首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用天气观测资料和NCEP再分析资料对2004-2013年5-9月影响山东的切变线天气特征和环流形势进行了分析。将影响山东的切变线按热力性质分为冷切变线和暖切变线,10a间影响山东的切变线共发生59次,其中暖切变线出现43次,占切变线总发生次数73%;冷切变线出现16次,占切变线总发生次数27%。切变线发生频数7月最多,6月次之,分别占切变线总数的35.6%和23.7%,9月最少,约占0.05%。影响山东典型切变线的发生与副高关系密切,冷切变线多出现在西风槽东移受阻,在对流层低层逐渐形成,暖切变线则出现在西风带小高压与副高合并,副高北抬时形成。针对2次典型冷暖切变线暴雨天气过程对比分析其暴雨落区、雷达回波特征和动力机制等,结果发现:暖切变线降水的强度、暴雨范围和持续时间明显大于冷切变线降水。暖切变线暴雨的GPS可降水量在强降雨出现前8h快速上升,可降水量峰值对应地面降雨大值,对地面降雨变化反映不敏感,物理量呈垂直分布,强回波单体基本位于暖切变线雨带的中间。冷切变线暴雨的GPS可降水量短时间内增幅大,地面强降雨在峰值出现1h后发生,对地面降雨变化反映较敏感,物理量从低层到高层向北倾斜且上升运动区较深厚,回波单体位于切变线南侧。  相似文献   

2.
利用常规地面高空观测资料、山东省123个自动站1 h降雨量资料和25个地基GPS反演的大气可降水量资料,对比分析不同天气系统影响下典型强降雨过程中的大气可降水量变化特征。结果表明:(1)降雨开始前水汽累积时间与天气系统尺度有密切关系,一般尺度越大,水汽积累时间越长,低槽冷锋强降雨前大气可降水量的积累时长可达约26 h,副高边缘强降雨发生前水汽积累时间仅5~6 h;(2)水汽增速与天气系统尺度密切相关。天气系统尺度越小增速越快,低槽冷锋强降雨发生前水汽增速小于2.0 mm·h~(-1),副高边缘强降雨发生前水汽增速可达3.1 mm·h~(-1);(3)短时强降雨发生前,水汽累积时间与积累速度呈反相关,即水汽增速越快,强降雨发生越快,当水汽增速大于2.0 mm·h~(-1),可降水量经历5~6 h积累即可产生短时强降雨;(4)一般强降雨时段多数在可降水量峰区时段,而副高边缘型短时强降雨和冷式切变线第1阶段强降雨均发生在可降水量增长时段。降雨过程结束后,一般情况下可降水量锐减,而副高边缘型和冷式切变线第1阶段强降雨结束后可降水量继续增长。冷式切变线第2阶段降雨结束后可降水量出现持续小幅减小,数小时后,可降水量再次增长。  相似文献   

3.
利用2006—2014年4—9月湖南117例强降雨天气过程高空、地面观测资料,依据湖南省暴雨预报经验和方法,将强降雨天气过程分为低涡冷槽型、地面暖倒槽锋生型、副高边缘型、台风型、梅雨锋切变型和华南准静止锋型6种类型。在此基础上,以同期222个暴雨日当天08时20°—35°N、105°—120°E范围内500 h Pa高度场和850 h Pa径向风为参数,采用K-均值聚类法,通过反复迭代得到6类暴雨日客观天气型。结果表明:第1、2、6类暴雨日天气形势场特征和强降雨落区分别有60%以上与台风型、低涡冷槽型、地面暖倒槽锋生型强降雨过程的特征吻合;第3、4、5类暴雨日分别出现在2种或以上强降雨天气过程期间,其天气形势场和强降雨特点对应强降雨过程的不同阶段;6类聚类结果较为客观地反映了湖南省汛期暴雨的天气形势和降雨特点,分型结果可作为湖南汛期暴雨预报客观分型的参考依据。  相似文献   

4.
“0702”山西大暴雨过程的多尺度特征   总被引:1,自引:0,他引:1  
利用T639L19 1°×1°分析场、FY 2红外云图及红外辐射亮温TBB、多普勒雷达和气柱水汽总量等资料,对2011年7月2 3日发生在山西境内的区域性暴雨进行了多尺度特征分析。结果表明:(1)副热带高压北上,西南暖湿气流加强,东北冷涡后部冷空气南下,山西北中部锋生是这次区域性暴雨发生的大尺度环流特征。(2)山西中部暴雨由2个β中尺度对流云团生成,且在边界层2条中尺度切变线附近触发对流发展,形成2个暴雨中心;山西南部暴雨则由8个中尺度对流云团生成、发展合并,在边界层α中尺度人字形切变线附近触发对流发展,α中尺度人字形切变线云系上4个γ中尺度气旋是导致局地大暴雨和特大暴雨形成的直接原因;≤-53℃的黑体亮温区超前多普勒雷达人字形切变线云系反射率因子≥35 dBz的区域。(3)降水中前期,对流云团合并,导致地闪频次峰值和降水量峰值出现,且地闪频次峰值出现时间较降水量峰值出现时间提前12~18 min。(4)中部暴雨发生在气柱水汽总量水平梯度大值区与边界层切变线相重叠的区域,南部暴雨则发生在气柱水汽总量水平梯度大值区的南部0.5~1.0个经/纬距的高湿区与边界层人字形切变线相重叠的区域;气柱水汽总量水平梯度大值区形成时间和边界层切变线形成时间均比暴雨发生提起12 h以上。  相似文献   

5.
GPS遥感大气可降水量在暴雨天气过程分析中的应用   总被引:10,自引:3,他引:10  
利用北京市气象局地基GPS监测试验网遥感大气可降水量(PWV)数据,分析2004年汛期暴雨天气过程PWV的变化特征及其与降雨量、降雨强度的关系;通过分析地面、高空的位势高度场、风场,以及比湿外水汽通量Q及水汽通量散度AQ等物理量诊断场分布,研究天气系统与大尺度水汽输送、辐合的关系,大尺度水汽输送、辐合与PWV变化的关系;探讨GPS遥感大气水汽资料在预报强降雨天气过程中的应用。得出:PWV的增长方式受当地天气系统的支配和制约,对于明显降雨过程,当地面、高空天气系统有利于暖湿空气的输送时,在北京附近形成等湿度线密集区,PWV逐渐增长(降雨开始前的13-24h)的趋势;当地面、高空有辐合系统东移或生成,或有中小尺度天气系统影响时,PWV显著增长(降雨开始前的3~4h);当PWV大于某阈值后出现较强降雨,PWV值及增量的大小与降雨量的大小没有明显的关系。  相似文献   

6.
基于349站自动站雨量资料、NCEP1°×1°再分析资料、卫星TBB资料以及河池市复杂的地形特征对2016年6月14-15日强降雨过程进行分析,结果表明:此次暴雨过程分为两个阶段,前一阶段是由超低空急流在山脉迎风一侧辐合抬升及地面中尺度锋区共同作用下产生的暖区暴雨,后一阶段为高空槽引导冷式切变线南下,地面有冷锋相配合产生的锋面暴雨。最强降雨出现在九万大山迎风坡一侧的喇叭口地形处,并且强降雨落区与能量锋区、低层水汽通量辐合及整层可降水量大值区有较好对应。强降雨出现在对流云团TBB大值中心附近,暴雨云团列车效应及中α对流系统在河池东北部山区长时间停滞,是导致该地累积雨量大的重要原因。  相似文献   

7.
一次区域暴雨过程综合诊断分析   总被引:3,自引:0,他引:3  
利用NCEP 1°×1°的6h再分析资料对2008年7月22日河南省南阳市的区域性暴雨天气进行了综合诊断分析,结果表明:此次暴雨过程是中低层的西南涡在高空急流的引导下,沿着河套高压与副高之间的辐合带移出造成的。降雨的水汽供应主要来自对流层中低层,且水汽强辐合出现在强降雨前。随着对流活动的发展,水汽通量和水汽辐合都向高层发展,湿层明显增厚。在整个降雨过程中,700hPa垂直螺旋度正值中心的位置和强度与西南涡的移动和强弱变化有很好的对应关系,垂直螺旋度正值长轴区与切变线辐合区相吻合,在某种程度上能反映出西南涡的移动和强度的演变;垂直螺旋度强弱的变化与暴雨强度变化基本一致。高层辐散、低层辐合的大气垂直结构能增强大气的抽吸作用,促进垂直上升运动的发展,反之,抑制垂直上升运动,降雨减弱。上、下层负、正垂直螺旋度耦合的结构对暴雨的发生和维持非常有利。在雷达速度PPI上,逆风区的出现预示着局地强降雨的产生。  相似文献   

8.
分析结果表明:①山西北部的暴雨云团在850hPa暖切变线南部生成、发展,并在地面切变线附近合并;山西南部的MCC由3个B中尺度对流云团发生、发展、合并形成,β中尺度对流云团在700hPa次天气尺度切变线上触发生成;MCC发展、成熟阶段,α中尺度云团沿925hPa暖切变线东移;减弱阶段,随副高的南压而南压。②副高西进北抬背景下,同一次暴雨过程中,MCC发生在5880gpm边缘弱的斜压环境里,高层则出现在高压北侧的反气旋环流中;一般暴雨云团发生在5840gpm边缘较强的斜压环境里,高层则出现在急流人口区的右侧。③MCC作为大型的中尺度对流系统,不但对低层高温高湿能量的需求比一般暴雨云团更多,而且在垂直方向上,要求湿层、高能舌、暖温结构更深厚。④南部MCC影响区及5880gpm线边缘为负地闪覆盖区,正地闪主要出现在北部一般暴雨云团影响区及5840gpm线附近。一般暴雨云团影响下比MCC影响下,局地闪电开始及闪电峰值的出现较降水的开始及降水峰值的出现有更多的提前量。⑤山西北部暴雨云团出现在气柱水汽总量梯度的大值区及水汽锋上;山西南部MCC则出现在水汽锋的南侧气柱水汽总量的大值区。气柱水汽总量对0811暴雨过程有36h的提前量,对暴雨的落区有很好的指示意义。  相似文献   

9.
2008年6月5~7日阳江特大暴雨的中尺度特征   总被引:3,自引:2,他引:1  
利用1°×1°的NECP/NCAR再分析资料、自动气象站每6min一次的加密资料、阳江多普勒雷达反射率因子等资料,诊断分析2008年6月5~7日以阳江为暴雨中心的广东省大范围大暴雨降水过程。分析结果表明:在青藏高原东部的低涡和小槽东移影响下,华南沿海暖式切变线加强,促进了低层水汽辐合和不稳定能量的累积,为暴雨中尺度系统的发生发展提供了有利条件;阳江地区的特大暴雨与超强降雨雨团密切相关,中尺度雨团受中尺度地面切变线或辐合区的直接影响,强降水多出现在切变线北侧。  相似文献   

10.
地基GPS水汽监测技术及气象业务化应用系统的研究   总被引:3,自引:0,他引:3  
本研究建立了川渝地区地基GPS(global positioning system,全球定位系统)遥感水汽的本地化计算模型,开发出GPS遥感水汽的计算软件包,开展了局域地基GPS观测网遥感大气水汽的试验及业务应用,反演出30 min间隔的高时间分辨率GPS可降水量序列。评估了反演精度,研究了GPS水汽产品在气象业务应用的可行性。研发了可搭建在MICAPS(meteorological information comprehensive analysis and process system)平台上的地基GPS水汽监测业务化应用系统,实现了局域地基GPS观测网数据的实时传输、数据解算、可降水量反演和GPS水汽产品的可视化,并在气象业务部门试运行,在强降水、暴雪等灾害性天气预报中发挥了独特作用。本项目组系统性研究了GPS可降水量的时间变化、水平分布,分析了GPS可降水量与气温、气压、比湿、辐射和降雨量等地面气象要素以及与局地环流、水汽输送和循环等大气过程及地形的对应关系。研究了GPS水汽产品在几类典型灾害性天气(西南暴雨、持续性降水、冰冻雨雪、大雾)以及人工增雨中的演变特征,揭示了GPS探测水汽技术及其产品在天气预报业务中的应用方法。进行了GPS可降水量的日循环合成分析,GPS可降水量在华北暴雨、西南暴雨、华西秋雨、四川盆地夜雨等方面的应用研究,以及不同云系降雨过程、不同类型降雨过程中GPS可降水量的对比分析。例如,对不同类型降雨过程中GPS-PWV(precipitable water vapor by GPS,GPS可降水量)的比较表明,在夏季暴雨发生前5~10h,GPS-PWV的激增可很好地预示其后的强降雨天气;而对于类似秋绵雨的一般性持续降雨来说,GPS-PWV的连续大幅递增或递减并超过平均值可作为降雨开始或结束的预报依据;对于不同类型降雨天气过程GPS-PWV具有不同的日变化特点,它能及时反映水汽的局地变化特征,作为水汽异常输送中的强信号,GPS-PWV在降雨天气分析及预报中具有重要的指示意义。  相似文献   

11.
北京一次大暴雨的水汽收支和微物理过程数值分析   总被引:1,自引:1,他引:0  
利用NCEP1°×1°再分析资料和常规气象观测资料,使用WRF模式对2012年7月21日发生在北京地区的一次特大暴雨天气过程进行数值模拟。在模拟结果的基础上,分析了此次暴雨过程的形势演变和水汽条件,并分别计算了暴雨发生过程中北京全市范围内的水汽输送、水汽收支、大气可降水量和空中各相态水物质的量值大小、空间分布情况及其相互转化关系。结果发现:这次降水主要受高空槽、低涡和地面切变线的影响。有东南、西南两条水汽输送通道,计算区域上空水汽收支变化与地面雨强的演变对应很好。中低层持续而强烈的水汽净输入,为暴雨的发生发展提供了很好的水汽条件。北京各站点大气可降水量普遍超过历史极值,反映了降水的极端性。降水发展不同阶段,云内微物理过程存在差异,降水量初期以暖雨为主,降雨量不大,之后冷雨过程增强,降水量迅速增大。  相似文献   

12.
《高原气象》2012,31(3)
利用T6391°×1°分析场、FY-2红外云图、红外辐射亮温(TBB)、闪电定位和气柱水汽总量等资料,对2010年8月11日发生在山西南部暴雨过程(即“0811”暴雨过程)中的中尺度对流复合体(MCC)和其北部的一般暴雨云团进行了对比分析,结果表明,(1)山西北部暴雨带主要由6个J8中尺度对流云团生成、发展及合并造成;山西南部区域性暴雨则由MCC的生成、发展、东移所引发。(2)山西北部的暴雨云团在850hPa暖切变线南部生成和发展,并在地面切变线附近合并;山西南部的MCC由3个β中尺度对流云团发生、发展及合并形成,该对流云团在700hPa次天气尺度切变线上触发生成;MCC发展、成熟阶段,α中尺度云团沿925hPa暖切变线东移;减弱阶段,随西太平洋副热带高压的南退而南压。(3)在西太平洋副热带高压西进北抬的背景下,同一次暴雨过程中,MCC发生在5880gpm边缘弱的斜压环境中,高层则出现在高压北侧的反气旋环流中;一般暴雨云团发生在5840gpm边缘较强的斜压环境中,高层则出现在急流人口区的右侧。(4)MCC作为大型的中尺度对流系统,不但对低层高温高湿能量的需求比一般暴雨云团更多,而且在垂直方向上,要求湿层、高能舌及暖温结构更深厚。(5)山西南部MCC影响区和5880gpm线边缘为负地闪覆盖区,正地闪主要出现在其北部一般暴雨云团影响区和5840gpm线附近。与MCC相比,一般暴雨云团影响下,局地闪电开始及闪电峰值的出现较降水的开始及降水峰值的出现有更多的提前量。(6)山西北部暴雨云团出现在气柱水汽总量梯度的大值区及水汽锋上;山西南部MCC则出现在水汽锋南侧气柱水汽总量的大值区。气柱水汽总量对“0811”暴雨过程有36h的提前量,对暴雨的落区有很好的指示意义。  相似文献   

13.
“0811”暴雨过程中MCC与一般暴雨云团的对比分析   总被引:3,自引:0,他引:3  
利用T639 1°×1°分析场、FY-2红外云图、红外辐射亮温(TBB)、闪电定位和气柱水汽总量等资料,对2010年8月11日发生在山西南部暴雨过程(即"0811"暴雨过程)中的中尺度对流复合体(MCC)和其北部的一般暴雨云团进行了对比分析,结果表明,(1)山西北部暴雨带主要由6个β中尺度对流云团生成、发展及合并造成;山西南部区域性暴雨则由MCC的生成、发展、东移所引发。(2)山西北部的暴雨云团在850hPa暖切变线南部生成和发展,并在地面切变线附近合并;山西南部的MCC由3个β中尺度对流云团发生、发展及合并形成,该对流云团在700hPa次天气尺度切变线上触发生成;MCC发展、成熟阶段,α中尺度云团沿925hPa暖切变线东移;减弱阶段,随西太平洋副热带高压的南退而南压。(3)在西太平洋副热带高压西进北抬的背景下,同一次暴雨过程中,MCC发生在5 880gpm边缘弱的斜压环境中,高层则出现在高压北侧的反气旋环流中;一般暴雨云团发生在5 840gpm边缘较强的斜压环境中,高层则出现在急流入口区的右侧。(4)MCC作为大型的中尺度对流系统,不但对低层高温高湿能量的需求比一般暴雨云团更多,而且在垂直方向上,要求湿层、高能舌及暖温结构更深厚。(5)山西南部MCC影响区和5 880gpm线边缘为负地闪覆盖区,正地闪主要出现在其北部一般暴雨云团影响区和5 840gpm线附近。与MCC相比,一般暴雨云团影响下,局地闪电开始及闪电峰值的出现较降水的开始及降水峰值的出现有更多的提前量。(6)山西北部暴雨云团出现在气柱水汽总量梯度的大值区及水汽锋上;山西南部MCC则出现在水汽锋南侧气柱水汽总量的大值区。气柱水汽总量对"0811"暴雨过程有36h的提前量,对暴雨的落区有很好的指示意义。  相似文献   

14.
利用常规观测资料、地面区域气象自动站加密资料、卫星以及NCEP再分析资料,对2010年6月、2012年6月、2015年6月3次发生在湖南怀化的暴雨天气过程进行对比分析。结果表明:(1)3次过程均是典型的低涡冷槽型暴雨过程,降雨分布在低涡东南侧及其向东伸展出的切变线附近,对于低涡沿切变线东移的暴雨过程,降雨分布在低涡移动的路径上。(2)中低层中尺度低涡或辐合中心是直接造成暴雨的系统,其发展演变和移动直接影响降雨的落区和持续时间,在卫星云图上反应为中尺度云团的生消。(3)孟湾、南海是怀化暴雨的水汽源地,暴雨发生在高温高湿的不稳定层结和强水汽辐合区域,强降雨是整层水汽通量和水汽辐合共同作用的结果,当两者同步增强并达到极值时,降雨也同步增强,当两者不同步时,不能使用单一要素判断降雨,而要综合考虑。(4)3次暴雨过程都是发生在低层正涡度、负散度和高层负涡度、正散度的高低空耦合结构下。  相似文献   

15.
使用自动站、micaps资料、NCEP\NCAR1°×1°逐6h再分析资料对2012年1月13~15日广西大范围暴雨过程进行分析得出:南支槽东移和低层切变线南下激发广西上空冬季异常高湿区的能量和水汽释放;水汽来源是南海和孟加拉湾水汽,强降雨落区与切变线位置对应良好.分析物理量发现:水汽通量中心位于比湿大值区,指示水汽来源;西南风急流建立后大气湿层增厚;高低空涡度和散度场配置显示暴雨区上空存在强烈上升运动.  相似文献   

16.
利用地基GPS技术反演得到的大气可降水量资料、FY-2C卫星水汽图以及NCEP 1°×1°再分析资料,分析了2008年9月23—26日成都地区一次持续性暴雨的水汽特征。结果表明,降雨期间的水汽主要由来自孟加拉湾的暖湿气流和来自"黑格比"台风的高低空急流组成;暴雨发生前对流层中低层水汽充足,大气层结极不稳定,水平风的垂直切变较明显;高时间分辨率的地基GPS资料不仅可获得水汽实时变化的信息,而且对于暴雨发生时间和暴雨强度都有一定的指示性;结合中尺度数值模拟的结果,发现此次暴雨过程中可降水量的变化能反映区域水汽辐合辐散的变化,降水与否或降水大小不仅取决于大气中水汽含量的多少,更受到大气动力和热力条件的影响,水汽辐合的强弱具有关键作用。  相似文献   

17.
内蒙古一次暴雨过程中尺度特征及成因分析   总被引:2,自引:0,他引:2  
利用常规观测资料、NCEP 1°×1°再分析资料、自动气象站资料、FY-2E逐时云顶亮温TBB资料和闪电定位资料,对2013年7月14-16日内蒙古暴雨过程进行分析。结果表明,此次暴雨过程58%的暴雨站点在2 h、3 h或6 h即达到暴雨量级,强降水造成的中尺度雨团和中尺度雨带是暴雨主要表现特征。强降水是冷锋云系或涡旋云系中不断生消的中尺度对流系统(MCS)直接造成的,在MCS发展和成熟阶段,雨团和地闪密度大值区位于TBB≤-52℃冷云区冷空气流入一侧,但MCS移出区域,也有雨团的出现,是由层状云引发的。地闪密度增加,MCS发展,雨强增强,地闪频次锐减,MCS开始消亡,雨强减弱。阻塞形势稳定、南亚高压东伸和西太平洋副热带高压位置偏北是MCS发生的有利行星尺度背景条件,低空急流日变化是造成强降水集中出现在前半夜至凌晨的主要原因。对流层低层高温高湿、位势不稳定层结和风垂直切变对MCS形成提供了有利环境场。地面中尺度"人"字形切变线形成的扰动机制先于MCS发生,MCS出现在暖式切变线南侧不稳定区,但对流层高层强辐散中心和低层强正涡度中心滞后于强降水峰值出现时刻3~4 h。  相似文献   

18.
利用常规观测观测资料、每隔6小时一次的1°*1°NCEP再分析资料以及相当黑体温度TBB对2011年10月6—7日预报偏差较大的广西区域性暴雨进行分析得出:副热带高压边缘的东南气流和台风“尼格”减弱后的后部偏南气流带来的暖湿空气和地面冷空气在桂中上空交汇,850hPa切变线和500hPa西风槽触发了暴雨的产生;比湿和假相当位温的分布显示了冷暖空气的对峙情况;TBB平均场的变化可以反映强降雨的落区和移动:水汽主要从东边界进人广西,少部分从南边界和北边界进入,来自于西北太平洋、孟加拉湾和东海洋面。  相似文献   

19.
利用常规观测、加密自动站、NCEP 1°×1°每6h再分析资料和多普勒雷达等资料,对2017年6月20日发生在滇中的局地大暴雨进行分析。结果表明:低层700hPa切变线和地面辐合线是产生局地大暴雨的主要天气系统;局地大暴雨发生在低层辐合、中高层辐散的弱对流环境中,低层局地强水汽辐合为本次大暴雨提供了水汽条件;局地大暴雨发生在对流云团边缘TBB梯度最大的位置,暴雨发生前6h地面露点温度上升明显,同时对流有效位能CAPE也出现显著增加。本次强降雨过程先后出现两轮降雨高峰,第1轮强降雨持续时间长,雨强大,主要为强降水超级单体和中气旋造成;第2轮强降雨持续时间较短,雨强较弱,主要为多个对流风暴引发。两轮强降雨多普勒雷达图上为低质心结构,径向速度有逆风区形成,逆风区的出现比暴雨提前约1h,降水强度随着逆风区的消失而减弱。局地大暴雨发生地呈"喇叭口"地形,强降雨点位于山谷且三面环山,进入"喇叭口"山谷内的对流风暴在地面气旋和地形作用下稳定少动,是导致本次局地大暴雨的重要原因。  相似文献   

20.
利用常规天气图、数值预报等资料,对2009年5月19~20日广西全区性暴雨天气过程进行了综合分析.结果表明:19日的降雨主要是受低层切变线的摆动和地面弱冷空气造成的,20日的降雨是受高空槽东移引导中低层的切变线南压造成的,越南北部持续充沛的水汽供给是本次降雨过程的重要条件;19日日本数值预报对切变线减弱北抬和加强南压的过程做出了比较准确的预报,在20日高空槽东移引导切变线南压,欧洲数值预报比日本的更具参考性,但对系统的移动速度都偏快,中低层系统演变也偏快.强降雨落区和降雨量级T639和日本都报得偏小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号