首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 837 毫秒
1.
西藏甲马多金属矿区热历史的裂变径迹证据   总被引:7,自引:0,他引:7  
袁万明 《中国科学D辑》2001,31(Z1):117-121
用裂变径迹法测试了甲马矿区矽卡岩矿石和外围砂岩总计5个磷灰石和锆石样品, 其中磷灰石裂变径迹年龄为(16.1±0.9)和(18.8±1.1) Ma, 代表成矿热液后期活动的时代; 砂岩磷灰石裂变径迹年龄为(22.0±4.3) Ma, 锆石裂变径迹年龄为(20.9±2.0) Ma, 代表早期成矿时代; 另一个砂岩锆石年龄为(341.6±79.1) Ma, 与成矿作用关系不大, 是矿物源区特征的反映. 热历史分析表明, 成矿作用开始时间应早于25~22 Ma. 矿区平均冷却速率为5~6℃/Ma, 其中在90~80℃期间降温缓慢; 矿区剥蚀程度约为2.7 km, 剥蚀速率大于抬升速率.  相似文献   

2.
日喀则弧前盆地紧邻印度板块与欧亚大陆碰撞带,研究其剥蚀历史对理解印度板块与欧亚大陆碰撞对造山带剥蚀的影响具有重要意义。文中利用磷灰石裂变径迹(AFT)及锆石和磷灰石的(U-Th)/He(ZHe和AHe)年龄数据,结合已发表的低温热年代数据探讨日喀则弧前盆地的热演化和剥露历史。日喀则弧前盆地磷灰石裂变径迹年龄存在明显的南北差异,南部磷灰石裂变径迹年龄为74~44Ma,对应的剥蚀速率为0. 03~0. 1km/Ma,剥蚀量≤2km;北部磷灰石裂变径迹年龄为27~15Ma,剥蚀速率为0. 09~0. 29km/Ma,但缺失早新生代的热演化历史。而磷灰石的(U-Th)/He年龄表明15Ma BP之后日喀则弧前盆地整体呈现一致的剥露历史。低温热年代数据表明日喀则弧前盆地南部自新生代以来尽管受到印度板块与欧亚大陆碰撞及后期断层活动的影响,海拔由海平面抬升至4. 2km,但一直保持缓慢的剥蚀,表明高原隆升并未直接促使该地区的岩石剥蚀速率加快,这与快速剥蚀即代表造山带开始隆升的假设不相符。此外,日喀则弧前盆地北部的低温热年代学研究表明晚渐新世—早中新世Kailas盆地仅发育于日喀则弧前盆地与冈底斯造山带之间的狭长地带,并在短期内经历了快速的埋藏和剥露。  相似文献   

3.
本文通过背斜褶皱变形与低温热年代学年龄(磷灰石和锆石(U-Th)/He、磷灰石裂变径迹)端元模型研究,约束低起伏度、低斜率地貌特征的四川盆地南部地区新生代隆升剥露过程.四川盆地南部沐川和桑木场背斜地区新生代渐新世-中新世发生了相似的快速隆升剥露过程(速率为~0.1 mm/a、现今地表剥蚀厚度1.0~2.0 km),反映出盆地克拉通基底对区域均一性快速抬升冷却过程的控制作用.川南沐川地区磷灰石(U-Th)/He年龄值为~10-28.6 Ma, 样品年龄与古深度具有明显的线性关系,揭示新生代~10-30 Ma以速率为0.12±0.02 mm/a的稳态隆升剥露过程.桑木场背斜地区磷灰石裂变径迹年龄为~36-52 Ma,古深度空间上样品AFT年龄变化不明显(~50 Ma)、且具有相似的径迹长度(~12.0 μm).磷灰石裂变径迹热演化史模拟表明桑木场地区经历三个阶段热演化过程:埋深增温阶段(~80 Ma以前)、缓慢抬升冷却阶段(80-20 Ma)和快速隆升剥露阶段(~20 Ma-现今),新生代隆升剥露速率大致分别为~0.025 mm/a和~0.1 mm/a.新生代青藏高原大规模地壳物质东向运动与四川盆地克拉通基底挤压,受板缘边界主断裂带差异性构造特征控制造就了青藏高原东缘不同的边界地貌特征.  相似文献   

4.
青藏高原的隆升与扩展不仅导致欧亚大陆内部发生强烈的构造变形,亦对高原周缘的地貌格局及气候变化产生了重大影响.青藏高原东北缘新生代以来的隆升时代与响应过程一直备受争议,而界定青藏高原东北缘构造带隆升时序是解决争议的关键之一.本研究围绕青藏高原东北缘,在陇中盆地、六盘山褶皱逆冲带和鄂尔多斯地块西南缘地区进行了磷灰石和锆石裂变径迹测试分析和热史模拟.测试分析结果表明研究区样品的磷灰石裂变径迹年龄范围分布于136~16 Ma,裂变径迹的长度范围介于11.9~13.3μm;锆石裂变径迹年龄结果为258~79 Ma,但多数样品的年龄介于160~99 Ma;热史模拟结果揭示了研究区新生代以来至少经历了两期隆升和冷却降温事件,即始新世期间(55~30 Ma)和中中新世(17~12 Ma)以来.始新世期间(55~30 Ma)发生的隆升事件可能是印度大陆与欧亚大陆陆陆碰撞远程效应的直接响应,表明印度与欧亚大陆碰撞之初或不久,其应力即已传导至东北缘边界;中中新世(17~12 Ma)以来的隆升剥露冷却事件奠定了青藏高原东北缘现今构造格局.  相似文献   

5.
喻顺  陈文  张斌  孙敬博  李超  袁霞  沈泽  杨莉  马勋 《地球物理学报》2016,59(8):2922-2936
天山是中亚造山带重要组成部分,其中-新生代构造热演化及隆升剥露史研究是认识中亚造山带构造变形过程与机制的关键.本文应用磷灰石(U-Th)/He技术重建中天山南缘科克苏河地区中-新生代构造热演化及隆升剥蚀过程.磷灰石(U-Th)/He数据综合解释及热演化史模拟表明该地区至少存在晚白垩世、早中新世、晚中新世3期快速隆升剥蚀事件,起始时间分别为~90Ma、~13Ma及~5Ma,且这3期隆升剥蚀事件在整个天山地区具有广泛的可对比性.相对于磷灰石裂变径迹,磷灰石(U-Th)/He年龄记录了中天山南缘地质演化史中更新和更近的热信息,即中天山在晚中新世(~5 Ma)快速隆升剥蚀,其剥蚀速率为~0.47mm·a~(-1),剥蚀厚度为~2300m.总体上,中天山科克苏地区隆升剥蚀起始时间从天山造山带向昭苏盆地(由南向北)逐渐变老,表明了中天山南缘隆升剥蚀存在不均一性,并发生了多期揭顶剥蚀事件.  相似文献   

6.
磷灰石裂变径迹(AFT)分析表明松辽盆地晚期构造活动在空间上具有分区性, 在时间上具有幕式性. 空间上的分区性表现在晚期构造活动始于盆地东部, 并逐渐向西部迁移. 盆地东部裂变径迹年龄大, 表明进入抬升剥蚀作用的时间早, 而西部裂变径迹年龄小, 表明进入抬升剥蚀作用的时间晚. 盆地的抬升剥蚀量与主要构造单元关系密切, 但是东部的抬升剥蚀量明显大于中央隆起带和西部斜坡带. 时间的幕式性表现在盆地的热演化历史经历了两幕快速冷却和紧随快速冷却之后的缓慢冷却过程, 磷灰石裂变径迹的蒙特卡罗随机模拟进一步限定不同热演化的转折时间为65, 43.5, 28和15 Ma. 结合盆地所处的区域构造背景认为松辽盆地晚期热事件是对太平洋板块向欧亚板块俯冲的响应. 其中第一幕快速冷却与紧随其后的缓慢冷却过程是对燕山运动主幕构造运动的响应, 抬升剥蚀的时间可能始于嫩江组末期, 并持续到始新世末期. 盆地的抬升剥蚀速率与板块汇聚速率密切相关, 板块汇聚速率高, 抬升剥蚀速率高, 反之抬升剥蚀速率低. 第二幕快速冷却和紧随其后的缓慢冷却是对日本海的拉张与闭合的响应. 日本海的拉张导致地幔热流向日本海汇聚, 使盆地快速冷却, 相反, 日本海的闭合使盆地进入进一步的缓慢沉降阶段, 盆地的冷却速率下降.  相似文献   

7.
关于土屋-延东铜矿区成矿时代的看法不仅不同, 而且均属于海西期. 成功获得9个锆石和7个磷灰石的裂变径迹分析结果, 其中锆石年龄为158~289 Ma, 磷灰石年龄为64~140 Ma. 区内成矿作用亦是同期构造作用的反映, 两者相符. 鉴于本矿区成矿温度为120~350℃, 锆石裂变径迹年龄的封闭温度为250℃, 退火带温度为140~300℃, 所以, 认为锆石裂变径迹年龄可以代表本区的成矿时代. 计识别出3个成矿期: 289~276, 232~200和165~158 Ma, 表明印支期和燕山期成矿作用的存在. 与之相对应, 磷灰石裂变径迹年龄为140~132, 109~97和64 Ma, 反映了成矿后100℃左右的时代. 3个成矿期从250℃到100℃的持续时间分别为146, 108和100 Ma左右, 具有从早到晚持续时间变小的趋势. 裂变径迹模拟表明, 具有3阶段地质热历史, 其中在白垩纪期间较为稳定, 白垩纪之前以及20 Ma之后均较快冷却.  相似文献   

8.
滇西临沧花岗岩基新生代剥蚀冷却的裂变径迹证据   总被引:13,自引:0,他引:13       下载免费PDF全文
为揭示临沧花岗岩基的剥蚀冷却历史,探讨印藏碰撞对滇西的影响,对6块临沧花岗岩基样品进行锆石和磷灰石裂变径迹测定,并利用模拟退火法对其中5块样品的磷灰石裂变径迹数据进行非线性热史反演,估算了不同时期的剥蚀量和抬升量. 结果表明,岩基自印藏陆陆碰撞以来经历了两期冷却事件,早期冷却速率仅5~10 ℃/Ma,晚期冷却速率明显增高,特别是近3 Ma以来的冷却速率达到16~20 ℃/Ma;两期总剥蚀厚度可达3300~3500 m. 分析表明冷却事件与印藏碰撞关系密切,早期冷却是在印藏碰撞影响下,临沧岩基卷入逆冲推覆运动而遭遇抬升、剥蚀的结果;晚期冷却则是上新世以来,特别是3Ma以来岩基经受整体的强烈抬升、剥蚀的结果,该期构造抬升量约为672~1263 m;裂变径迹资料还揭示印藏碰撞先影响南部岩体,随后才波及到岩基中北段.  相似文献   

9.
报道了米仓山-汉南穹窿一带磷灰石裂变径迹分析结果,以制约该区白垩纪以来的剥蚀-演化历史.露头样品磷灰石裂变径迹年龄分布显示从汉南穹窿南部的核部地区向南至四川盆地北部裂变径迹的年龄逐渐变新,这与米仓山地区逆冲断裂以背驮式扩展的构造样式从汉南穹窿向南经米仓山褶皱-逆冲带发育到四川盆地北缘的构造模式相吻合.热模拟的结果显示米仓山-汉南穹窿经历了两期快速的剥蚀,其分别发生在白垩纪(约90 Ma之前)和15 Ma以来.研究区白垩纪的快速剥蚀反映了秦岭-大别造山带白垩纪的区域性剥蚀事件,这可能是对临区诸多构造事件(如西伯利亚-蒙古-中朝板块的碰撞,拉萨-羌塘-思茅-印支块体的碰撞,太平洋板块向欧亚板块的俯冲及其相关的岩浆活动)远场效应的响应;约15 Ma以来的快速剥蚀是对青藏高原隆升向东北方向传递的响应.  相似文献   

10.
青藏高原东北缘隆升机制和过程一直以来备受争议,本文为了进一步限定北祁连山及其北缘地区山体的隆升历史,在旱峡、白杨河和红山以及酒泉盆地以北的黑山和金塔南山进行了磷灰石和锆石裂变径迹分析.测试结果表明,研究区基岩样品的磷灰石裂变径迹年龄分布在晚白垩世上新世(82~4.2 Ma),径迹长度介于9.6~13.6 μm;锆石裂变径迹年龄分布范围为106.3~480.5 Ma,多数介于106~195 Ma.结合镜质体反射率,热史模拟曲线揭示了中新生代三期主要的冷却降温事件:早白垩世期间(140~100Ma)、始新世期间(55~30Ma)、中新世(10~8 Ma)以来.早白垩世期间的隆升剥露冷却过程可能由于拉萨地块的北向拼贴碰撞引起;始新世期间的隆升剥露冷却事件可能是印度与欧亚板块碰撞远程快速响应的结果;中新世以来的隆升剥露冷却过程与北祁连山逆冲断层的构造活动有关.  相似文献   

11.
The Xigaze fore-arc basin is adjacent to the Indian plate and Eurasia collision zone. Understanding the erosion history of the Xigaze fore-arc basin is significant for realizing the impact of the orogenic belt due to the collision between the Indian plate and the Eurasian plate. The different uplift patterns of the plateau will form different denudation characteristics. If all part of Tibet Plateau uplifted at the same time, the erosion rate of exterior Tibet Plateau will be much larger than the interior plateau due to the active tectonic action, relief, and outflow system at the edge. If the plateau grows from the inside to the outside or from the north to south sides, the strong erosion zone will gradually change along the tectonic active zone that expands to the outward, north, or south sides. Therefore, the different uplift patterns are likely to retain corresponding evidence on the erosion information. The Xigaze fore-arc basin is adjacent to the Yarlung Zangbo suture zone. Its burial, deformation and erosion history during or after the collision between the Indian plate and Eurasia are very important to understand the influence of plateau uplift on erosion. In this study, we use the apatite fission track(AFT)ages and zircon and apatite(U-Th)/He(ZHe and AHe)ages, combined with the published low-temperature thermochronological age to explore the thermal evolution process of the Xigaze fore-arc basin. The samples' elevation is in the range of 3 860~4 070m. All zircon and apatite samples were dated by the external detector method, using low~U mica sheets as external detectors for fission track ages. A Zeiss Axioskop microscope(1 250×, dry)and FT Stage 4.04 system at the Fission Track Laboratory of the University of Waikato in New Zealand were used to carry out fission track counting. We crushed our samples finely, and then used standard heavy liquid and magnetic separation with additional handpicking methods to select zircon and apatite grains. The new results show that the ZHe age of the sample M7-01 is(27.06±2.55)Ma(Table 2), and the corresponding AHe age is(9.25±0.76)Ma. The ZHe and AHe ages are significantly smaller than the stratigraphic age, indicating suffering from annealing reset(Table 3). The fission apatite fission track ages are between(74.1±7.8)Ma and(18.7±2.9)Ma, which are less than the corresponding stratigraphic age. The maximum AFT age is(74.1±7.8)Ma, and the minimum AFT age is(18.7±2.9)Ma. There is a significant north~south difference in the apatite fission track ages of the Xigaze fore-arc basin. The apatite fission track ages of the south part are 74~44Ma, the corresponding exhumation rate is 0.03~0.1km/Ma, and the denudation is less than 2km; the apatite fission track ages of the north part range from 27 to 15Ma and the ablation rate is 0.09~0.29km/Ma, but it lacks the exhumation information of the early Cenozoic. The apatite(U-Th)/He age indicates that the north~south Xigaze fore-arc basin has a consistent exhumation history after 15Ma. The results of low temperature thermochronology show that exhumation histories are different between the northern and southern Xigaze fore-arc basin. From 70 to 60Ma, the southern Xigaze fore-arc basin has been maintained in the depth of 0~6km in the near surface, and has not been eroded or buried beyond this depth. The denudation is less than the north. The low-temperature thermochronological data of the northern part only record the exhumation history after 30Ma because of the young low-temperature thermochronological data. During early Early Miocene, the rapid erosion in the northern part of Xigaze fore-arc basin may be related to the river incision of the paleo-Yarlungzangbo River. The impact of Great Count Thrust on regional erosion is limited. The AHe data shows that the exhumation history of the north-south Xigaze fore-arc basin are consistent after 15Ma. In addition, the low-temperature thermochronological data of the northern Xigaze fore-arc basin constrains geographic range of the Kailas conglomerate during the late Oligocene~Miocene along the Yarlung Zangbo suture zone. The Kailas Basin only develops in the narrow, elongated zone between the fore-arc basin and the Gangdese orogenic belt. The southern part of the Xigaze fore-arc basin has been uplifted from the sea level to the plateau at an altitude of 4.2km, despite the collision of the Indian plate with the Eurasian continent and the late fault activity, but the plateau has been slowly denuded since the early Cenozoic. The rise did not directly contribute to the accelerated erosion in the area, which is inconsistent with the assumption that rapid erosion means that the orogenic belt begins to rise.  相似文献   

12.
Abstract Apatite and zircon fission track ages from Ryoke Belt basement in northeast Kyushu show late Cretaceous, middle to late Eocene, middle Miocene and Quaternary groupings. The basement cooled through 240 ± 25°C, the closure temperature for fission tracks in zircon, mainly during the interval 74-90 Ma as a result of uplift and denudation, the pattern being uniform across northeast Kyushu. In combination with published K-Ar ages and the Turonian-Santonian age of sedimentation in the Onogawa Basin, active suturing along the Median Tectonic Line from 100-80 Ma, at least, is inferred. Ryoke Belt rocks along the northern margin of Hohi volcanic zone (HVZ) cooled rapidly through ∼100°C to less than 50°C during the middle Eocene to Oligocene, associated with 2.5-3.5 km of denudation. The timing of this cooling follows peak heating in the Eocene-Oligocene part (Murotohanto subbelt) of the Shimanto Belt in Muroto Peninsula (Shikoku) inferred previously, and coincides with the 43 Ma change in convergence direction of the Pacific-Eurasian plate and the demise of the Kula-Pacific spreading centre. Ryoke Belt rocks along the southern margin of HVZ have weighted mean apatite fission track ages of 15.3 ± 3.1 Ma. These reset ages are attributed to an increase in geothermal gradient in the middle Miocene combined with rapid denudation and uplift of at least 1.4 km. These ages indicate that heating of the overriding plate associated with the middle Miocene start of subduction of hot Shikoku Basin lithosphere extended into the Ryoke Belt in northeast Kyushu. Pleistocene apatite fission track ages from Ryoke Belt granites at depth in the centre of HVZ are due to modern annealing in a geothermal environment.  相似文献   

13.
文章以塔里木盆地东北缘库鲁克塔格隆起与孔雀河斜坡盆山系统为主要研究对象,在该地区露头和钻井样品开展碎屑磷灰石、锆石裂变径迹研究,对库鲁克塔格构造演化中关键构造事件提供热年代学约束.锫石样品在加里东晚期-早海西期达到最大古地温,之后经历了长期的抬升降温过程,锆石最小峰值年龄记录了371~392 Ma 和328~305.7...  相似文献   

14.
鄂尔多斯盆地东南缘处于渭北隆起、晋西挠褶带和东秦岭造山带的转折地带,构造位置独特,演化历史复杂.本文选取东缘韩城地区和南缘东秦岭洛南地区上三叠统延长组为研究对象,采集6件砂岩样品进行锆石、磷灰石裂变径迹分析,对关键构造-热事件提供热年代学约束,恢复盆地东南缘不同构造带的热演化史,深化对盆地东南部油气资源赋存条件的认识,以期实现油气勘探的新突破.研究表明韩城和洛南地区的抬升冷却史存在明显差异.磷灰石裂变径迹年龄表现为从南到北减小的趋势.东缘韩城剖面磷灰石裂变径迹记录51.6~66.3 Ma、33 Ma两次抬升冷却的峰值年龄.南缘洛南剖面锆石裂变径迹年龄和磷灰石裂变径迹年龄分别记录89~106 Ma和59~66 Ma的冷却抬升年龄.洛南地区抬升冷却时间较早,剥蚀速率(106m/Ma)大于韩城地区(68m/Ma),且持续时间长.磷灰石裂变径迹(Apatite Fission Track,AFT)热史模拟显示,晚中生代,受燕山运动的影响,东秦岭地区发生强烈的构造岩浆事件,洛南地区热演化程度明显高于韩城地区.洛南剖面的热演化主要受岩浆活动的控制,韩城剖面为埋藏增温型.鄂尔多斯盆地东南缘的裂变径迹年龄格局基本受控于白垩纪以来的抬升冷却事件.  相似文献   

15.
利用镜质体反射率(Ro)、磷灰石裂变径迹(AFT)和伊利石结晶度(IC指数)等古温标恢复了四川盆地川西坳陷的钻井热史,对比了不同温标最高古地温的恢复结果.研究表明,研究区晚白垩世至今总体表现为冷却及抬升剥蚀的过程,地温梯度由约26℃·km-1降低至约22℃·km-1,剥蚀量约1.3~1.9km.约80 Ma以来开始抬升剥蚀,40—2.5 Ma经历了一个热平静期,第四纪存在一定的增温,地温梯度增高约5℃·km-1.三种古地温恢复结果具有较高的一致性,相对于镜质体反射率(Ro)和磷灰石裂变径迹(AFT)等成熟古温标,伊利石结晶度作为有机质成熟度指标和沉积岩古温标的应用处于定性分析阶段,该指标的热演化模型仍需进一步探索.  相似文献   

16.
赵孟为 《地球物理学报》1996,39(Z1):237-248
对鄂尔多斯盆地磷灰石裂变径迹资料深入分析表明.最迟23Ma以来盆地发生了一期由于快速抬升剥蚀引起的冷却事件.盆地东部以95m/Ma的速率抬升,造成约2000m的剥蚀量;而盆地西部则以56m/Ma的速率抬升,导致了约1000m的剥蚀量.盆地东、西部的差异抬升剥蚀导致了盆地现今微微西倾的构造面貌.这一抬升剥蚀事件是印度板块与欧亚板块碰撞引起亚洲构造运动形式以挤压为主,转换为中新世以来以地壳增厚为主的结果.K-Ar年龄和镜质体反射率资料分析表明,盆地在170-160Ma(中侏罗末)曾发生一期热事件,使古地温梯度达57℃/km,古热流值达96-109mw/m.  相似文献   

17.
Fission track analysis of apatites from basement rocks of the Wright Valley in southern Victoria Land provides information about the timing, the amount and hence the rate of uplift of the Transantarctic Mountains in this area. Apatite ages increase systematically with elevation, and a pronounced break in the age versus elevation profile has been recognised at about 800 m on Mt. Doorly near the mouth of Wright Valley. The apatite age of about 50 Ma at this point approximates the time at which uplift of the mountain range began. Samples lying above the break in slope lay within the apatite fission track annealing zone prior to uplift, during a Cretaceous to Early Cenozoic period of relative thermal and tectonic stability. At the lower elevations samples had a zero apatite fission track age before the onset of rapid uplift and have track length distributions indicating rapid cooling. Some 4.8–5.3 km of uplift are estimated to have occurred at an average rate of about 100 ± 5m/Ma since uplift began. From the total stratigraphic thickness known above the uplifted apatite annealing zone it can be estimated that the Late Cretaceous/Early Cenozoic thermal gradient in the area was about 25–30°C/km.The occurrence and pattern of differential uplift across the Transantarctic Mountains can be estimated from the vertical offsets of different apatite fission track age profiles sampled across the range. These show the structure of the mountain range to be that of a large tilt block, dipping gently to the west under the polar ice-cap and bounded by a major fault zone on its eastern side. Offset dolerite sills at Mt. Doorly show the mountain front to be step-faulted by 1000 m or more down to the McMurdo Sound coast from an axis of maximum uplift just inland from Mt. Doorly.  相似文献   

18.
中上扬子地区印支期以来抬升剥蚀时限的确定   总被引:5,自引:2,他引:3       下载免费PDF全文
采用磷灰石裂变径迹年龄空间分布特征定性分析与径迹长度分布数据定量模拟相结合,约束了中上扬子地区的抬升剥蚀时限.江汉盆地在157~97Ma和10 Ma以来发生了两期大规模抬升剥蚀;湘鄂西-武陵地区、黔中隆起自137Ma开始持续抬升剥蚀;鄂西渝东、川东褶皱带从97 Ma开始持续抬升剥蚀;川东北和川中地区于56 Ma才开始遭受抬升剥蚀;川西-滇西地区则自23 Ma以来经历了较大规模的抬升剥蚀.印支期以来,中上扬子不同地区抬升剥蚀开始的时间存在明显差异性,总体上由东往西逐渐变晚.齐岳山断裂带以东,大规模抬升剥蚀始于中燕山期(J3-K1);齐岳山断裂与华蓥山断裂带之间的川东高陡背斜带抬升剥蚀始于晚燕山期(K2);华蓥山断裂与龙泉山断裂之间的川中和缓褶皱带晚期抬升剥蚀始于喜马拉雅早期(E);龙泉山断裂带以西的川西凹陷晚期抬升剥蚀始于喜马拉雅晚期(N).  相似文献   

19.
运用LA-ICP MS锆石U-Pb定年、角闪石和黑云母40Ar-39Ar定年、锆石和磷灰石裂变径迹(FT)分析等构造热年代学研究方法,探讨分析了鄂尔多斯盆地东缘紫金山侵入岩的热演化历史及其抬升冷却过程.紫金山侵入岩主要由次透辉二长岩和正长岩组成,锆石U-Pb测年给出的岩浆侵位-结晶年龄为136.7 Ma,角闪石和黑云母40Ar-39Ar测年获得的岩浆结晶-固结年龄集中在133.1~130.4 Ma,表明紫金山侵入岩主要形成于早白垩世的136.7~130.4 Ma.侵入岩T-t轨迹与磷灰石FT模拟热史路径综合揭示了鄂尔多斯盆地东缘紫金山侵入岩抬升冷却的三个构造热演化阶段:1) 136~120 Ma侵位岩浆结晶-固结阶段,岩体平均冷却速率高达52 ℃/Ma;2) 120~30 Ma岩体相对缓慢抬升冷却阶段,平均抬升冷却速率为2.5 ℃/Ma;3) 30 Ma以来岩体快速抬升冷却阶段,平均抬升冷却速率3.6 ℃/Ma,尤以近10 Ma以来的快速抬升冷却最为显著,抬升冷却速率接近7 ℃/Ma.结合区域构造动力学环境分析认为,鄂尔多斯盆地东缘的紫金山岩浆活动与华北克拉通早白垩世构造体制转换过程的大规模岩浆活动属于相同时期、统一构造作用的产物,早白垩世末期以来由慢到快的差异抬升过程主要受控于华北克拉通东部(古)太平洋体系与其西南部特提斯体系之间相互联合、彼此消长的构造作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号