首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
12 kaBP前后青藏高原湖泊环境   总被引:6,自引:1,他引:6  
李炳元 《中国科学D辑》2001,31(Z1):258-263
对青藏高原地区20多个有12 kaBP前后测年数据的湖泊或古湖盆的古湖岸线、古湖沉积物以及指示湖水盐度变化的古气候代用指标进行了较系统分析, 结果表明青藏高原及其毗邻的中国西北地区的古湖面在14~11 kaBP冰消期具有明显回升现象, 以冰川融水补给为主的湖泊湖面涨幅往往超过全新世最宜期. 12 kaBP前后温湿的气候波动在青藏高原甚至全中国是普遍存在的, 可与欧洲和格陵兰冰芯记录到的Bolling和Allerod暖期对比, 表明B/A事件不只是北大西洋的区域现象.  相似文献   

2.
河西走廊花海古湖泊全新世白云石的发现及其环境意义   总被引:4,自引:3,他引:1  
通过对河西走廊花海古湖泊沉积物的X衍射分析发现,全新世期间有明显的白云石沉积.岩性、沉积过程、石膏以及Fe3+含量的变化表明,花海湖全新世白云石沉积环境以还原环境为主,即还原环境利于白云石的形成,为白云石的成因研究提供了新的证据.白云石作为碳酸盐矿物,可以反映湖水盐度,但并非直接指示了湖水的咸化.随着湖水盐度的进一步增加,在硫酸盐型湖泊中,白云石含量随盐度的增加而相应减少,表明利用白云石分析湖水盐度时需要结合其他矿物进行分析.结合石膏含量的变化,花海湖全新世时期白云石含量的变化可以揭示该区域湖水盐度的变化.在10.478.87 cal ka B.P.早全新世时期,湖水的盐度较高,气候由干向湿转变;8.87 cal ka B.P.时期,有大量石膏沉积,显示了湖水盐度的进一步升高,气候干旱;随后湖水相对淡化,气候湿润;5.50 cal ka B.P.至今,沉积出现间断,气候逐渐干旱.  相似文献   

3.
柴轶凡  张灿  孔令阳  赵成 《湖泊科学》2018,30(6):1732-1744
高海拔地区由于特殊的自然环境对气候变化和营养输入的响应十分敏感.在人类活动逐渐加强的背景下,高山湖泊高分辨率的沉积物记录了人与自然相互作用的演变过程.选取云南西北部典型高山湖泊——错恰湖,获取长度37 cm的连续湖泊沉积序列,基于铅铯测年法得到年代深度模型,并对湖芯样品进行总有机碳、总氮及正构烷烃的多指标测定和元素测量,结合气象监测数据探讨分析错恰湖的有机质来源和流域环境演化特征.根据气候代用指标的变化,两百年来错恰湖泊环境及区域气候演化可以分成4个主要阶段:1807-1900年:湖泊水位上升、湖面扩大,有机质丰度下降,有机质以外源贡献为主,内源比例上升;1900-1950年:湖泊水位开始下降、湖面收缩,有机质丰度下降,外源有机质来源增加;1950-1982年:湖泊水位下降、湖面进一步收缩,有机质丰度下降,外源输入比例继续增加;1982-2007年:湖泊水位下降、湖面收缩,有机质含量上升且以陆源输入为主,同时内源贡献比例开始增加.在元素测定结果中,人类活动对应了湖泊沉积重金属含量变化的3个阶段:1950年以前,重金属含量低且稳定,可视作自然背景阶段,人类影响忽略不计;1950年以后,湖泊流域工农业逐渐发展,人为干扰凸显;直到1982年以后,冶炼工业的进步加强了重金属的污染态势,并通过大气传输沉降被湖泊沉积物记录.错恰湖沉积记录的分析讨论在总结该区域气候环境演化历史的同时,加深了对气候人类活动湖泊生态系统相互作用过程的理解,为高山湖泊响应人类活动影响提供了证据.  相似文献   

4.
40 ka以来青藏高原的4次湖涨期及其形成机制初探   总被引:8,自引:1,他引:8  
贾玉连 《中国科学D辑》2001,31(Z1):241-251
40 ka来青藏高原现在封闭湖区至少经历了4次显著的湖泊扩涨期. 40~28和9.0~ 5.0 kaBP湖涨期是高原暖湿气候时段的产物, 分布范围最广, 湖涨最为显著; 其产生于岁差周期高太阳辐射阶段, 强劲的夏季风形成的丰沛降水是造成湖涨的主要原因. 40~28 kaBP湖涨期, 高原湖域浩瀚, 河湖串联, 湖泊呈现40 ka以来的最高最大湖面. 19~15和13~11 kaBP期间, 高原湖泊扩涨存在区域性, 前者同高原冷湿气候与季节性冰融水增加有关, 后者则与末次冰消期冰融水与夏季风降水增加有关. 造成湖涨期表现形式与环境机制复杂多样的原因, 是北方冷气候事件, 特别是Heinrich事件叠加在由岁差周期太阳辐射变化驱动的夏季风强弱变化背景之上, 高原阶段性冷湿与暖湿环境及其由此形成的高原冰融水阶段性增加的结果.  相似文献   

5.
13kaBP以来滇池地区古环境演化   总被引:6,自引:1,他引:5  
根据DC93一1孔孢粉组合、总有机碳(TOC)、总氮(TN)、碳氮比(C/N)、有机碳同位素δ13Corg、磁化率(χ)、频率磁化率(χfd)等资料,结合14C、210Pb和137Cs测年,滇池地区13ka以来的古环境演化历史经历了以下几个阶段:13—10.2kaBP.气候偏凉湿,湖水深度不大;10.2-7.5kaBP,气候向暖湿过渡.湖水渐深;7.5-4.0kaBP,气候暖湿,出热条件达到最佳配制,湖水也最深.6.5kaBP前后,气温最高,这一时段古气候状况存在次级波动;4.0-2.7kaBP,气候突转干旱.湖水最浅;2.7-1.7kaBP,气候温湿,湖面扩大,湖水变深;1.7kaBP,人类活动影响的加剧,使湖泊环境的变化更为复杂.  相似文献   

6.
利用泥质岩硼含量重建过去湖泊古盐度和湖面变化历史   总被引:6,自引:0,他引:6  
根据封闭湖泊古盐度与湖面变化之间具有反向变化的特点,以沱沱河地区通天河剖面为例,利用泥质岩的硼元素含量作为古盐度计,重建了青藏高原北部地区晚渐新世-早中新世湖泊沉积的古盐度变化曲线,讨论了应用湖水古盐度变化曲线追踪过去湖平面变化历史的适用范围和局限.结果表明:雅西错组上部古湖泊水体的盐度一般处于咸水湖分布区,盐度变化于微咸水到超咸水范围内,指示渐新世晚期气候干燥,湖平面长期处于低水位期;但中新世早期五道梁组沉积期,高原气候开始向湿润方向发展,湖水古盐度明显下降,湖水位快速上升.  相似文献   

7.
腐殖质具有对气候环境变化响应敏感的特点,已经展示出了作为古气候演变研究载体的重要潜力和优势,当前,腐殖化度对气候环境变化指示意义的研究主要应用于泥炭沉积上,而对于湖泊沉积物中腐殖化度气候环境变化的研究,至今尚未见到报道,根据新疆东疆北部巴里坤湖湖泊沉积物腐殖化度的分析,同时结合年代学、有机质含量、总有机碳、自生碳酸盐δ13C、δ18O的分析结果,认为该湖泊沉积物中腐殖化度可以较为敏感地反映气候环境变化的相关消息,较高的腐殖化度,指示气候相对湿润,而较低的腐殖化度值,指示气候相对干燥,在此基础上,结合多指标变化,初步划分了巴里坤湖地区近9.4cal kaBP以来经历了干(9.4-7.5cal kaBP)-湿(7.5-5.8cal kaBP)-干(5.8-3.0 cal kaBP)-湿(3.0-1.0cal kaBP)-干(1.0-Ocal kaBP)五个阶段.  相似文献   

8.
台湾高山湖泊沉积记录指示的近4000年气候与环境变化   总被引:17,自引:2,他引:17  
海拔3310m嘉明湖的沉积物,记录台湾高山近ka来的古气候变动,即2.2kaBP之前的湿暖期,相当于全新世大暖期之后半段,以及2.2kaBP以来的降温期;并且在大暖期结束前,出现一段特别湿暖的时期(2.2~2.4kaBP).鸳鸯湖及七彩湖的沉积物,也显示大暖期似乎结束于2~2.3kaBP.另外,在降温期中出现一短暂暖期(820~1320AD),似乎对应于中世纪暖期;而自1320AD开始,气候又转变为干冷,意味着小冰期来临.这些气候变动也可与大鬼湖所记录的相对应.  相似文献   

9.
晚第四纪中亚高山湖泊的演化   总被引:1,自引:0,他引:1  
中亚晚第四纪商山湖泊的演化受到复杂的气候波动釤响,主要由水汽的变化、湖盆冰川作用和径流与 流址的变化而引起的。冷干条件伴随右融水补给的减少和湖退;暖湿条件引起了冰川的后退,增加了融水补给,引起湖进。分布于不同海抜高度的天山和帕米尔竑原地区的湖泊,普遍处于较干旱的环境中,通过对湖盆地貌学、冰川和湖泊沉积物的分布和成份的研究、以及对湖泊沉积物的孢粉分析和埋藏植物碎屑的l4C年代测定,可以里违晚贝新世以来益山湖泊的演化阶段和中亚高山区的古地理环堍。22000-17000a B.P.,天山查特尔库尔湖和帕米尔喀拉湖为外流淡水湖,面积超过目前的2-3倍。湖泊沉积物中孢粉以干草原植被为主,反映气候较暖湿。16000-11000a B.P.,冻川活动达到极盛,气候寒冷、干燥,湖泊干涸、消失。孢粉频率低,以旱生植物花粉为主。10000-8000a B.P.,温度、湿度提中湿植物和蒿属相对藜科增加,开始湖进。查特尔库尔湖水位较今高12m,面积超过现今3倍;8000—4000a B.P.,天山和东帕米尔的湖盆气侯相对暖湿。4000—3500a B.P.,气候变干,旱生植物花粉增加。3000a B.P.以来以气候干旱化为特征,植被以高山干草原和草原-荒漠为主。1500a B.P.以来气候更趋干早,干旱植物花粉增加,湖水位下降,一直持续至今。据历史和考古资料,公元14-16世纪天山气候暖干化,发生湖退;17—18世纪天山和帕米尔湿度增加,出现湖进。目前该地区湖水位普遍处于下降时期,仅若干冰融水补给湖泊有湖进的迹象。  相似文献   

10.
李栓科 《湖泊科学》1995,7(3):193-202
拉斯曼丘陵区的湖泊均为淡水湖,总数近150个,湖泊总面积6.3km~2,占陆地总面积的3.15%。东部地区湖泊数量少但多深大湖,西部地区数量多但多浅小湖。湖泊地貌发育初始,A_1/A_c之值较大,湖岸地貌形态不发育,全年封冻期长达300天,限制了湖水动力对地貌和沉积物形成的作用强度,冰雪融水量与湖面蒸发量控制了湖水平衡和湖面变化过程。湖积物厚度小,颗粒粗,分选差,风力混杂堆积作用明显。夏季水温变化复杂,并常有明显的逆温现象。水体pH值介于6.0~8.0之间,Na~+占绝对优势。  相似文献   

11.
古昆仑湖地区183-90kaBP间的微体古生物与环境变迁   总被引:1,自引:0,他引:1  
古昆仑湖位于昆仑山垭口昆仑河谷地,大约在200kaBP前已开始沉积,沉积物为一套灰、灰绿、土黄色粉砂质、砂质粘土,厚约7m.在纳赤台西北剖面5.6-2.4m层段产较多微体化石,介形类有8属12种:Ilyocypris biplicata(Koch),I.bradyi Sars,Eucypris crassa(Mller),E.elliptica(Baird),E.rischtanica Schneider,Candona candida(Mller),Stenocypriscf.major(Baird),Cypridopsis obesa Brady Robertson,Prionocypris gansenensis Huang,Potamocypris villosa(Jurine),P.cf.wolfi Brehm和Limnocythere dubiosa Daday等.轮藻类有Chara aliensis Z.Wang,Chara gansenensis S.Wang和Charasp.根据U系法测年,含化石地层的年龄大约为168-90kaBP,属于倒数第二次冰期至末次间冰期早期.按生物组合和沉积物特征分析,古昆仑湖区在183-90kaBP的环境气候变化大致有两个大的期次、6个小期次:(1)183-130kaBP冷湿期,湖区环境较冷湿,湖泊水质较淡,水温不高.早期(约183-170kaBP),湖面较宽,水体较深,环境动荡,化石贫乏;中期(约170-151.3kaBP),湖面有一定收缩,水质含盐度有所提升,水温仍不高,湖区环境湿度较大;晚期(约151.3-130kaBP),化石贫乏,生态环境、水质条件可能与早期类同.(2)130-90kaBP凉湿期,湖内生态环境较好,生物门类中除介形类外,出现沉水性植物轮藻类,且介形类生物量较前期有很大增加,属种分异度较好.早期(约130-105kaBP),偏冷湿;中期(约105-98kaBP),凉湿,为生物大发展大繁盛时期;晚期(约98-90kaBP),偏凉湿,在98-93kaBP,环境不宜生物生息,化石贫乏;约93-90kaBP,生态环境有所改善,有介形类3属5种,但生物量较小.  相似文献   

12.
Lower Cretaceous lacustrine oil shales are widely distributed in southeastern Mongolia. Due to the high organic carbon content of oil shale, many geochemical studies and petroleum exploration have been conducted. Although most of the oil shales are considered to be Early Cretaceous in age, a recent study reveals that some were deposited in the Middle Jurassic. The present study aims at establishing depositional ages and characteristics of the Jurassic and Cretaceous lacustrine deposits in Mongolia. The Lower Cretaceous Shinekhudag Formation is about 250 m thick and composed of alternating beds of shale and dolomite. The Middle Jurassic Eedemt Formation is about 150 m thick and composed of alternating beds of shale, dolomitic marl, and siltstone. The alternations of shale and dolomite in both formations were formed by lake level changes, reflecting precipitation changes. Shales were deposited in the center of a deep lake during highstand, while dolomites were formed by primary precipitation during lowstand. Based on the radiometric age dating, the Shinekhudag Formation was deposited between 123.8 ±2.0 Ma and 118.5 ±0.9 Ma of the early Aptian. The Eedemt Formation was deposited at around 165–158 Ma of Callovian–Oxfordian. The calculated sedimentation rate of the Shinekhudag Formation is between 4.7 ±2.6 cm/ky and 10.0 ±7.6 cm/ky. Shales in the Shinekhudag Formation show micrometer‐scale lamination, consisting of algal organic matter and detrital clay mineral couplets. Given the average thickness of micro‐laminae and calculated sedimentation rate, the micro‐lamination is most likely of varve origin. Both Middle–Upper Jurassic and Lower Cretaceous lacustrine oil shales were deposited in intracontinental basins in the paleo‐Asian continent. Tectonic processes and basin evolution basically controlled the deposition of these oil shales. In addition, enhanced precipitation under humid climate during the early Aptian and the Callovian–Oxfordian was another key factor inducing the widespread oil shale deposition in Mongolia.  相似文献   

13.
This work details the role of fault reactivation in the development of tropical montane lakes by using basin morpho-structural analysis and seismostratigraphic studies. The upland lakes are severely faulted sinkholes, whose faults penetrate the Quaternary sedimentary units. Four main stages are related to the lake formation: (i) an Early Proterozoic tectonic deformation of the rocks along the southern border of the Carajás Structure, where the lake is placed; (ii) differential erosion by – and building of – the formation of the South Carajás Hill; (iii) Fe-rich crust formation by weathering and gravitational collapse faults following the E–W plateau border and the start of Violão Lake formation during the Pliocene–Pleistocene; and (iv) episodic fault-fracture reactivation by gravitational collapse causing pulses of subsidence in the lake and outlining its faulted borders. Dissolution of the lateritic crust and erosion by runoff drainage under wet climate conditions were coeval with fault activities, which allowed the deposition of relatively thick clastic deposits organized in three main seismostratigraphic units associated with major lake-level fluctuations. Initial fault reactivation under low-level water started lacustrine basin development with deposition of prograding fan deltas related to the main drainage. A second fault reactivation by gravitational collapse increased the lake accommodation space and resulted in the deposition of fine-grained sediments from dilute interflows or overflows until 36 000 cal year BP. At about 31 000 cal year BP, rapid decreases in the lake water level under redox conditions at the sediment/water interface allowed widespread siderite formation. A third gravitational collapse episode was responsible for the increase in the lake area and depth and the returning of clastic/organic deposition up to the present. This tropical montane lake can be seen as a representative example for understanding the formation of other upland lakes controlled by fault reactivation. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
The 1991 Pinatubo eruption left 5–6 km3 of debris on the volcano slopes, much of which has been mobilized into large lahars in the following rainy seasons. Also during the eruption, collapse, localized in part along preexisting faults, left a caldera 2.5 km in diameter that almost immediately began to accumulate a 1.6 × 108 m3 lake. By 2001, the water had risen to the fault-controlled Maraunot Notch, the lowest, northwestern portion of the caldera rim comprising the physiographic sill of the Caldera Lake. That year, a narrow artificial canal dug into an old volcanic breccia underlying the outlet channel failed to induce a deliberate lake breakout, but discharge from heavy rains in July 2002 rapidly deepened the notch by 23 m, releasing an estimated 6.5 × 107 m3 of lake water that bulked up into lahars with a volume well in excess of 1.6 × 108 m3. Lakes in other volcanoes have experienced multiple breakouts, providing practical motivation for this study. Fieldwork and high-resolution digital elevation models reveal andesites and ancient lacustrine deposits, strongly fractured and deformed along a segment of the Maraunot Fault, a prominent, steeply dipping, left-lateral fault zone that trends N35°–40°W within and parallel to the notch. Seismicity in 1991 demonstrated that the Maraunot Fault is still active. The fault zone appears to have previously been the erosional locus for a large channel, filled with avalanche or landslide deposits of an earlier eruption that were exhumed by the 2002 breakout floods. The deformed lacustrine sediments, with an uncalibrated 14C age of 14,760 ± 40 year BP from a single charcoal sample, attest to the existence of an earlier lake, possibly within the Tayawan Caldera, rim remnants of which survive as arcuate escarpments. That lake may well have experienced one or more ancient breakouts as well. The 2002 event greatly reduced the possibility of another such event by scouring away the erodible breccia, leaving less erodible fractured andesites and lacustrine rocks, and by enlarging the outlet channel and its discharge capacity. Several lines of evidence indicate, however, that future lahar-generating lake breakouts at the notch may keep populations of Botolan municipality downstream at risk: (1) a volume of 9.5 × 107 m3 of lake water remains perched 0.8 km above sea level; (2) seismicity in 1991 demonstrated that the Maraunot Fault is still active and movements of sufficient magnitude could enlarge the outlet and the discharge through it; (3) more likely, however, with or without earthquake activity, landslides from the steep to overhanging channel walls could block the channel again, and a major rainstorm could then cause a rise in lake level and sudden breakouts; (4) intrusion of a new dome into the bottom of the lake, possibly accompanied by phreatic explosions, could expel large volumes of lahar-generating water.  相似文献   

15.
Study of a small lake, Second Roach Pond, in Maine, U.S.A. clarifies the distinction between shoreline features created by ice push which occurs on both lacustrine and marine coasts, and those created by ice lift related to tidal action in the marine environment. Ice lifting occurred as littoral sediments were frozen into the lake ice, followed by a rise in water level due to damming of the lake before the nival melt each spring. In the period 1905 to 1969 prominent barricades were constructed by this means. A classification based on this distinction is proposed. Ice-pushed landforms include ramparts, ridges in coarse and fine sediments, stone pavements, ice keel grooves, pushed boulder grooves, and tails off promontories. Ice-lift features include boulder barricades, perched stones, stone garlands, and ice keel depressions.  相似文献   

16.
A high-resolution climate record from 163.00 kaBP to 113.80 kaBP has been obtained through TIMS-U series dating and carbon and oxygen isotope analysis of the three large stalagmites from two caves in the south of Guizhou Province, China. The record of the oxygen isotopes from the stalagmites reveals that the undulation characteristics between the cooling event of the glacial period and the warming event of the interglacial period in the research area can compare well to those of ice cores, lake sediments, loess and deep sea sediments on the scale of ten-thousand years or millennium time scale. The climate undulation provided by the record of the stalagmites has a coherence with the global changes and a tele-connection to the paleoclimate changes in the north polar region. Our results suggest that the direct dynamics of paleo-monsoon circulation changes reflected in the record of the stalagmites might be caused by changes of the global ice volume, and in turn related to various factors, including the solar radiation strength at the mid-latitudes in the Northern Hemisphere, the southern extension of the ice-rafted event in the North Atlantic, and changes of the equatorial Pacific sea surface temperature at the low-latitudes. Using °18O values, we have calculated the temperatures and the results show that the temperature difference between the penultimate glacial period (with an average temperature of 8.1°C, and a minimum temperature range from 0.65°C to-1.43°C at stage 6) and the last interglacial period (with an average temperature of 18.24°C at sub-stage 5e) was about 10°C. This temperature difference from the record of the stalagmites corresponds in general to the record temperature variation (about 10°C) of measured ice cores. The climate records from the three stalagmites in the two caves have shown that the circulation strength of the Asian summer monsoon and the winter monsoon in the penultimate glacial period and the last inter-glacial period had a clear change. With the TIMS-U series method, termination II of the penultimate glacial period has been precisely dated at an age of (129.28± 1.10) kaBP for the three stalagmites in the south of Guizhou Province, China. This borderline age represents the beginning of the last interglacial period or the boundary between the Middle Pleistocene and the Late Pleistocene, and corresponds to the beginning age of the last interglacial period shown by the ice cores and in the SPECMAP curve of the marine oxygen isotopes. The chronology determination of termination II is not only of stratigraphic and chronological significance, but also lays an important foundation for discussing the short time scales of climate oscillation and rapidly changing events of paleoclimate in the circulation region of the East Asian monsoon.  相似文献   

17.
中国晚新生代湖泊沉积及其反映的环境概貌   总被引:4,自引:1,他引:3  
在地球历史上湖泊沉积大规模的发育或缺失,都和一定的构造背景和气候环境条件相关。本文依据我国晚新生代以来,湖泊沉积时空规模和分布的变化,来探讨我国大环境的变迁过程。上新世和早更新世我国西部存在许多大湖泊,发育巨厚的湖泊沉积,而东部分布的范围很局限,造成这种情况的原因,除了构造运动的差别外,当时大气环流的形势与今不同,西部的气候条件相当湿润。中—晚更新世西部的大湖大都萎缩,甚至消失,东部却表现出大湖增加的趋势,这显然与青藏高原的迅速隆起、东亚季风的加强有关。末次冰期以来,对应于冰期、间冰期的气候变化,不同气候带湖泊的响应差异颇大,既表现出区域环境的特点,也有全球变化事件的反映。  相似文献   

18.
Fluvio‐lacustrine terraces along Phung Chu (river) on the central southern Tibetan Plateau indicate that a large palaeo‐dammed‐lake formerly existed in this area. Based on landscape survey, optically stimulated luminescence (OSL) dating and sedimentary analyses, this research shows that the Phung Chu was blocked and a dammed‐lake over 2500 km2 in size formed before 30 ka ago. OSL dating analysis suggests the fluvio‐lacustrine sediments were well bleached and yield accurate age estimates for two lake drainage events. The first drainage event took place after 30 ka, resulted in river incision and formed a high terrace at 50 m height from the present river level. The second drainage happened after 3.7 ka, resulted in further river incision and formed the second terrace at 25 m height from the present river level. According to the distribution of the fluvio‐lacustrine sediments, active normal faults (particularly the Kharta Fault) in this region and the high gradient slopes after Phung Chu enters the Yö Ri gorge, seismically‐induced landsliding is regarded as highly likely to have been the cause of river blockage and associated formation of a dammed‐lake, although glacial damming is also a possible cause. The volume of drainages from this dammed‐lake may have led to catastrophic flooding and analogous modern lakes represent significant geo‐hazard risks to down‐river human settlements. As dammed‐lakes are special phases in fluvial evolution, often involving river blockage, breakthrough and drastic catchment change, these processes can reveal how tectonic or climatic events modify landforms. However, such tectonic‐derived landform changes can also impact palaeo‐climate of the region. Thus this study has added new evidence regarding the evolutionary history of a dammed lake including its formation, duration, extent and final drainage, which is crucial for understanding its general landscape process mechanisms and for better assessing geo‐hazard risks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Field data, supported by 2814C dates, show that during the late Pleistocene Lake Bosumtwi suffered a major regression and probably remained low for some time, the exposed lacustrine sediments undergoing considerable pedogenesis. Just after 13,000 B.P. the lake was rising again, and thereafter the crater has generally been characterised by a lake significantly higher than it is at present. These periods of high water level, of 2000–2500 years duration, were interrupted by short, but intense regressions centred around 10,500, 8000, 4000–4500 and just after 1000 years B.P. During the highstands the local climate is likely to have been broadly similar to today; the nature of the climatic changes responsible for the regressions is not known with any certainty.  相似文献   

20.
The mechanisms which controls the fixation and/or release of P in sediment of an extremely acidic lake(pH = 2.0 to 3.0) and its response to the influence of eutrophic urban waste water were investigated.The results,in the chemical composition,in the mineralogy of the sediment and in the material as obtained from sediment traps,show that the lake sediments are mainly volcanic material reflecting volcanic features of the basin.The sedimentation rate calculated for the lake(2.5×10-2 mg m-2 day-1) was higher than that observed in other similar glacial lakes in both Andean Patagonia and also elsewhere in the world.The Total Phosphorus concentration in sediments was higher than figures reported by other authors for mining acid lakes,and the main fraction of P was found associated with organic matter.There was no control by Fe or Al on P,because both are in solution at pH < 3.0.It was concluded that changes in the natural input of nutrients(derivatives of Copahue volcano fluid,the discharge of sewage,or basin run-off) are responsible for a high concentration of SRP and N-NH4+ in the lake.Laboratory experiments showed that sediments have no ability to retain phosphorus and a continuous release of P from the sediments into the water column was observed.The assays where the pH was artificially increased showed that the P still remains in solution until at least pH 7.0.It was concluded that changes in the natural input of nutrients due to:1) the volcanic fluids,2) the increase in sewage charges,or 3) surface runoff upstream,maintain a high trophic state with high concentrations of dissolved P and N-NH4+,although the threshold of neutral pH in the lake is exceeded.This study will enable a better understanding about of the mechanism of release/fixation of phosphorus in acidic sediments in order to assist in making decisions regarding the conservation and management of this natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号