首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
利用青河县历史气象资料,通过对比分析青河县与大果沙棘原引种区气候条件,指出青河县适宜种植大果沙棘。在归纳分析青河县种植大果沙棘有利和不利的气候条件基础上,提出了相应的气象服务措施。  相似文献   

2.
沙棘是新疆伊吾县的特色产业,沙棘的优质高产与气象因素密切相关。气候品质认证是一个新兴产品,通过开展沙棘气候品质认证工作,将有利于保护特色种质资源、提升企业的品牌价值和市场竞争力。利用伊吾县1991—2020年国家基本气象站和2010-2021年池镇区域自动站的气象观测数据和沙棘发育期资料,根据沙棘的生长习性、种植区气候适宜性和管理状况对品质影响的分析,构建沙棘气候品质认证模型,对伊吾县种植的特色气候品质的沙棘进行了认证和评价。结果表明,2021年伊吾县沙棘气候品质等级为特优。  相似文献   

3.
一、前言沙棘为胡颓子科,属野生灌木或乔木,广泛分布于欧亚大陆1月份平均气温为10℃等温线以北地区。我国80%的沙棘分布于黄河中上游地区。天水市沙棘总面积为373 960亩。沙棘生长发育除受本身遗传特性、土壤性质等影响外,还受地理环境、气候条件等因素的影响。本文从气象角度出发,对沙棘生长发育速度、果实品质和气象  相似文献   

4.
正镶白旗地区西瓜种植的气候条件及气象灾害预防   总被引:1,自引:0,他引:1  
文章将正镶白旗地区的气候条件与西瓜生长的气候条件进行比较,主要选用温度、湿度、光照、降水四个因子,分别阐述各因子对西瓜生长发育的影响,并对西瓜种植期间出现的气象灾害进行分析。结果表明:该地区光照充足,热量丰富,空气干燥,气温日较差大,适宜西瓜种植。  相似文献   

5.
阳信黄冠梨种植气候条件分析   总被引:2,自引:0,他引:2  
利用阳信县历史气象资料,对比阳信县气候条件与黄冠梨生长所需条件,统计分析种植黄冠梨有利和不利的气候条件,结果证明:阳信县气候条件适宜种植黄冠梨,对引进培育名优品种具有一定的指导意义。  相似文献   

6.
广西种植火龙果的气候条件分析   总被引:8,自引:0,他引:8  
通过对广西的气候条件和火龙果生长适宜气候条件的分析,得出广西的光、温、水等气候条件基本适宜火龙果的生长,但要注意防御低温冻害、洪涝、大风等气象灾害的危害,为火龙果在广西的推广种植提供科学参考。  相似文献   

7.
根据子长县蚕桑中心统计多年蚕桑种植资料和经验,利用子长县气象站20a气象资料,南沟岔镇、玉家湾镇区域气象站5a气象资料,针对桑树露青期、鹊口期、五叶期等发育期的生长需求,对子长县蚕桑种植的温度、光照和水分条件进行分析,总结了桑树不同生育期适应的气候条件和主要气象灾害及其防御措施。  相似文献   

8.
根据子长县蚕桑中心统计多年蚕桑种植资料和经验,利用子长县气象站20a气象资料,南沟岔镇、玉家湾镇区域气象站5a气象资料,针对桑树露青期、鹊口期、五叶期等发育期的生长需求,对子长县蚕桑种植的温度、光照和水分条件进行分析,总结了桑树不同生育期适应的气候条件和主要气象灾害及其防御措施。  相似文献   

9.
利用新疆塔里木盆地西部岳普湖县1981—2019年气象观测资料,结合金银花生长发育情况,分析气候条件与金银花生长的利弊关系,根据金银花的生态学特性,对岳普湖县金银花栽培的气象条件进行了系统的分析,结果表明:金银花各物候期的平均气温呈明显的升高趋势、日照时数有明显的增多趋势、水源充足,有利于金银花正常生长发育。随着气温升高、日照时数增多,种植时间从以前的3月中旬提早至3月上旬,种植面积逐年扩大,从2016年的几十公顷扩大到2019年的345 hm2,种植模式从平作方式调整到套种模式,品种统一用北花一号品种。金银花生长发育过程中≥38 ℃的连续高温日数,尤其是≥40 ℃的高温天气、短时强降水天气、风沙天气等气象条件对金银花品质和产量产生了有害影响。探讨金银花种植产业的有利气候条件,可为新疆金银花产业基地建设提供科学依据,为花农增收致富提供气象保障。  相似文献   

10.
通过对罗甸县的气候条件和柚木生长适宜气候条件的分析,得出罗甸中南部低海拔乡镇的光照、气温、降水等气候条件基本适宜柚木的生长。但要做好防御低温冻害、干旱、洪涝、大风等气象灾害的危害,为柚木在罗甸的推广种植提供科学参考。  相似文献   

11.
Analyses of a 500-year control integration of the global coupled atmosphere–sea ice–ocean model ECHAM5.0/MPI-OM show a high variability in the ice export through Fram Strait on interannual to decadal timescales. This variability is mainly determined by variations in the sea level pressure gradient across Fram Strait and thus geostrophic wind stress. Ice thickness anomalies, formed at the Siberian coast and in the Chukchi Sea, propagate across the Arctic to Fram Strait and contribute to the variability of the ice export on a timescale of about 9 years. Large anomalies of the ice export through Fram Strait cause fresh water signals, which reach the Labrador Sea after 1–2 years and lead to significant changes in the deep convection. The associated anomalies in ice cover and ocean heat release have a significant impact on air temperature in the Labrador Sea and on the large-scale atmospheric circulation. This affects the sea ice transport and distribution in the Arctic again. Sensitivity studies, simulating the effect of large ice exports through Fram Strait, show that the isolated effect of a prescribed ice/fresh water anomaly is very important for the climate variability in the Labrador Sea. Thus, the ice export through Fram Strait can be used for predictability of Labrador Sea climate up to 2 years in advance.  相似文献   

12.
气候变化对我国农作物种植结构的影响   总被引:32,自引:0,他引:32       下载免费PDF全文
气候变化引起水热条件的变化,从而影响到我国农业生产的方方面面,人们采取不同措施以适应气候变化带来的各种影响。为了清楚地认识气候变化对我国主要粮食作物生产的影响以及适应措施,利用《中国农业统计年鉴》1980-2007年资料和1961-2007年全国逐日平均温度观测数据及前人的研究成果,分析了气候变化对我国三大粮食作物布局和种植结构的影响。结果表明,由于气候变暖,粮食作物种植比例变化明显。小麦种植比例对气候变化最为敏感,波动大;水稻种植比例变化南北方反向,且变化幅度趋缓;玉米种植比例持续增加,增幅加大。三大粮食作物种植结构变化均以2000年为分界点,呈现不同增减趋势。而作物熟制、复种指数也发生明显变化,种植北界持续北推。黑龙江地区大面积扩种水稻,原来的玉米优势种植区为水稻所替代。  相似文献   

13.
Here we investigate simulated changes in the precipitation climate over the Baltic Sea and surrounding land areas for the period 2071–2100 as compared to 1961–1990. We analyze precipitation in 10 regional climate models taking part in the European PRUDENCE project. Forced by the same global driving climate model, the mean of the regional climate model simulations captures the observed climatological precipitation over the Baltic Sea runoff land area to within 15% in each month, while single regional models have errors up to 25%. In the future climate, the precipitation is projected to increase in the Baltic Sea area, especially during winter. During summer increased precipitation in the north is contrasted with a decrease in the south of this region. Over the Baltic Sea itself the future change in the seasonal cycle of precipitation is markedly different in the regional climate model simulations. We show that the sea surface temperatures have a profound impact on the simulated hydrological cycle over the Baltic Sea. The driving global climate model used in the common experiment projects a very strong regional increase in summertime sea surface temperature, leading to a significant increase in precipitation. In addition to the common experiment some regional models have been forced by either a different set of Baltic Sea surface temperatures, lateral boundary conditions from another global climate model, a different emission scenario, or different initial conditions. We make use of the large number of experiments in the PRUDENCE project, providing an ensemble consisting of more than 25 realizations of climate change, to illustrate sources of uncertainties in climate change projections.  相似文献   

14.
The ocean heat transport into the Arctic and the heat budget of the Barents Sea are analyzed in an ensemble of historical and future climate simulations performed with the global coupled climate model EC-Earth. The zonally integrated northward heat flux in the ocean at 70°N is strongly enhanced and compensates for a reduction of its atmospheric counterpart in the twenty first century. Although an increase in the northward heat transport occurs through all of Fram Strait, Canadian Archipelago, Bering Strait and Barents Sea Opening, it is the latter which dominates the increase in ocean heat transport into the Arctic. Increased temperature of the northward transported Atlantic water masses are the main reason for the enhancement of the ocean heat transport. The natural variability in the heat transport into the Barents Sea is caused to the same extent by variations in temperature and volume transport. Large ocean heat transports lead to reduced ice and higher atmospheric temperature in the Barents Sea area and are related to the positive phase of the North Atlantic Oscillation. The net ocean heat transport into the Barents Sea grows until about year 2050. Thereafter, both heat and volume fluxes out of the Barents Sea through the section between Franz Josef Land and Novaya Zemlya are strongly enhanced and compensate for all further increase in the inflow through the Barents Sea Opening. Most of the heat transported by the ocean into the Barents Sea is passed to the atmosphere and contributes to warming of the atmosphere and Arctic temperature amplification. Latent and sensible heat fluxes are enhanced. Net surface long-wave and solar radiation are enhanced upward and downward, respectively and are almost compensating each other. We find that the changes in the surface heat fluxes are mainly caused by the vanishing sea ice in the twenty first century. The increasing ocean heat transport leads to enhanced bottom ice melt and to an extension of the area with bottom ice melt further northward. However, no indication for a substantial impact of the increased heat transport on ice melt in the Central Arctic is found. Most of the heat that is not passed to the atmosphere in the Barents Sea is stored in the Arctic intermediate layer of Atlantic water, which is increasingly pronounced in the twenty first century.  相似文献   

15.
利用1991—2020年我国中北亚热带不同烤烟烟区180个国家级气象站气候因子数据,根据影响优质烟叶生长发育的气候条件,分析气候差异性,探究烟叶生长发育的气象规律,应用主成分分析计算各气候因子的权重,依据气候相似原理,对湖北省两大烟区与周边烟区采用改进的欧氏距离作为相似度量指标,并与系统聚类结果进行相似性对比。结果表明:鄂西南、鄂西北、豫西、豫南、豫中、湘西、湘中烟区基本具备了生产优质烟叶的气候条件,除降水量外,其余各气候因子在不同发育期的差值伸根期最大,旺长期次之,成熟期最小。鄂西北和陕南烟区的气候因子最为接近,鄂西南和湘西、川东南烟区的气候因子具有高度相似性,从而为不同区域间借鉴生产经验、优化烤烟种植布局和开发特色优质烟叶提供理论依据。  相似文献   

16.
基于MaxEnt模型的薄壳山核桃气候适宜性区划   总被引:1,自引:0,他引:1       下载免费PDF全文
基于最大熵模型(MaxEnt)和GIS技术,提出一种薄壳山核桃气候适宜性区划方法。利用美国本土274个种植点,结合美国本土和中国云南省1981—2010年气候数据开展薄壳山核桃气候适宜性区划研究。结果表明:7月平均气温、年平均气温、30年极端最低气温、年降水量、3—5月降水量、年日照时数和4—5月日照时数为影响薄壳山核桃气候适宜性的主要气候因子。基于美国本土种植点构建的MaxEnt模型在该区域具有较高精度,但将模型直接外推用于中国云南省可靠性不足。因此,利用模拟区域和训练样本气候因子值域的偏离程度改进气候适宜性指数,并将云南省薄壳山核桃适宜性划分为最适宜、适宜、次适宜和不适宜4个等级。其中,最适宜区和适宜区分布于热量资源丰富、日照相对充足并具备较好冬季低温条件的亚热带地区和热带地区边缘。受云南省复杂地形和气候条件影响,区划结果呈现出破碎化分布。  相似文献   

17.
分析融安县的气候条件及脐橙物候期的特点,得出融安县脐橙种植的气候优势,提出适宜种植的区域。  相似文献   

18.
Sea ice is an important component in the Earth’s climate system. Coupled climate system models are indispensable tools for the study of sea ice, its internal processes, interaction with other components, and projection of future changes. This paper evaluates the simulation of sea ice by the Flexible Global Ocean-Atmosphere-Land System model Grid-point Version 2 (FGOALS-g2), in the fifth phase of the Coupled Model Inter-comparison Project (CMIP5), with a focus on historical experiments and late 20th century simulation. Through analysis, we find that FGOALS-g2 produces reasonable Arctic and Antarctic sea ice climatology and variability. Sea ice spatial distribution and seasonal change characteristics are well captured. The decrease of Arctic sea ice extent in the late 20th century is reproduced in simulations, although the decrease trend is lower compared with observations. Simulated Antarctic sea ice shows a reasonable distribution and seasonal cycle with high accordance to the amplitude of winter-summer changes. Large improvement is achieved as compared with FGOALS-g1.0 in CMIP3. Diagnosis of atmospheric and oceanic forcing on sea ice reveals several shortcomings and major aspects to improve upon in the future: (1) ocean model improvements to remove the artificial island at the North Pole; (2) higher resolution of the atmosphere model for better simulation of important features such as, among others, the Icelandic Low and westerly wind over the Southern Ocean; and (3) ocean model improvements to accurately receive freshwater input from land, and higher resolution for resolving major water channels in the Canadian Arctic Archipelago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号