首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations have shown a largely enhanced seasonal amplitude of northern atmospheric CO2 in the past several decades, and this enhancement is attributable to the increased seasonal amplitude of northern net ecosystem productivity (NEP amplitude). In the future, however, the changes in NEP amplitude are not clear, because of the uncertainties in climate change and vegetation dynamics. This study investigated the changes in NEP amplitude north of 45°N under future global warming by using a dynamic global vegetation model (DGVM). The authors conducted two sets of simulations: a present-day simulation (1981–2000) and future simulations (2081–2100) forced by RCP8.5 outputs from CMIP5. The results showed an overall enhanced northern NEP amplitude under the RCP8.5 scenario because of the increased maximum NEP and the decreased minimum NEP. The increases (decreases) in the maximum (minimum) NEP resulted from stronger (weaker) positive changes in gross primary production (GPP) than ecosystem respiration (ER). Changes in GPP and ER are both dominantly driven by surface air temperature and vegetation dynamics. This work highlights the key role of vegetation dynamics in regulating the northern terrestrial carbon cycle and the importance of including a DGVM in Earth system models.摘要观测显示过去几十年北半球大气二氧化碳季节幅度大幅增加, 这主要是由北半球陆地净生态系统生产力季节幅度的增加所致. 但是, 因为气候变化和植被动态的不确定性, 未来陆地净生态系统生产力季节幅度的变化还很不清楚. 本工作利用全球植被动力学模式研究了全球变暖背景下北纬45°以北陆地净生态系统生产力季节幅度的变化. 作者做了两大类试验: 当代试验 (1981−2000) 和CMIP5 RCP8.5 变暖情景驱动的未来试验 (2081−2100) . 结果显示, 在RCP8.5变暖情景下北半球中高纬陆地净生态系统生产力季节幅度整体增加, 这是因为陆地净生态系统生产力的月最大值增加且月最小值减小. 最大 (最小) 陆地净生态系统生产力的增加 (减小) 是由于总初级生产力的增加强 (弱) 于生态系统总呼吸. 总初级生产力和生态系统总呼吸的变化都主要受地表气温和植被动态的驱动. 本工作强调了植被动态对北半球中高纬陆地生态系统碳循环的关键调制作用, 也强调了在地球系统模式中包含全球植被动力学模式的重要性.  相似文献   

2.
Coordinated numerical ensemble experiments with six different state-of-the-art atmosphere models were used to evaluate and quantify the impact of global SST (from reanalysis data) on the early winter Arctic warming during 1982–2014. Two sets of experiments were designed: in the first set (EXP1), OISSTv2 daily sea-ice concentration and SST variations were used as the lower boundary forcing, while in the second set (EXP2) the SST data were replaced by the daily SST climatology. In the results, the multi-model ensemble mean of EXP1 showed a near-surface (~850 hPa) warming trend of 0.4 °C/10 yr, which was 80% of the warming trend in the reanalysis. The simulated warming trend was robust across the six models, with a magnitude of 0.36–0.50 °C/10 yr. The global SST could explain most of the simulated warming trend in EXP1 in the mid and low troposphere over the Arctic, and accounted for 58% of the simulated near-surface warming. The results also suggest that the upper-tropospheric warming (~200 hPa) over the Arctic in the reanalysis is likely not a forced signal; rather, it is caused by natural climate variability. The source regions that can potentially impact the early winter Arctic warming are explored and the limitations of the study are discussed.摘要本文使用六个不同的最新大气模式进行了协调数值集合实验, 评估和量化了全球海表面温度 (SST) 对1982–2014年冬季早期北极变暖的影响.本研究设计了两组实验:在第一组 (EXP1) 中, 将OISSTv2逐日变化的海冰密集度和SST数据作为下边界强迫场;在第二组 (EXP2) 中, 将逐日变化的SST数据替换为逐日气候态.结果表明: (1) EXP1的多模式集合总体平均值显示0.4 °C/10年的近地表 (约850 hPa) 升温趋势, 为再分析数据结果中升温趋势的80%. (2) 在这六个模式中, 模拟的变暖趋势均很强, 幅度为0.36–0.50 °C/10年. (3) 全球海表温度可以解释北极对流层中低层EXP1的大部分模拟的变暖趋势, 占再分析数据结果的58%. (4) 再分析数据结果中, 北极上空的对流层上层变暖 (约200 hPa) 不是由强迫信号而可能是由自然气候变率引起的.本文还探索了影响北极初冬变暖的可能源区, 并讨论了该研究的局限性.  相似文献   

3.
Southeast China has comparable stratus cloud to that over the oceans, especially in the cold seasons (winter and spring), and this cloud has a substantial impact on energy and hydrological cycles. However, uncertainties remain across datasets and simulation results about the long-term trend in low-cloud cover in Southeast China, making it difficult to understand climate change and related physical processes. In this study, multiple datasets and numerical simulations were applied to show that low-cloud cover in Southeast China has gone through two stages since 1980—specifically, a decline and then a rise, with the turning point around 2008. The regional moisture transport plays a crucial role in low-cloud cover changes in the cold seasons and is mainly affected by the Hadley Cell in winter and the Walker Circulation in spring, respectively. The moisture transport was not well simulated in CMIP6 climate models, leading to poor simulation of the low-cloud cover trend in these models. This study provides insights into further understanding the regional climate changes in Southeast China.摘要中国东南地区在冬春冷季节盛行低云, 对局地能量平衡和水文循环有重要的作用. 本研究使用多套数据和数值模拟结果, 分析这一地区冷季节内低云云量在1980年至2017年的长期变化. 结果表明, 低云云量经历了先下降后上升的趋势变化, 转折点出现在2008年左右. 局地水汽通量输送在影响低云云量的变化中起着至关重要的作用, 其在冬季和春季分别受到哈德莱环流和沃克环流的影响. CMIP6中的气候模式对水汽通量输送的模拟能力欠佳, 影响了对低云云量的模拟结果.  相似文献   

4.
China has been frequently affected by severe snowstorms in recent years that have particularly large economic and human impacts. It is thus of great importance to increase our understanding of the underlying mechanisms of and future changes in snowfall occurrences over China. In this study, the effects of anthropogenic influences on snowfall and the associated future changes are explored using new simulations from CMIP6 (phase 6 of the Coupled Model Intercomparison Project) models. Observational evidence reveals a decrease in the annual total snowfall days and an increase in intense snowfall days over the snowfall-dominated regions in China during recent decades. Fingerprints of anthropogenic influences on these changes are detectable, especially the impacts of increased greenhouse gas emissions. During the winter seasons, low temperatures still cover the regions of northern China, and the associated precipitation days show an increase due to anthropogenic warming, which substantially benefits the occurrence of snowfall over these regions, particularly for intense snowfall events. This is also true in the future, despite rapid warming being projected. By the end of this century, approximately 23% of grids centered over northern China are projected to still experience an increase in daily intense snowfall events in winters. Additionally, the length of the snowfall season is projected to narrow by nearly 41 days compared to the current climate. Thus, in the future, regions of China, especially northern China, are likely to experience more intense snowfall days over a more concentrated period of time during the winter seasons.摘要近年来, 中国部分地区频繁遭遇极端降雪事件袭击, 造成巨大经济损失和人员伤亡. 因此, 亟需深入理解中国地区极端降雪变化的物理机制及其未来演变趋势, 为国家防灾减灾及气候变化应对措施制定提供科学依据. 本文基于CMIP6模式结果, 深入开展人类活动对中国地区降雪变化的影响及其未来演变趋势预估研究. 观测显示, 过去几十年在中国降雪频发区, 其年降雪日数呈现减少趋势但强降雪日数增加; 在这些变化中能够检测到人类活动的痕迹, 尤其是温室气体排放的影响. 对于冬季, 全球变暖背景下中国北方地区降水日数明显增加, 但北方地区仍为低温控制, 这有利于降雪尤其是强降雪事件的发生; 到了本世纪末, 中国仍有约23%的区域 (主要集中在北方地区) 其冬季强降雪日数呈现增加趋势. 此外, 中国地区降雪季长度相比当前气候减少了约41天. 因此, 在未来持续变暖背景下, 中国北方部分地区冬季将经历更多更为集中的强降雪事件.  相似文献   

5.
The regional air quality modeling system RAMS-CMAQ was applied to simulate the aerosol concentration for the period 2045–2050 over China based on the downscaled meteorological field of three RCP scenarios from CESM (NCAR's Community Earth System Model) in CMIP5. The downscaling simulation of the meteorological field of the three RCP scenarios showed that, compared with that under RCP2.6, the difference in near-surface temperature between North and South China is weakened and the wind speed increases over North and South China and decreases over central China under RCP4.5 and RCP8.5. Under RCP2.6, from 2045 to 2050, the modeled average PM2.5 concentration is highest, with a value of 40–50 µg m−3, over the North China Plain, part of the Yangtze River Delta, and the Sichuan Basin. Meanwhile, it is 30–40 µg m−3 over central China and part of the Pearl River Delta. Compared with RCP2.6, PM2.5 increases by 4–12 µg m−3 under both RCP4.5 and RCP8.5, of which the SO42− and NH4+ concentration increases under both RCP4.5 and RCP8.5; the NO3 concentration decreases under RCP4.5 and increases under RCP8.5; and the black carbon concentration changes very slightly, and organic carbon concentration decreases, under RCP4.5 and RCP8.5, with some increase over part of Southwest and Southeast China under RCP8.5. The difference between RCP4.5 and RCP2.6 and the difference between RCP8.5 and RCP2.6 have similar annual variation for different aerosol species, indicating that the impact of climate change on different species tends to be consistent.摘要基于来自于 CMIP5 中 CESM 模式的三种 RCP 情景下的气象场的降尺度模拟, 应用区域空气质量模式系统 RAMS-CMAQ 模拟 2045-2050 年中国地区气溶胶浓度.三种 RCP 情景下气象场的降尺度模拟表明, 与 RCP2.6 相比, 在 RCP4.5 和 RCP8.5 下, 华北和华南的近地表温度差减小, 风速在华北和华南地区增加, 在中部地区下降. RCP2.6 情景下, 模拟的 2045 年到 2050 年平均的 PM 2.5浓度在华北平原, 长三角的部分地区和四川盆地最高, 约为 40-50 µg m–3, 在中国中部和珠三角的部分地区约为 30-40 µg m–3. 与 RCP2.6 相比, 在 RCP4.5 和 RCP8.5 下, PM2.5增加了 4-12 µg m–3, 其中在 RCP4.5 和 RCP8.5 下, SO42–和 NH4+的浓度增加, 在 RCP4.5 下, NO3–浓度降低, 在 RCP8.5 下, NO3–浓度升高, 在 RCP4.5 和 RCP8.5 下, BC 浓度变化很小, 而 OC 浓度下降, 其中在 RCP8.5 下, 西南和东南部分地区的 OC 有所增加.不同的气溶胶物种浓度在 RCP4.5 和 RCP2.6 之间的差异以及 RCP8.5 和 RCP2.6 之间的差异具有相似的年度变化, 这表明气候变化对不同物种的影响趋于一致.  相似文献   

6.
The active layer thickness (ALT) in permafrost regions, which affects water and energy exchange, is a key variable for assessing hydrological processes, cold-region engineering, and climate change. In this study, the authors analyzed the variation trends and relative changes of simulated ALTs using the Chinese Academy of Sciences Land Surface Model (CAS-LSM) and the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model, gridpoint version 3 (CAS-FGOALS-g3). Firstly, the simulated ALTs produced by CAS-LSM were shown to be reasonable by comparing them with Circumpolar Active Layer Monitoring observations. Then, the authors simulated the ALTs from 1979 to 2014, and their relative changes across the entire Northern Hemisphere from 2015 to 2100. It is shown that the ALTs have an increasing trend. From 1979 to 2014, the average ALTs and their variation trends over all permafrost regions were 1.08 m and 0.33 cm yr−1, respectively. The relative changes of the ALTs ranged from 1% to 58%, and the average relative change was 10.9%. The variation trends of the ALTs were basically consistent with the variation trends of the 2-m air temperature. By 2100, the relative changes of ALTs are predicted to be 10.3%, 14.6%, 30.1%, and 51%, respectively, under the four considered hypothetical climate scenarios (SSP-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). This study indicates that climate change has a substantial impact on ALTs, and our results can help in understanding the responses of the ALTs of permafrost due to climate change.摘要在气候变化背景下, 活动层厚度的变化会对多年冻土区水文,生态,寒区工程等产生较大的影响.本研究利用中科院气候系统模式CAS-FGOALS-g3和陆面过程模式CAS-LSM 模拟分析了活动层厚度的变化趋势和相对变化.结果表明:活动层厚度整体上呈现出增加的趋势.1979 - 2014年, 多年冻土区活动层厚度的区域平均为1.08 m, 变化趋势为0.33 cm yr−1, 其变化趋势与2 m气温变化趋势基本一致, 相对变化范围为1%-58%, 平均为10.9%.在未来四种不同的气候情景(SSP-2.6,SSP2-4.5,SSP3-7.0和SSP5-8.5)下, 到2100年预计活动层厚度的相对变化分别为10.3%,14.6%,30.1%和51%.  相似文献   

7.
Intense and extensive dust, caused by a strong Mongolian cyclone, hit Mongolia and northern China on 14–15 March 2021. In this study, the development process of this cyclone is analysed from the perspective of high-frequency eddy energetics. During the low-frequency circulation field of early March of 2021, an amplified polar vortex intruding towards central Asia and a ridge straddling eastern and northeastern Asia worked in concert to comprise a strong baroclinic zone from central Asia to Lake Baikal. Under these favourable conditions, on 13 March, a migratory trough triggered the Mongolian cyclone by crossing over the Sayan Mountains. The downwards transfer of kinetic energy from the eddy at 850 hPa played a key role in the intensification and mature stage of the cyclone. This mechanism was primarily completed by the cold air sinking behind the cold front. The frontal cyclone wave mechanism became crucial once the cyclone started to rapidly develop. The authors emphasize that the anomalously large growth of high-frequency available potential energy, which characterized this super strong cyclone, was obtained by extracting energy first from the time-mean available potential energy and then from the low-frequency available potential energy. The interannual temperature anomaly pattern of “north cold south warm” facilitated the additional time-mean available potential energy, and the temperature anomaly pattern of “northwest cold southeast warm” conditioned the extra low-frequency available potential energy. The analysis results suggest that the interaction between high- and low-frequency waves was also important in the development of the intense cyclone.摘要2021年3月14-15日, 强蒙古气旋引起的大范围强沙尘天气袭击了蒙古国和中国北方地区. 本文从高频涡动能量学的角度分析了这一超强气旋的发展过程. 2021年3月初, 加强的极涡向中亚伸入, 并与横跨东亚和东北亚的一个大型脊协同作用, 由此形成了从中亚到贝加尔湖地区的强大斜压带. 在这一有利的低频环流条件下, 3月13日一个移动性小槽越过萨彦岭后触发了蒙古气旋. 850 hPa涡旋动能的下传在气旋的加强和成熟阶段起到了关键作用. 而这一机制主要由冷锋后侧的冷空气下沉过程完成. 一旦气旋开始快速发展, 锋面气旋波机制就变得至关重要.我们强调, 高频涡动有效位能是首先从时间平均有效势能中提取能量, 然后从低频有效位能中汲取能量而剧烈增长的, 这正是该超强气旋的鲜明特征. “北冷南暖”的近地面温度气候异常型为时间平均有效位能的增多和向高频涡动有效位能的转换提供了条件, 而“西北冷东南暖”的温度异常型则有利于低频有效位能的增加和向高频涡动有效位能的转换. 分析结果表明, 高低频波之间的相互作用对蒙古气旋的增强也很重要.  相似文献   

8.
China has been frequently suffering from haze pollution in the past several decades. As one of the most emission-intensive regions, the North China Plain (NCP) features severe haze pollution with multiscale variations. Using more than 30 years of visibility measurements and PM2.5 observations, a subseasonal seesaw phenomenon of haze in autumn and early winter over the NCP is revealed in this study. It is found that when September and October are less (more) polluted than the climatology, haze tends to be enhanced (reduced) in November and December. The abrupt turn of anomalous haze is found to be associated with the circulation reversal of regional and large-scale atmospheric circulations. Months with poor air quality exhibit higher relative humidity, lower boundary layer height, lower near-surface wind speed, and southerly anomalies of low-level winds, which are all unfavorable for the vertical and horizontal dispersion and transport of air pollutants, thus leading to enhanced haze pollution over the NCP region on the subseasonal scale. Further exploration indicates that the reversal of circulation patterns is closely connected to the propagation of midlatitude wave trains active on the subseasonal time scale, which is plausibly associated with the East Atlantic/West Russia teleconnection synchronizing with the transition of the North Atlantic SST. The seesaw relation discussed in this paper provides greater insight into the prediction of the multiscale variability of haze, as well as the possibility of efficient short-term mitigation of haze to meet annual air quality targets in North China.摘要中国近几十年来频受雾霾污染问题困扰, 其中华北平原作为排放最密集的区域之一, 常遭遇不同尺度的严重雾霾污染. 本文利用30余年的能见度和颗粒物 (PM2.5) 观测数据, 发现了华北平原地区在秋季和早冬时雾霾污染在次季节尺度上“跷跷板式”反向变化的关系. 研究发现, 当9–10月污染较轻 (重) 时, 11–12月的污染倾向于加重 (减轻) . 这种突然的变化与局地和大尺度环流的反向变化有关. 污染较重的月份常伴随有更高的相对湿度, 更低的边界层高度和近地面风速以及低层的南风异常, 均不利于污染的垂直和水平扩散和传输, 从而导致了次季节尺度上霾污染的加重. 进一步的研究发现环流场的突然转向与在次季节尺度上活跃的中纬度波列的传播密切相关, 而此波列可能主要与大西洋海温转变及引起的EA/WR遥相关型有关. 这一次季节反向变化为霾污染多尺度变率预测提供了新的理解, 同时为华北地区年度空气质量达标的短期目标提供了具有可行性的参考方法.  相似文献   

9.
西伯利亚地区异常的升温可能会给生态系统带来灾难性的影响.本文从气候角度分析西伯利亚地区初夏升温的特征以及北极海冰减小的可能贡献.观测和再分析资料表明,1979-2020年间西伯利亚地区6月地表气温有很强的升温趋势(0.9℃/10年),明显高于同纬度地区平均的升温趋势(0.46℃/10年).升温从地表延伸至300hPa左...  相似文献   

10.
This paper assesses the interannual variabilities of simulated sea surface salinity (SSS) and freshwater flux (FWF) in the tropical Pacific from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The authors focus on comparing the simulated SSS and FWF responses to El Niño–Southern Oscillation (ENSO) from two generations of models developed by the same group. The results show that CMIP5 and CMIP6 models can perform well in simulating the spatial distributions of the SSS and FWF responses associated with ENSO, as well as their relationship. It is found that most CMIP6 models have improved in simulating the geographical distribution of the SSS and FWF interannual variability in the tropical Pacific compared to CMIP5 models. In particular, CMIP6 models have corrected the underestimation of the spatial relationship of the FWF and SSS variability with ENSO in the central-western Pacific. In addition, CMIP6 models outperform CMIP5 models in simulating the FWF interannual variability (spatial distribution and intensity) in the tropical Pacific. However, as a whole, CMIP6 models do not show improved skill scores for SSS interannual variability, which is due to their overestimation of the intensity in some models. Large uncertainties exist in simulating the interannual variability of SSS among CMIP5 and CMIP6 models and some improvements with respect to physical processes are needed.摘要通过比较CMIP5和CMIP6来自同一个单位两代模式模拟, 表明CMIP5和CMIP6均能较好地模拟出热带太平洋的海表盐度 (SSS) 和淡水通量 (FWF) 对ENSO响应的分布及其响应间的关系. 与CMIP5模式相比, 大部份CMIP6模式模拟的SSS和FWF年际变化分布均呈现改进, 特别是纠正了较低的中西太平洋SSS和FWF变化的空间关系. 但是, 整体上, CMIP6模式模拟的SSS年际变化技巧没有提高, 与SSS年际变率的强度被高估有关. CMIP5和CMIP6模式模拟SSS的年际变化还存在较大的不确定性, 在物理方面需要改进.  相似文献   

11.
The authors explore the response of the Northern African (NAF) monsoon to orbital forcing in the Last Interglacial (LIG) compared with its response to greenhouses gas (GHG) forcing under the SSP5-8.5 scenario simulated in CMIP6. When the summer surface air temperature increases by 1 °C over the Northern Hemisphere, the NAF monsoon precipitation and its variability during the LIG increase by approximately 51% and 22%, respectively, which is much greater than under SSP5-8.5 (2.8% and 4.3%, respectively). GHG forcing enhances the NAF monsoon mainly by increasing the atmospheric moisture, while the LIG's orbital forcing intensifies the NAF monsoon by changing the monsoon circulation. During the LIG, models and data reconstructions indicate a salient hemispheric thermal contrast between the North and South Atlantic, strengthening the mean-state NAF monsoon precipitation. The interhemispheric temperature contrast enhances atmosphere–ocean interaction and the covariability of the northward sea surface temperature gradient and Saharan low, strengthening the NAF monsoon variability.摘要与人为强迫引起的全球变暖相比, 末次间冰期是轨道强迫引起的过去80万年来最暖的一个间冰期, 但鲜有人研究末次间冰期中北非季风的响应. 因此, 本文基于CMIP6多模式模拟结果对比研究了末次间冰期和SSP5–8.5情景下北非季风的响应, 发现末次间冰期下北非季风平均降水及其降水变率均远大于SSP5–8.5情景下的结果. 轨道强迫导致的北大西洋暖于南大西洋增加了北非季风环流和平均降水, 同时, 南北大西洋海温梯度变化通过增强热带北大西洋的海气相互作用增大了海温梯度和撒哈拉低压的变率, 从而增强了北非季风降水变率.  相似文献   

12.
At the time of writing, coronavirus disease 2019 (COVID-19) is seriously threatening human lives and health throughout the world. Many epidemic models have been developed to provide references for decision-making by governments and the World Health Organization. To capture and understand the characteristics of the epidemic trend, parameter optimization algorithms are needed to obtain model parameters. In this study, the authors propose using the Levenberg–Marquardt algorithm (LMA) to identify epidemic models. This algorithm combines the advantage of the Gauss–Newton method and gradient descent method and has improved the stability of parameters. The authors selected four countries with relatively high numbers of confirmed cases to verify the advantages of the Levenberg–Marquardt algorithm over the traditional epidemiological model method. The results show that the Statistical-SIR (Statistical-Susceptible–Infected–Recovered) model using LMA can fit the actual curve of the epidemic well, while the epidemic simulation of the traditional model evolves too fast and the peak value is too high to reflect the real situation.摘要现如今, 新冠肺炎(COVID-19)严重威胁着世界各国人民的生命健康. 许多流行病学模型已经被用于为政策制定者和世界卫生组织提供决策参考. 为了更加深刻的理解疫情趋势的变化特征, 许多参数优化算法被用于反演模型参数. 本文提议使用结合了高斯-牛顿法和梯度下降法的Levenberg–Marquardt(LMA)算法来优化模型参数. 使用四个病例数相对较多的国家来验证这一算法的优势: 相较于传统流行病学模型模拟曲线过早过快的到达峰值, 应用LMA的Statistical-SIR(Statistical-Susceptible–Infected–Recovered)模型可以更好地拟合实际疫情曲线.  相似文献   

13.
Stemming from the multi-scale interactions of various processes, long-term memory (LTM) has become a well-recognized property in the climate system. Whether a dynamic model can reproduce the observed LTM is a widely used criterion for model evaluation, especially regarding its ability in simulating natural variabilities. While many works have shown poor model skill in simulating the LTM of land surface air temperature (LSAT), it is not yet known whether CMIP6 models offer any improvement. In this study, the performances of 60 CMIP6 models in simulating the LTM characteristics in LSAT were evaluated. Results showed that most models reproduced the LTM in the global-mean LSAT, among which AWI-ESM-1-1-LR and E3SM-1-0 performed best. All 60 models reproduced the variation in LTM with latitude. CNRM-CM6-1 and HadGEM3-GC31-LL performed best in simulating the LTM of LSAT at the global scale. The multi-model mean (MMM) performed better than any single model. The biases of the MMM and CRUTEM5, and among the 60 models, were significant in the equatorial and coastal regions, which may be attributable to the simulation differences of the models in terms of their ocean–atmosphere coupling processes.摘要利用去趋势涨落分析 (DFA) 方法计算序列的长程记忆性 (LTM) , 以CRUTEM5数据集的结果作为观测参照, 评估了60个参与第六次国际耦合模式比较计划 (CMIP6) 的气候模式对地表气温LTM的再现能力. 结果表明: 大部分模式可以再现全球平均地表气温序列的LTM特征, 其中AWI-ESM-1-1-LR和E3SM-1-0的模拟效果最好; 60个模式均能模拟LTM随纬度带的变化; 综合来说, 全球水平上CNRM-CM6-1和HadGEM3-GC31-LL对地表气温LTM的模拟性能最好; 多模式平均相比单一模式模拟性能更好; 多模式平均与观测结果的偏差以及模式之间的模拟差异显著体现在赤道和沿海区域, 这种偏差可能源于模式对海气耦合过程的模拟差异.  相似文献   

14.
Based on data observed from 1979 to 2017, the influence of Arctic sea ice in the previous spring on the first mode of interannual variation in summer drought in the middle and high latitudes of Asia (MHA) is analyzed in this paper, and the possible associated physical mechanism is discussed. The results show that when there is more sea ice near the Svalbard Islands in spring while the sea ice in the Barents–Kara Sea decreases, the drought distribution in the MHA shows a north–south dipole pattern in late summer, and drought weakens in the northern MHA region and strengthens in the southern MHA region. By analyzing the main physical process affecting these changes, the change in sea ice in spring is found to lead to the Polar–Eurasian teleconnection pattern, resulting in more precipitation, thicker snow depths, higher temperatures, and higher soil moisture in the northern MHA region in spring and less precipitation, smaller snow depths, and lower soil moisture in the southern MHA region. Such soil conditions last until summer, affect summer precipitation and temperature conditions through soil moisture–atmosphere feedbacks, and ultimately modulate changes in summer drought in the MHA.摘要本文分析了亚洲中高纬度地区 (MHA) 年际尺度夏季干旱的主模态时空变化特征, 以及影响第一模态的主要影响因子和可能的物理过程. 结果显示该区域夏季干旱第一模态主要呈现一个南北偶极性的分布. 而影响MHA夏季干旱的主要影响因子为前春北极海冰. 当春季斯瓦尔巴群岛附近海冰偏多, 而巴伦支海-喀拉海海冰减少时, 通过冰-气相互作用, 使得MHA北部春季降水增加, 雪深加厚, 土壤湿度偏高, 而南部则相反. 然后这样的土壤湿度条件从春季持续到夏季, 通过土壤湿度-大气反馈影响夏季MHA降水和温度变化, 最终对夏季干旱主模态产生影响.  相似文献   

15.
Topography as well as its attributes are fundamental factors during precipitation generation. Various models with different complexity have been established to interpret the topography–precipitation relationship. In this study, the topography–precipitation relationships simulated by two dynamical downscaling models (DDMs) at the kilometer-scale and traditional quarter-degree resolution in eastern China are evaluated by utilizing multi-scale geographically weighted regression with station precipitation observations as reference. The precipitation simulated by the kilometer-scale DDM had a higher agreement with observations than the quarter-degree simulation. For the effects of topography on precipitation, observations revealed a dominant role played by the topographical relief in the precipitation distribution at most stations in the study region. The kilometer-scale DDM generally reflected this dominant role of topographical relief. However, the quarter-degree DDM showed an excessive dependency of the precipitation distribution on the topographical elevation. This research highlights the key role of underground sub-grid variations on the precipitation in eastern China, which implies a potential way forward for precipitation simulation improvements.摘要与传统的1/4度 (≈25-30 km) 动力降尺度模拟相比, 公里尺度模拟的降水空间分布与观测结果更为接近. 为了研究这一差异原因, 本研究以华东地区为例, 探究了地形因子在观测和模拟的降水中的作用. 为了更好地体现地形因子对降水分布非均匀性的影响, 以及不同地形因子作用的尺度差异, 本研究采用多尺度地理加权回归模型, 对五个主要地形因子与公里尺度和1/4度分辨率模拟的降水的关系进行了评估. 基于观测数据的研究结果显示地形起伏度, 地形高程和离海岸线距离对华东地区降水分布的非均匀性都有重要影响, 其中地形起伏度在研究区大部分站点降水分布中起主导作用; 公里尺度模拟结果基本反映了地形起伏度的主导作用; 而1 / 4度模拟结果表现出降水对地形高程的过度依赖. 本研究揭示了公里尺度地形分布对中国东部降水的非均匀分布的关键作用, 研究结果可以为改进降水模拟提供新的思路.  相似文献   

16.
Observational data from satellite altimetry were used to quantify the performance of CMIP6 models in simulating the climatological mean and interannual variance of the dynamic sea level (DSL) over 40°S–40°N. In terms of the mean state, the models generally agree well with observations, and high consistency is apparent across different models. The largest bias and model discrepancy is located in the subtropical North Atlantic. As for simulation of the interannual variance, good agreement can be seen across different models, yet the models present a relatively low agreement with observations. The simulations show much weaker variance than observed, and bias is apparent over the subtropics in association with strong western boundary currents. This nearshore bias is reduced considerably in HighResMIP models. The underestimation of DSL interannual variance is at least partially due to the misrepresentation of ocean processes in the CMIP6 historical simulation with its relatively low resolution. The results identify directions for future model development towards a better understanding of the mean and interannual variability of DSL.摘要本研究采用卫星测高数据与第六次国际耦合模式比较计划 (CMIP6) 海平面动力进行对比, 重点针对40°S–40°N地区的动力海平面 (DSL) , 评估了模式对其平均态与年际变率的综合模拟能力. 结果表明, 对于DSL平均态的模拟, 模式与观测结果非常吻合, 模式之间的差异较小. 其中, 副热带北大西洋是模拟偏差和模式间差异较为显著的区域. 对于DSL年际变率的模拟, 模式之间保持较高的一致性, 但是, 模式与观测结果存在明显差异, 模式普遍低估了DSL的年际方差; 其中, 误差大值区域出现在副热带西边界流附近. 模式分辨率会影响CMIP6对中小尺度海洋过程的重现能力, 这可能是导致CMIP6历史模拟出现误差的原因之一.  相似文献   

17.
The Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System atmospheric component model (FGOALS-f3-L) participated in Phase 6 of the Coupled Model Intercomparison Project, but its reproducibility of surface temperature (Ts) over the Tibetan Plateau (TP) as a key climatically sensitive region remains unclear. This study evaluates the capability of FGOALS-f3-L in reproducing the climatological Ts over the TP relative to the Climate Forecast System Reanalysis. The results show that FGOALS-f3-L can reasonably capture the spatial pattern of Ts but underestimates the annual mean Ts for the whole TP. The simulated Ts for the whole TP shows a cold bias in winter and spring and a warm bias in summer and autumn. Further quantitative analysis based on the surface energy budget equation shows that the surface albedo feedback (SAF) term strongly contributes to the annual, winter, and spring mean cold bias in the western TP and to the warm bias in the eastern TP. Compared with the SAF term, the surface sensible and latent heat flux terms make nearly opposite contributions to the Ts bias and considerably offset the bias due to the SAF term. The cloud radiative forcing term strongly contributes to the annual and seasonal mean weak cold bias in the eastern TP. The longwave radiation term associated with the overestimated water vapor content accounts for a large portion of the warm bias over the whole TP in summer and autumn. Improving land surface and cloud processes in FGOALS-f3-L is critical to reduce the Ts bias over the TP.摘要中国科学院全球海洋–大气–陆地耦合模式 (FGOALS-f3-L) 参加了耦合模式比较计划的第六阶段 (CMIP6) 试验,但是其对关键气候敏感地区青藏高原的地表温度的再现能力还不清楚.这项研究用再分析资料CFSR评估了FGOALS-f3-L模式对青藏高原地表温度的再现能力.结果表明, FGOALS-f3-L可以合理模拟整个高原上年平均地表温度的空间分布, 但低估了整个高原上年平均地表温度.模拟的地表温度在整个高原上冬春季表现为冷偏差, 夏秋季表现为暖偏差.基于地表能量平衡方程的进一步定量分析表明, 地表反照率反馈 (SAF) 项极大地贡献了高原西部年平均, 冬春季平均地表温度的冷偏差, 而对高原东部是暖偏差贡献.与SAF项相比, 地表感热项对地表温度偏差的贡献几乎相反, 这大大抵消了SAF项引起的偏差.云辐射强迫项对高原东部的年平均和季节平均弱冷偏差有很大贡献.与高估的水蒸气含量有关的长波辐射项造成了夏秋季整个高原上大部分的暖偏差.该研究表明, 提高FGOALS-f3-L中的陆面和云过程对降低高原上地表温度偏差至关重要.  相似文献   

18.
To improve the understanding of the CO2 exchange and the cycling of energy and water between the land surface and atmosphere over a typical hilly forest in southeastern China, a long-term field experimental observatory was established in Huainan, Anhui Province. Here, the authors briefly describe the three parts of ongoing research activities: the environmental monitoring at the site, the meteorological observations on a high tower, and particularly the intensive measurement of soil–vegetation–atmosphere interaction on a lower tower. Specifically, the diurnal variation of basic meteorological variables on a typical clear day (13 July 2018), and their temporal variation in the first three months of the low tower's operation (4 June to 31 August 2018), and in combination with simultaneous data from the high tower, are analyzed. Results show that the data demonstrate reasonable variabilities, and the variables exhibit significant diurnal variation, characteristics of summer values, and considerable differences in summer months. The daily and monthly average albedos above the forest canopy were both 0.13. The daily average soil CO2 concentration was 1726 and 4481 ppm at 2 and 10 cm, respectively. The soil CO2 concentration changed with soil volumetric moisture contents, but showed a weak correlation with soil temperature in summer 2018. As the observatory continues to run and data continue to be collated, further investigation of the long-term variation of monsoon characteristics should be performed in the future. The experiment is useful in ecosystem and atmosphere interaction research, as well as for the development and evaluation of climate models, in the transitional climate zone of the Huaihe River basin.摘要本文简要介绍了包括三部分观测的安徽淮南长期野外试验观测站, 特别是土壤-植被-大气的集中观测, 对小塔运行前三个月 (2018年6月至8月) 的数据, 并结合同一时段大塔获得的数据, 进行了初步分析.结果表明这些资料有合理的变化特征, 日变化和夏季值特征显著, 各月份间气象变化有明显差异.土壤水分和温度受降雨影响, 在不同的下垫面条件下表现出不同的变化.土壤CO2日平均浓度在2 cm和10 cm处分别为1726和4481 ppm.2018年夏季土壤CO2浓度随土壤体积含水量的变化而变化, 但与土壤温度呈弱相关.  相似文献   

19.
Changes in the water cycle on the Tibetan Plateau (TP) have a significant impact on local agricultural production and livelihoods and its downstream regions. Against the background of widely reported warming and wetting, the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring (i.e., snowstorms, floods, landslides, mudslides, and ice avalanches) has also intensified, especially in the high-elevation mountainous regions. Thus, an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes. Following the transformation and movement of water between the atmosphere, biosphere and hydrosphere, the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system (including the eddy covariance system; planetary boundary layer tower; profile measurements of temperature, humidity, and wind by microwave radiometers, wind profiler, and radiosonde system; and cloud and precipitation radars) in the TP region and propose a practical implementation plan. The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.摘要青藏高原的水循环变化对于高原及其下游区域人类的生产生活具有举足轻重的影响. 在高原暖湿化的背景下, 其水文循环加快, 极端天气和自然灾害事件概率增大, 比如, 雪灾, 洪水, 滑坡, 泥石流, 冰崩在山区频发. 因此, 如何准确的估算青藏高原水循环各分量的大小及变化幅度是评估高原环境变化影响亟需解决的科学问题. 根据水在各圈层间转换过程, 我们提出了建立第三极地区 (尤其是复杂山区) 的三维立体多圈层地气相互作用综合观测系统(包括涡动相关系统, 行星边界层塔, 微波辐射计, 风廓线仪和无线电探空系统观测的风温湿廓线及云雨雷达等)的紧迫性和具体方案, 进而为研究青藏高原环境变化和山区灾害预测服务.  相似文献   

20.
Based on reanalysis data from 1979 to 2016, this study focuses on the sea surface temperature (SST) anomaly of the tropical North Atlantic (TNA) in El Niño decaying years. The TNA SST exhibits a clear warm trend during this period. The composite result for 10 El Niño events shows that the TNA SST anomaly reaches its maximum in spring after the peak of an El Niño event and persists until summer. In general, the anomaly is associated with three factors—namely, El Niño, the North Atlantic Oscillation (NAO), and a long-term trend, leading to an increase in local SST up to 0.4°C, 0.3°C, and 0.35°C, respectively. A comparison between 1983 and 2005 indicates that the TNA SST in spring is affected by El Niño, as well as the local SST in the preceding winter, which may involve a long-term trend signal. In addition, the lead–lag correlation shows that the NAO leads the TNA SST by 2–3 months. By comparing two years with an opposite phase of the NAO in winter (i.e., 1992 and 2010), the authors further demonstrate that the NAO is another important factor in regulating the TNA SST anomaly. A negative phase of the NAO in winter will reinforce the El Niño forcing substantially, and vise versa. In other words, the TNA SST anomaly in the decaying years is more evident if the NAO is negative with El Niño. Therefore, the combined effects of El Niño and the NAO must be considered in order to fully understand the TNA SST variability along with a long-term trend.摘要基于1979年到2016年多种再分析资料, 本文分析了El Niño衰减年热带北大西洋的海温异常. 结果表明, 热带北大西洋海温在此期间呈显著变暖趋势. 10次El Niño事件的合成结果表明热带北大西洋海温异常在El Niño事件峰值之后的春季达到最大值, 并持续到夏季. 一般而言, 这种异常与三个因子有关, 即El Niño, 北大西洋涛动和长期趋势, 能分别导致局地海温上升0.4°C, 0.3°C和0.35°C. 1983年和2005年的对比分析表明, 尽管El Niño强度对春季北大西洋海温起到决定性作用, 与长期趋势密切相关的前冬海温也很重要. 此外, 超前-滞后相关结果表明北大西洋涛动超前海温约2–3个月. 比较两个冬季相反位相北大西洋涛动的年份 (即1992年和2010年) , 表明北大西洋涛动也能调制北大西洋海温异常. 冬季负位相北大西洋涛动能显著增强El Niño的强迫影响, 反之亦然. 换言之, 如果北大西洋涛动与El Niño位相相合, 衰减年北大西洋海温异常才更为显著. 因此, 为全面理解热带北大西洋海温变化, 除长期趋势外, 还必须考虑El Niño和北大西洋涛动的综合影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号