首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The modern concepts of the rheology of viscous mantle and brittle lithosphere, as well as the results of the numerical experiments on the processes in a heated layer with a viscosity dependent on pressure, temperature, and shear stress, are reviewed. These dependences are inferred from the laboratory studies of olivine and measurements of postglacial rebound (glacial isostatic adjustment) and geoid anomalies. The numerical solution of classical conservation equations for mass, heat, and momentum shows that thermal convection with a highly viscous rigid lithosphere develops in the layer with the parameters of the mantle with the considered rheology under a temperature difference of 3500 K, without any special additional conditions due to the self-organization of the material. If the viscosity parameters of the lithosphere correspond to dry olivine, the lithosphere remains monolithic (unbroken). At a lower strength (probably due to the effects of water), the lithosphere splits into a set of separate rigid plates divided by the ridges and subduction zones. The plates submerge into the mantle, and their material is involved in the convective circulation. The results of the numerical experiment may serve as direct empirical evidence to validate the basic concepts of the theory of plate tectonics; these experiments also reveal some new features of the mantle convection. The probable structure of the flows in the upper and lower mantle (including the asthenosphere), which shows the primary role of the lithospheric plates, is demonstrated for the first time.  相似文献   

2.
Numerical model computations have been carried out to determine how the stress-dependence of non-Newtonian viscosity affects the flow structure of thermal convection. The viscosity laws have been chosen in accordance with present knowledge of upper mantle rheology, based on the diffusion and dislocation creep laws of olivine. The results show that there are important differences between the structures of Newtonian and non-Newtonian convection. While the Newtonian models are insufficient in some respects, the non-Newtonian solutions can explain the characteristics of the real mantle flow. However, this may require a faster plastic deformation than power law dislocation creep, at least in the high-stress regions of the mantle, e.g. at the active plate margins.  相似文献   

3.
The mantle convection model with phase transitions, non-Newtonian viscosity, and internal heat sources is calculated for two-dimensional (2D) Cartesian geometry. The temperature dependence of viscosity is described by the Arrhenius law with a viscosity step of 50 at the boundary between the upper and lower mantle. The viscosity in the model ranges within 4.5 orders of magnitude. The use of the non-Newtonian rheology enabled us to model the processes of softening in the zone of bending and subduction of the oceanic plates. The yield stress in the model is assumed to be 50 MPa. Based on the obtained model, the structure of the mantle flows and the spatial fields of the stresses σxz and σxx in the Earth’s mantle are studied. The model demonstrates a stepwise migration of the subduction zones and reveals the sharp changes in the stress fields depending on the stage of the slab detachment. In contrast to the previous model (Bobrov and Baranov, 2014), the self-consistent appearance of the rigid moving lithospheric plates on the surface is observed. Here, the intense flows in the upper mantle cause the drift and bending of the top segments of the slabs and the displacement of the plumes. It is established that when the upwelling plume intersects the boundary between the lower and upper mantle, it assumes a characteristic two-level structure: in the upper mantle, the ascending jet of the mantle material gets thinner, whereas its velocity increases. This effect is caused by the jump in the viscosity at the boundary and is enhanced by the effect of the endothermic phase boundary which impedes the penetration of the plume material from the lower mantle to the upper mantle. The values and distribution of the shear stresses σxz and superlithostatic horizontal stresses σxx are calculated. In the model area of the subducting slabs the stresses are 60–80 MPa, which is by about an order of magnitude higher than in the other mantle regions. The character of the stress fields in the transition region of the phase boundaries and viscosity step by the plumes and slabs is analyzed. It is established that the viscosity step and endothermic phase boundary at a depth of 660 km induce heterogeneities in the stress fields at the upper/lower mantle boundary. With the assumed model parameters, the exothermic phase transition at 410 km barely affects the stress fields. The slab regions manifest themselves in the stress fields much stronger than the plume regions. This numerically demonstrates that it is the slabs, not the plumes that are the main drivers of the convection. The plumes partly drive the convection and are partly passively involved into the convection stirred by the sinking slabs.  相似文献   

4.
A one-dimensional model of flow between a fixed boundary at the bottom and a moving one on top with no net flow through vertical sections is tested for geophysically interesting mantle viscosity-depth functions. Such a model, although simplistic, may help in answering the question to what depth the return flow extends, at least in the case of moving plates measuring many thousand kilometers across, such as the Pacific plate.It the viscosity in the asthenosphere is less than three orders of magnitude smaller than that of the mantle below, the return flow extends to great depth and the asthenosphere is a zone of concentrated shear. If the viscosity contrast is greater, the return flow is concentrated in the asthenosphere. For a wide range of model parameters typical flow velocities below the asthenosphere are about one-tenth of the plate velocity. The pressure gradient required by the mantle flow may be manifest in gravity trends across moving plates, but no excessive gravity anomalies are required by the model if the absolute viscosity values conform to those inferred from post-glacial rebound data. A thinner and lower-viscosity layer is favored over a thicker and more viscous layer if both fit glacial rebound evidence. The present model may not be applicable if down to the core the viscosity is as low as about 1021 N s m–2 with a free-slip bottom boundary.  相似文献   

5.
6.
The rheology of the lower mantle of the Earth is examined from the viewpoint of solid state physics. Recent developments in high-pressure research suggest that the lower mantle contains a considerable amount of (Mg, Fe)O with Fe/Mg + Fe = 0.2–0.3. The pressure and temperature dependences of diffusion in (Mg, Fe)O are estimated by the theory of diffusion in ionic solids. Of the materials composing the lower mantle, (Mg, Fe)O may be the “softest”, and therefore the rheology of the lower mantle may be that of (Mg, Fe)O, unless the framework effect is important.Temperatures in the lower mantle are inferred from the depths of phase transitions and the melting temperatures of the core materials. A thermal boundary layer at the base of the mantle is suggested. The physical mechanisms of creep are examined based on a grain size-stress relation and non-Newtonian flow is shown to be the dominant flow mechanism in the Earth's mantle.The effective viscosity for the temperature models, with and without the thermal boundary layer, is calculated for constant stress and constant strain rate (with depth). For constant strain rate, which may be appropriate for discussing the mechanics of descending slabs, the increase in effective viscosity with depth is smaller than for the constant-stress case, which may be appropriate for discussing the flow induced by the surface motion of plates.The relatively small depth gradient of viscosity, for constant strain rate, suggests that the lower mantle could also participate in convection. The effective viscosity increases with depth, however, by at least 102 to 103 from the top to the bottom of the lower mantle, for a reasonable range of activation volumes and temperatures. There will be a low-viscosity layer at the base of the mantle, in contrast to the high-viscosity layer at the top of the mantle (plates), if a thermal boundary layer is present. The constant Newtonian viscosity inferred from rebound data may be an apparent feature resulting from the difference in deformation mechanisms between isostatic rebound and large-scale flow.  相似文献   

7.
Inferences on the rheology of the mantle based on theoretical and experimental rate equations for steady state creep are discussed and compared with results from geophysical models. The radial increase of viscosity by one to three orders of magnitude across the mantle, required by inversion of postglacial rebound and geodynamic data, is confirmed by microphysical models based on the estimation of continuous and discontinuous changes of creep parameters with depth. The upper mantle (viscosity 1020–1021 Pa s) is likely to show non-Newtonian rheology (power-law creep) for average grain sizes larger than 0.1 mm as an order of magnitude. Given the variability of both grain size and stress conditions, local regions of linear rheology can be present. The rheology of transition zone and lower mantle (viscosity 1022–1024 Pa s) cannot be definitely resolved at present. Estimation of creep parameters leads to possible nonlinear or mixed rheology, if grain sizes are not lower than 0.1 mm and flow conditions can be approximated by a constant strain rate of about 10−15 s−1. This conclusion can be modified by different flow conditions (e.g. a decrease in strain rate or constant viscous dissipation). Furthermore, experiments on fine-grained garnetites and perovskite analogues have shown that diffusion creep is predominant at laboratory conditions. However, the pressure dependence of creep in these phases is unknown, and therefore direct extrapolation to lower mantle conditions is necessarily speculative. Lateral variations of viscosity, largest in the upper and lowermost mantle (up to 2–4 orders of magnitude) are predicted by models based on lateral temperature anomalies derived from seismic tomographic models.  相似文献   

8.
Transient creep of the lithosphere and its role in geodynamics   总被引:1,自引:0,他引:1  
Laboratory experiments with samples of rocks show that at small strains there is transient creep, at which the strain grows with time, and the strain rate decreases. Plate tectonics allows only small strains in the lithospheric plates, so that the lithosphere creep is transient. In geodynamics, the lithosphere is regarded as a cold boundary layer formed by mantle convection. If we assume that the lithosphere has a steady-state creep, which is described by power-law non-Newtonian rheological model, the low effective viscosity of the lower layers of the lithosphere, obtained by data on small-scale postglacial flows, is possible only at high strain rates in these layers. However, the high strain rates in the lithosphere induce large strains that contradict plate tectonics. Transient creep of the lithosphere leads to its mobility at small strains, removing the discrepancy between thermal convection in the mantle and plate tectonics, which holds in the case of power-law rheological model of the lithosphere.  相似文献   

9.
Numerical simulation in recent years has revealed that the cold lithosphere, whose viscosity is three to four orders of magnitude higher than that of the underlying mantle, behaves during mantle convection as a stagnant lid. On the basis of model calculations, this paper shows how convection changes over to this regime with increasing viscosity. Spatially fixed high viscosity inclusions and those moving with the convective flow have fundamentally different effects on the structure of convective flows. The model calculations indicate that anomalously low viscosity asthenospheric regions also lead to a specific regime of convection. With a decrease in the viscosity by more than three orders of magnitude, a further reduction in the viscosity of the region ceases to influence the structure of convection in the outer region. The boundary with this region behaves as a freely permeable boundary. In the low viscosity asthenospheric region itself, autonomous convection can arise under certain conditions.  相似文献   

10.
In a traditional analytical method, the convective features of Earth’s mantle have been inferred from surface signatures obtained by the geodynamic model only with depth-dependent viscosity structure. The moving and subducting plates, however, bring lateral viscosity variations in the mantle. To clarify the effects of lateral viscosity variations caused by the plate-tectonic mechanism, I have first studied systematically instantaneous dynamic flow calculations using new density-viscosity models only with vertical viscosity variations in a three-dimensional spherical shell. I find that the geoid high arises over subduction zones only when the vertical viscosity contrast between the upper mantle and the lower mantle is O(103) to O(104), which seems to be much larger than the viscosity contrast suggested by other studies. I next show that this discrepancy may be removed when I consider the lateral viscosity variation caused by the plate-tectonic mechanism using two-dimensional numerical models of mantle convection with self-consistently moving and subducting plates, and suggest that the observed geoid anomaly on the Earth’s surface is significantly affected by plate-tectonic mechanism as a first-order effect.  相似文献   

11.
The process of multiple self-nucleation and ascent of mantle plumes is studied in the numerical models of thermal convection. The plumes are observed even in the simplest isoviscous models of thermal convection that leave aside the more complex rheology of the material, thermochemical effects, phase transformations, etc., which, although controlling the features of plumes, are not necessary for their formation. The origin of plumes is mainly due to the instability of the mantle flows at highly intense (low-viscous) thermal convection. At high viscosity, convective flows form regular cells. As viscosity decreases, the ascending and descending flows become narrower and unsteady. At a further decrease in viscosity, the ascending plumes assume a mushroom-like shape and occasionally change their position in the mantle. The lifetime of each flow can attain 100 Ma. Using markers allows visualizing the evolution of the shape of the mantle plumes.  相似文献   

12.
Viscosity is a fundamental property of the mantle which determines the global geodynamical processes. According to the microscopic theory of defects and laboratory experiments, viscosity exponentially depends on temperature and pressure, with activation energy and activation volume being the parameters. The existing laboratory measurements are conducted with much higher strain rates than in the mantle and have significant uncertainty. The data on postglacial rebound only allow the depth distributions of viscosity to be reconstructed. Therefore, spatial distributions (along the depth and lateral) are as of now determined from the models of mantle convection which are calculated by the numerical solution of the convection equations, together with the viscosity dependences on pressure and temperature (PT-dependences). The PT-dependences of viscosity which are presently used in the numerical modeling of convection give a large scatter in the estimates for the lower mantle, which reaches several orders of magnitude. In this paper, it is shown that it is possible to achieve agreement between the calculated depth distributions of viscosity throughout the entire mantle and the postglacial rebound data. For this purpose, the values of the volume and energy of activation for the upper mantle can be taken from the laboratory experiments, and for the lower mantle, the activation volume should be reduced twice at the 660-km phase transition boundary. Next, the reduction in viscosity by an order of magnitude revealed at the depths below 2000 km by the postglacial rebound data can be accounted for by the presence of heavy hot material at the mantle bottom in the LLSVP zones. The models of viscosity spatial distribution throughout the entire mantle with the lithospheric plates are presented.  相似文献   

13.
In the kinematic theory of lithospheric plate tectonics, the position and parameters of the plates are predetermined in the initial and boundary conditions. However, in the self-consistent dynamical theory, the properties of the oceanic plates (just as the structure of the mantle convection) should automatically result from the solution of differential equations for energy, mass, and momentum transfer in viscous fluid. Here, the viscosity of the mantle material as a function of temperature, pressure, shear stress, and chemical composition should be taken from the data of laboratory experiments. The aim of this study is to reproduce the generation of the ensemble of the lithospheric plates and to trace their behavior inside the mantle by numerically solving the convection equations with minimum a priori data. The models demonstrate how the rigid lithosphere can break up into the separate plates that dive into the mantle, how the sizes and the number of the plates change during the evolution of the convection, and how the ridges and subduction zones may migrate in this case. The models also demonstrate how the plates may bend and break up when passing the depth boundary of 660 km and how the plates and plumes may affect the structure of the convection. In contrast to the models of convection without lithospheric plates or regional models, the structure of the mantle flows is for the first time calculated in the entire mantle with quite a few plates. This model shows that the mantle material is transported to the mid-oceanic ridges by asthenospheric flows induced by the subducting plates rather than by the main vertical ascending flows rising from the lower mantle.  相似文献   

14.
Water released from subducting slabs through a dehydration reaction may lower the viscosity of the mantle significantly. Thus, we may expect a low viscosity wedge (LVW) above the subducting slabs. The LVW coupled with a large-scale flow induced by the subducting slabs may allow the existence of roll-like small-scale convection whose axis is normal to the strike of the plate boundary. Such a roll structure may explain the origin of along-arc variations of mantle temperature proposed recently in northeast Japan. We study this possibility using both 2D and 3D models with/without pressure- and temperature-dependent viscosity. 2D models without pressure and temperature dependence of viscosity show that, with a reasonable geometry of the LVW and subduction speed, small-scale convection is likely to occur when the viscosity of the LVW is less than 1019 Pa s. Corresponding 3D model studies reveal that the wavelength of rolls depends on the depth of the LVW. The inclusion of temperature-dependent viscosity requires the existence of further low viscosity in the LVW, since temperature dependence suppresses the instability of the cold thermal boundary layer. Pressure (i.e. depth) dependence coupled with temperature dependence of the viscosity promotes short wavelength instabilities. The model, which shows a relatively moderate viscosity decrease in the LVW (most of the LVW viscosity is 1018∼1019 Pa s) and a wavelength of roll ∼80 km, has a rather small activation energy and volume (∼130 kJ/mol and ∼4 cm3/mol) of the viscosity. This small activation energy and volume may be possible, if we regard them as an effective viscosity of non-linear rheology.  相似文献   

15.
Areas adjacent to rifts, or rift shoulders, are often observed to be uplifted as much as a kilometer or more. In some of these regions geologic data indicate a passive origin for the rifting itself (i.e. there was no anomalous heating of the regions before rifting). Purely conductive heat transport between the rift, where the lithosphere has been thinned, and the rift flanks cannot account for the magnitude of the uplift. Small-scale convection will be induced in the mantle beneath a rift due to the lateral temperature gradients there. Numerical experiments show that convection increases the amount of heat transported vertically into the rift and laterally out of it. In these calculations, the viscosity is taken to be dependent on temperature and pressure and, in some cases, stress. The mantle flow results in thinning of the adjacent lithosphere causing flanking uplift as well as slowing of the subsidence of the middle of the rift. The magnitude of the uplift is dependent on the geometry of the rift and the importance of stress-dependence in the rheology of the mantle. For viscosity parameters which are consistent with the pre-rift temperature structure small-scale convection can produce uplift at least twice as great as would be produced by lateral conduction alone.  相似文献   

16.
Analysis of results of laboratory studies on creep of mantle rocks, data on seismic wave attenuation in the mantle, and rheological micromechanisms shows that the universal, i.e., relevant to all time scales, rheological model of the mantle can be represented as four rheological elements connected in series. These elements account for elasticity, diffusion rheology, high temperature dislocation rheology, and low temperature dislocation rheology. The diffusion rheology element is described in terms of a Newtonian viscous fluid. The high temperature dislocation rheology element is described by the rheological model previously proposed by the author. This model is a combination of a power-law non-Newtonian fluid model for stationary flows and the linear hereditary Andrade model for flows associated with small strains. The low temperature dislocation rheology element is described by the linear hereditary Lomnitz model.  相似文献   

17.
The effects of variable viscosity on flow dynamics within spherical shells are investigated using a finite-element thermal convection model, and preliminary result for cases with relatively low Rayleigh numbers and small viscosity contrasts are reported. These results demonstrate some general effects of viscosity variation on mantle dynamics, and, in particular, the generation of toroidal energy. Since lateral viscosity variations are necessary in the generation of toroidal motion in a thermally driven convective system, it is not surprising our results show that flows with greater viscosity contrasts produce greater amounts of toroidal energy. Our preliminary study further shows that solutions become more time-dependent as viscosity contrasts increase. Increasing the Rayleigh number is also found to increase the magnitude of toroidal energy. Internal heating, on the other hand, appears to lead to less toroidal energy compared wth bottom heating because it tends to produce a thermally more uniform interior and thus smaller viscosity variations.  相似文献   

18.
A number of finite-element calculations of convection in a variable-viscosity fluid have been carried out to investigate the effects of non-Newtonian flow when rheology is also subject to a strong temperature and pressure influence. A variety of cases has been studied in the range of effective Rayleigh numbers between 104 and 106, including different modes of heating and a range of values for activation energy and activation volume. Power-law creep with a stress exponent of 3 turns out to lead to considerably different flow pattern and heat transfer properties than Newtonian rheology. In general, the effect is to reduce viscosity contrasts imposed by p,T dependence, which can lead in some circumstances to the mobilisation of otherwise stagnant regions within the cell. The properties of non-Newtonian flow can be closely imitated by a Newtonian fluid with a reduced value of the activation enthalpy bH* with b?0.3–0.5. It appears possible that non-Newtonian rheology plays a key role in determining the convective style in a planetary mantle.  相似文献   

19.
地幔粘度结构的研究   总被引:2,自引:2,他引:0  
地幔的流变性质已成为认识地球内部结构及动力学过程的核心问题之一。本文总结了近年来地幔粘度结构研究的方法,其中包括利用地球物理观测资料进行反演计算和实验室试验研究,重点讨论了利用冰期后回跳,板块运动速度和大地水准面异常资料反演地幔粘度结构2的方法和结果以及地幔矿物的实验结果,并对不同方法进行了比较总结。最后简单讨论了地幔粘度结构研究存在的问题和未来的研究方向。  相似文献   

20.
The rheological properties of upper mantle rocks play an important role in controlling the dynamics of the lithosphere and mantle convection. Experimental studies and microstructures in naturally deformed mantle rocks usually imply that olivine controls the upper mantle rheology. Here we show for the first time evidence from the geometry of folded compositional layers in mantle rocks from Western Norway that garnet-rich rocks can have lower solid-state viscosities than olivine-rich rocks. Modeling of melt-free and dry rheology of garnet and olivine confirms that the reversed viscosity contrast between garnet-rich and olivine-rich layers for this folding event can be achieved over a relatively wide range of temperatures at low stress conditions when the fine-grained garnet deforms by diffusion creep while the coarse-grained olivine deforms by dislocation creep and/or diffusion creep.In general, modeling of the fold viscosity contrast shows that in the stable subcontinental lithospheric mantle or convecting mantle such a reversed viscosity contrast can be formed due to diffusion creep processes in fine-grained garnets in a dry mantle environment or at conditions where the garnet-pyroxene layer is partially molten, i.e. close to solidus–liquidus conditions in the upper mantle. Alternatively in cold plate tectonic settings, e.g. in subduction zones, some water-weakening is a feasible mechanism to create the reversed viscosity contrast between garnet and olivine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号