以北地区夏季降水偏多,华南大部分地区夏季降水偏少;而当高原北部冬、春积雪异常偏多,华北及东北地区夏季降水偏多,长江下游南部地区夏季降水偏少,雨带更偏北。青藏高原南、北部冬、春积雪异常影响中国东部夏季降水的物理机制的分析结果表明,高原不同区域(南部和北部)冬、春积雪异常引起的非绝热加热异常效应都可持续到夏季,且北部积雪异常持续时间更长。高原南部和北部积雪异常偏多均会减弱高原北侧上空大气的水平温度梯度,进而减弱高原北侧西风急流的位置及强度,进而影响下游出口区处急流的强度和位置,且高原北部积雪异常偏多的影响更大。当高原南部积雪异常偏多,急流出口区的西风急流加强且偏南;而高原北部积雪异常偏多,出口区的西风急流减弱且偏北。相应地,对流层中层500 hPa西太平洋副热带高压减弱,低层850 hPa异常反气旋环流,影响中国东部地区水汽输送,从而影响了中国东部地区夏季雨带的变化。当高原南部积雪异常偏多,异常反气旋性环流位于东海附近,有利于更多水汽输送至长江流域,华南水汽输送减少;当高原北部积雪异常偏多,异常反气旋性环流相对偏北,更有利于华北及东北水汽输送,雨带偏北。  相似文献   

7.
青藏高原冬春季积雪异常对中国春夏季降水的影响   总被引:27,自引:3,他引:27  
利用1956年12月~1998年12月共42a,青藏高原及其附近地区78个积雪观测站的雪深和我国160站月降水的距平资料,分析了其气候特征,并用SVD方法分析了冬春季积雪异常与春夏季我国降水异常的关系。用区域气候模式RegCM2模拟了青藏高原积雪异常的气候效应并检验了诊断分析的结果。分析表明,雪深异常,尤其是冬季雪深异常是影响中国降水的一个因子。研究证明,高原冬季雪深异常对后期中国区域降水的影响比春季雪深异常的影响更为重要。数值模拟的结果表明,高原雪深和雪盖的正异常推迟了东亚夏季风的爆发日期,减弱了季风强度,造成华南和华北降水减少,而长江和淮河流域降水增加。冬季雪深异常比冬季雪盖异常和春季雪深异常对降水的影响更为显著。机理分析指出,高原及其邻近地区的积雪异常首先通过融雪改变土壤湿度和地表温度,从而改变了地面到大气的热量、水汽和辐射通量。由此所引起的大气环流变化又反过来影响下垫面的特征和通量输送。在湿土壤和大气之间,这样一种长时间的相互作用是造成后期气候变化的关键过程。与干土壤和大气的相互作用过程有本质差别。  相似文献   

8.
陈兴芳  宋文玲 《高原气象》2000,19(2):214-223
通过高原积雪和欧亚积雪与我国夏季降水的相关分析和统计检验,表明冬春季雪盖对我国夏季旱涝有重要的影响,虽然冬季和春季雪盖与我国夏季降水的相关分布存在差异,总趋势大致相仿。但是,冬春季高原积雪和欧 亚积雪与我国夏季降水的相关分布基本是相反的,其中高原积雪与长江中下游和西北东部地区夏季降水为正相关,欧亚积雪与东北和华北东部以及西南地区降水为正相关冬季节积雪异常偏多时,长江流域夏季易发生洪涝,这也是汛期降  相似文献   

9.
王瑞  李伟平  刘新  王兰宁 《高原气象》2009,28(6):1233-1241
利用耦合的全球海气模式(NCAR CCSM3), 对青藏高原春季土壤湿度异常影响我国夏季7月降水的机制进行了数值模拟。结果表明, 高原6~62 cm深度的中层土壤湿度异常与表层土壤湿度异常有很好的一致性, 相对而言, 中层土壤湿度异常的持续性较好。若5月高原中层土壤偏湿, 则春末至夏初高原地面蒸发、 潜热通量增加, 而感热通量、 地面温度降低, 高原表面的加热作用减弱, 使得印度高压西撤偏晚, 环流系统的季节性转换偏晚, 东亚地区形成有利于我国夏季出现第I类雨型的环流分布形势, 使我国东部雨带偏北, 华北地区多雨, 江淮地区降水偏少, 华南地区降水偏多; 反之亦然。  相似文献   

10.
青藏高原冬季积雪影响我国夏季降水的模拟研究   总被引:23,自引:9,他引:14  
利用区域气候模式 (NCC_RegCM1.0) 对青藏高原前冬积雪对次年夏季中国降水的影响进行了数值模拟研究, 所得结果与实际观测的积雪和降水的关系较为吻合, 即长江流域、 新疆地区夏季多雨, 华北和华南少雨, 这与我国最近二十年来维持的 “南涝北旱” 雨型较为一致。因此, 可以认为青藏高原冬季多雪, 是引起中国东部夏季降水出现 “南涝北旱” 的一个重要原因。本文揭示了青藏高原冬季积雪影响我国夏季降水的可能物理机制。青藏高原冬季多雪, 会导致青藏高原地面感热热源减弱, 这种热源的减弱在冬季导致冬季风偏强, 可以影响到我国华南、 西南及孟加拉湾地区。同时, 由于高原热源的减弱可持续到夏季, 成为东亚夏季风和南亚夏季风减弱的一个原因。在积雪初期, 地面反射通量的增加起了主要作用; 在积雪融化后, “湿土壤” 在延长高原积雪对天气气候的影响过程中起了重要作用。初期的反射通量增加减少了太阳辐射的吸收、 融雪时的融化吸热, 以及后期的湿土壤与大气的长期相互作用, 作为异常冷源, 减弱了春夏季高原热源, 是高原冬季积雪影响夏季风并进而影响我国夏季降水的主要机理。本文的模拟结果表明, 青藏高原冬季积雪的显著影响时效可以一直持续到6月份。  相似文献   

11.
This study investigates the statistical linkage between summer rainfall in China and the preceding spring Eurasian snow water equivalent (SWE), using the datasets of summer rainfall observations from 513 stations, satellite-observed snow water equivalent, and atmospheric circulation variables in the NCEP/NCAR re-analysis during the period from 1979 to 2004. The first two coupled modes are identified by using the singular value decomposition (SVD) method. The leading SVD mode of the spring SWE variability shows a coherent negative anomaly in most of Eurasia with the opposite anomaly in some small areas of the Tibetan Plateau and East Asia. The mode displays strong interannual variability, superposed on an interdecadal variation that occurred in the late 1980s, with persistent negative phases in 1979--1987 and frequent positive phases afterwards. When the leading mode is in its positive phase, it corresponds to less SWE in spring throughout most of Eurasia. Meanwhile, excessive SWE in some small areas of the Tibetan Plateau and East Asia, summer rainfall in South and Southeast China tends to be increased, whereas it would be decreased in the up-reaches of the Yellow River. In recent two decades, the decreased spring SWE in Eurasia may be one of reasons for severe droughts in North and Northeast China and much more significant rainfall events in South and Southeast China. The second SVD mode of the spring SWE variability shows opposite spatial variations in western and eastern Eurasia, while most of the Tibetan Plateau and East Asia are in phase. This mode significantly correlates with the succeeding summer rainfall in North and Northeast China, that is, less spring SWE in western Eurasia and excessive SWE in eastern Eurasia and the Tibetan Plateau tend to be associated with decreased summer rainfall in North and Northeast China.  相似文献   

12.
左志燕  张人禾 《大气科学》2012,36(1):185-194
利用降水观测资料, 研究了1979~2004年中国春季 (3~5月) 标准化累积降水异常的时空特征及其与前冬、 春热带太平洋海面温度和春季欧亚大陆积雪的关系。中国春季标准化累积降水量EOF第一模态最大变率位于中国东部中纬度地区, 主要反映了中国东部中纬度地区春季降水的变化特征。同时, 中国东部春季降水异常具有南、 北反相变化的特征。当长江以南大部分地区的降水偏少时, 长江以北地区的降水偏多。春季降水异常具有显著的年际变化, 但在1980年代末出现年代际转型, 即年际变化的振幅明显增大变强、 周期变长。从华北到长江流域中纬度地区的春季降水异常特征与前冬热带太平洋海面温度有密切的关系。当前冬、 春热带东太平洋海温偏暖, 西太平洋海温偏冷时, 中国东部从华北到长江流域中纬度地区的春季降水偏多, 反之亦然。虽然当春季欧亚大陆楚科奇半岛和青藏高原积雪偏多, 贝加尔湖到中国东北地区的积雪偏少时, 对应着中国东部从华北到长江流域中纬度地区的降水偏多, 但当去掉ENSO信号后, 这种关系并不显著。说明EOF第一模态所反映的中国东部从华北到长江流域中纬度地区春季降水与欧亚大陆积雪的相关关系可能是前冬热带太平洋海面温度异常的一个体现。  相似文献   

13.
The relationship between vegetation on the Tibetan Plateau (TP) and summer (June–August) rainfall in China is investigated using the normalized difference vegetation index (NDVI) from the Earth Resources Observation System and observed rainfall data from surface 616 stations in China for the period 1982–2001. The leading mode of empirical orthogonal functions analysis for summer rainfall variability in China shows a negative anomaly in the area from the Yangtze River valley to the Yellow River valley (YYR) and most of western China, and positive anomalies in southern China and North China. This mode is significantly correlated with summer NDVI around the southern TP. This finding indicates that vegetation around the southern TP has a positive correlation with summer rainfall in southern China and North China, but a negative correlation with summer rainfall in YYR and western China. We investigate the physical process by which vegetation change affects summer rainfall in China. Increased vegetation around the southern TP is associated with a descending motion anomaly on the TP and the neighboring area to the east, resulting in reduced surface heating and a lower Bowen ratio, accompanied by weaker divergence in the upper troposphere and convergence in the lower troposphere on the TP. In turn, these changes result in the weakening of and a westward shift in the southern Asian High in the upper troposphere and thereby the weakening of and an eastward withdrawal in the western Pacific subtropical high. These features result in weak circulation in the East Asian summer monsoon. Consequently, enhanced summer rainfall occurs in southern China and North China, but reduced rainfall in YYR.  相似文献   

14.
青藏高原冬春雪深分布与中国夏季降水的关系   总被引:2,自引:0,他引:2  
利用SSMR和SSM/I卫星遥感雪深反演资料,通过与高原测站雪深观测资料的对比分析,揭示了高原雪深的时空分布特征,在此基础上对积雪异常年中国夏季降水异常和大气环流进行了对比分析。结果表明,卫星遥感雪深资料可较真实反映出高原积雪的状况,并可反映出高原西部积雪的变化;高原冬、春季积雪EOF分解第1模态具有相同的空间分布,反映了高原冬、春季积雪分布具有相当的一致性,而春季积雪的第2模态则反映高原积雪的东西差异;冬、春季雪深EOF第1模态的时间序列与中国夏季降水的相关分析表明,大致以长江为界,我国东部地区呈现出南涝北旱的分布模态,春季高原东(西)部多(少)雪与东(西)部少(多)雪年的夏季,我国东部降水表现出长江以南(北)地区为大范围的降水偏多(少)。  相似文献   

15.
青藏高原积雪对中国夏季风气候的影响   总被引:39,自引:7,他引:32  
利用SVD等方法对青藏高原积雪与中国区域降水的关系作了诊断分析。并用区域气候模式(RegCM2)对高原积雪的气候效应进行了模拟。结果表明:青藏高原积雪对中国夏季风气候的影响是显著的。积雪的增加会明显减弱亚洲夏季风的强度,使华南的降水减少,江淮流域的降水增多。高原冬季积雪深度的增加,比积雪面积的扩大和春季积雪深度的增加对后期气候的影响更大。  相似文献   

16.
冬季积雪对我国夏季降水预测的评估分析   总被引:7,自引:2,他引:7  
孙林海  宋文玲 《气象》2001,27(8):24-27
根据高原积雪和高纬积雪与我国夏季降水相关分析的结果,将高原积雪和高纬积雪作为独立因子分别对我国夏季降水预测做了检验,结果表明:高原积雪较高纬积雪效果要好,冬季高原积雪异常偏多时,长江流域夏季易发生洪涝,这也是预测汛期降水的一个重要信号。  相似文献   

17.
冬季高原积雪异常与1998年长江洪水关系的分析   总被引:3,自引:1,他引:2  
宋文玲  袁景凤  陈兴芳 《气象》2000,26(2):11-14
冬季青藏高原积雪与我国夏季降水,特别是长江流域降水有着一定的相关关系、1998年长江洪水与冬季高原积雪异常有关,这在春存季400hPa平均高度场上有相应的反映。但由于受高度场的年际和年代际异常变化的影响,使它们之间的关系变得更加复杂。  相似文献   

18.
青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展   总被引:2,自引:0,他引:2  
青藏高原冬春积雪和地表热源的气候效应是青藏高原气候动力学的两个重要内容。大量资料分析和数值试验研究均表明这两个因子对亚洲季风有一定的预测意义,本文对此做了比较系统的回顾和总结,并进一步比较了青藏高原积雪和地表热源影响东亚和南亚夏季降水的异同。结果表明,东亚夏季降水在年际和年代际尺度上均存在"三极型"和"南北反相"型的空间分布特征,高原春季地表热源在年代际和年际尺度上主要影响东亚夏季降水"三极型"模态;在年代际尺度上它是中国东部出现"南涝北旱"格局的重要原因,而高原冬季积雪的作用相反。另一方面,高原冬季积雪在年际和年代际尺度上对印度夏季风降水的预测效果均要优于高原地表热源。无论是空间分布还是时间演变特征,高原冬季积雪与春季地表热源整体上均无统计意义上的显著联系。不断完善高原地面观测网和改进模式在高原地区的模拟性能,将是进一步深入理解高原积雪和地表热源影响亚洲季风物理过程和机制的关键所在。  相似文献   

19.
首先对青藏高原地表热通量再分析资料与自动气象站(AWS)实测资料进行对比, 结果表明: 相对于美国国家环境预报中心和国家大气中心20世纪90年代研制的NCEP/NCAR(Kalnay 等1996)和NCEP/DOE (Kanamitsu 等2002) 再分析资料, ECMWF(Uppala 等2004)资料在高原地区的地表热通量具有较好的代表性。进一步利用奇异值分解(SVD)方法分析了ECMWF资料反映的高原地面热源与我国夏季降水的关系, 发现前期青藏高原主体的冬季地面热源与长江中下游地区夏季降水量呈负相关, 与华北和东南沿海地区的夏季降水量呈正相关。而长江中下游地区夏季降水量还与春季高原南部的地面热源存在负相关、与高原北部的地面热源存在正相关。高原冬、春季地面热源场的变化是影响我国夏季降水的重要因子。  相似文献   

20.
青藏高原热力强迫对中国东部降水和水汽输送的调制作用   总被引:12,自引:1,他引:11  
从4个方面综述了有关青藏高原大地形热力“驱动”对中国东部雨带和水汽输送特征及其年代际变化的影响作用的研究进展:(1)中国三阶梯大地形热力过程变化与季风雨带季节演进;(2) 青藏高原地-气过程热力“驱动”及其季风水汽输送结构;(3) 青藏高原积雪冷源对中国东部水汽输送结构及其雨带分布的影响;(4) 青藏高原视热源变化与雨带年代际变化相关特征及其可能调制。其主要研究结论是:(1)中国西部高原特殊三阶梯大地形结构强化了海-陆热力差异,尤其是高原大地形使地-气热力差异季节变化有由青藏高原向东北方向大地形区域延伸变化趋势,且其与季风雨带由东南沿海移向西北朝青藏高原与黄土高原边缘同步演进,两者似乎存在类似季节内演进的一种“动态的吸引”。(2)中国东部雨带时空变化特征和季风强弱变化趋势均与青藏高原热源强弱异常变化相对应。青藏高原热源异常影响低纬度海洋向陆地的水汽传输路径和强度,进而调制中国东部降水时空演变。在青藏高原热源强和弱年,中国降水变率空间分布特征分别为“北涝南旱”和“南涝北旱”。青藏高原视热源强(弱)异常变化“强信号”将对东亚与南亚区域的季风水汽输送结构,以及夏季风降水时空分布的变异具有“前兆性”的指示意义。(3)长江中下游地区作为独特南北两支水汽流的汇合带,该地区夏季青藏高原热源与水汽通量相关矢特征呈类似于青藏高原多雪与少雪年水汽通量偏差场中水汽汇合区显著特征差异,揭示了冬季青藏高原积雪冷源影响中国东部夏季长江流域梅雨水汽输送结构特征。(4)中国降水的年代际变化基本型态为中国东部呈“南涝北旱趋势”,西北区域呈现出“西部转湿趋势”。但基于近10年青藏高原春季视热源出现“降后回升”趋势,中国东部“南涝北旱”的降水格局已出现转折趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号