首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
水文资料匮乏流域的洪水预报(PUBs)是水文科学与工程中一个尚未解决的重大挑战.中国湿润山区中小流域大多是水文资料匮乏的流域,在此地区进行洪水预报的重要手段之一就是水文模型参数的估计.对基于参数物理意义的估算方法(以下简称物理估算法)及两种区域化方法进行了研究,将其用于新安江模型参数的估算及移植.皖南山区的29个中小流域被选作水文资料丰富的测量流域,鄂西山区的3个中小流域被视为水文资料匮乏的目标流域,目的是研究目标流域与测量流域空间位置较远但物理条件相似时,区域化等方法是否可以有效估计模型参数.结果表明,即使目标流域与测量流域空间距离较远,区域化及物理估算法也能一定程度上减少参数估计导致的模型效率损失,且在研究区的最优参数估计方案为单流域物理相似法结合回归法及物理估算法.为长江中下游资料匮乏的山区中小流域提出了可行的新安江模型参数估计方案,为该地区的洪水预报提供指导.  相似文献   

2.
Regionalization of model parameters by developing appropriate functional relationship between the parameters and basin characteristics is one of the potential approaches to employ hydrological models in ungauged basins. While this is a widely accepted procedure, the uniqueness of the watersheds and the equifinality of parameters bring lot of uncertainty in the simulations in ungauged basins. This study proposes a method of regionalization based on the probability distribution function of model parameters, which accounts the variability in the catchment characteristics. It is envisaged that the probability distribution function represents the characteristics of the model parameter, and when regionalized the earlier concerns can be addressed appropriately. The method employs probability distribution of parameters, derived from gauged basins, to regionalize by regressing them against the catchment attributes. These regional functions are used to develop the parameter characteristics in ungauged basins based on the catchment attributes. The proposed method is illustrated using soil water assessment tool model for an ungauged basin prediction. For this numerical exercise, eight different watersheds spanning across different climatic settings in the USA are considered. While all the basins considered in this study were gauged, one of them was assumed to be ungauged (pseudo-ungauged) in order to evaluate the effectiveness of the proposed methodology in ungauged basin simulation. The process was repeated by considering representative basins from different climatic and landuse scenarios as pseudo-ungauged. The results of the study indicated that the ensemble simulations in the ungauged basins were closely matching with the observed streamflow. The simulation efficiency varied between 57 and 61 % in ungauged basins. The regional function was able to generate the parameter characteristics that were closely matching with the original probability distribution derived from observed streamflow data.  相似文献   

3.
4.
5.
6.
ABSTRACT

In this study, a multi-modelling approach is proposed for improved continuous daily streamflow estimation in ungauged basins using regionalization—the process of transferring hydrological data from gauged to ungauged watersheds. Four regionalization models, two data-driven and two hydrological, were used for continuous daily streamflow estimation. Comparison of the individual models reveals that each of the four models performed well on a limited number of ungauged basins while none of them performed well for the entire 90 selected watersheds. The results obtained from the four models are evaluated and reported in a deterministic way by a model combination approach along with its uncertainty range consisting of 16 ensemble members. It is shown that a combined model of the four individual models performed well on all 90 watersheds and the ensemble range can account for the uncertainty of models. The combined model was more efficient and appeared more robust compared to the individual models. Furthermore, continuous ranked probability scores (CRPS) calculated for the ensemble model outputs indicate better performance compared to individual models and competitive with the combined model.
EDITOR A. Castellarin ASSOCIATE EDITOR G. Di Baldassarre  相似文献   

7.
Stream flow predictions in ungauged basins are one of the most challenging tasks in surface water hydrology because of nonavailability of data and system heterogeneity. This study proposes a method to quantify stream flow predictive uncertainty of distributed hydrologic models for ungauged basins. The method is based on the concepts of deriving probability distribution of model's sensitive parameters by using measured data from a gauged basin and transferring the distribution to hydrologically similar ungauged basins for stream flow predictions. A Monte Carlo simulation of the hydrologic model using sampled parameter sets with assumed probability distribution is conducted. The posterior probability distributions of the sensitive parameters are then computed using a Bayesian approach. In addition, preselected threshold values of likelihood measure of simulations are employed for sizing the parameter range, which helps reduce the predictive uncertainty. The proposed method is illustrated through two case studies using two hydrologically independent sub‐basins in the Cedar Creek watershed located in Texas, USA, using the Soil and Water Assessment Tool (SWAT) model. The probability distribution of the SWAT parameters is derived from the data from one of the sub‐basins and is applied for simulation in the other sub‐basin considered as pseudo‐ungauged. In order to assess the robustness of the method, the numerical exercise is repeated by reversing the gauged and pseudo‐ungauged basins. The results are subsequently compared with the measured stream flow from the sub‐basins. It is observed that the measured stream flow in the pseudo‐ungauged basin lies well within the estimated confidence band of predicted stream flow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Recent developments in hydrological modelling of river basins are focused on prediction in ungauged basins, which implies the need to improve relationships between model parameters and easily-obtainable information, such as satellite images, and to test the transferability of model parameters. A large-scale distributed hydrological model is described, which has been used in several large river basins in Brazil. The model parameters are related to classes of physical characteristics, such as soil type, land use, geology and vegetation. The model uses two basin space units: square grids for flow direction along the basin and GRU—group response units—which are hydrological classes of the basin physical characteristics for water balance. Expected ranges of parameter values are associated with each of these classes during the model calibration. Results are presented of the model fitting in the Taquari-Antas River basin in Brazil (26 000 km2 and 11 flow gauges). Based on this fitting, the model was then applied to the Upper Uruguay River basin (52 000 km2), having similar physical conditions, without any further calibration, in order to test the transferability of the model. The results in the Uruguay basin were compared with recorded flow data and showed relatively small errors, although a tendency to underestimate mean flows was found.  相似文献   

9.
Reliable estimation of low flows at ungauged catchments is one of the major challenges in water‐resources planning and management. This study aims at providing at‐site and ungauged sites low‐flow frequency analysis using regionalization approach. A two‐stage delineating homogeneous region is proposed in this study. Clustering sites with similar low‐flow L‐moment ratios is initially conducted, and L‐moment‐based discordancy and heterogeneity measures are then used to detect unusual sites. Based on the goodness‐of‐fit test statistic, the best‐fit regional model is identified in each hydrologically homogeneous region. The relationship between mean annual 7‐day minimum flow and hydro‐geomorphic characteristics is also constructed in each homogeneous region associated with the derived regional model for estimating various low‐flow quantiles at ungauged sites. Uncertainty analysis of model parameters and low‐flow estimations is carried out using the Bayesian inference. Applied in Sefidroud basin located in northwestern Iran, two hydrologically homogeneous regions are identified, i.e. the east and west regions. The best‐fit regional model for the east and west regions are generalized logistic and Pearson type III distributions, respectively. The results show that the proposed approach provides reasonably good accuracy for at‐site as well as ungauged‐site frequency analysis. Besides, interval estimations for model parameters and low flows provide uncertainty information, and the results indicate that Bayesian confidence intervals are significantly reduced when comparing with the outcomes of conventional t‐distribution method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The emergence of regional and global satellite‐based rainfall products with high spatial and temporal resolution has opened up new large‐scale hydrological applications in data‐sparse or ungauged catchments. Particularly, distributed hydrological models can benefit from the good spatial coverage and distributed nature of satellite‐based rainfall estimates (SRFE). In this study, five SRFEs with temporal resolution of 24 h and spatial resolution between 8 and 27 km have been evaluated through their predictive capability in a distributed hydrological model of the Senegal River basin in West Africa. The main advantage of this evaluation methodology is the integration of the rainfall model input in time and space when evaluated at the sub‐catchment scale. An initial data analysis revealed significant biases in the SRFE products and large variations in rainfall amounts between SRFEs, although the spatial patterns were similar. The results showed that the Climate Prediction Center/Famine Early Warning System (CPC‐FEWS) and cold cloud duration (CCD) products, which are partly based on rain gauge data and produced specifically for the African continent, performed better in the modelling context than the global SRFEs, Climate Prediction Center MORPHing technique (CMORPH), Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The best performing SRFE, CPC‐FEWS, produced good results with values of R2NS between 0·84 and 0·87 after bias correction and model recalibration. This was comparable to model simulations based on traditional rain gauge data. The study highlights the need for input specific calibration of hydrological models, since major differences were observed in model performances even when all SRFEs were scaled to the same mean rainfall amounts. This is mainly attributed to differences in temporal dynamics between products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In the present study, a semi‐distributed hydrological model soil and water assessment tool (SWAT) has been employed for the Ken basin of Central India to predict the water balance. The entire basin was divided into ten sub basins comprising 107 hydrological response units on the basis of unique slope, soil and land cover classes using SWAT model. Sensitivity analysis of SWAT model was performed to examine the critical input variables of the study area. For Ken basin, curve number, available water capacity, soil depth, soil evaporation compensation factor and threshold depth of water in the shallow aquifer (GWQ_MN) were found to be the most sensitive parameters. Yearly and monthly calibration (1985–1996) and validation (1997–2009) were performed using the observed discharge data of the Banda site in the Ken basin. Performance evaluation of the model was carried out using coefficient of determination, Nash–Sutcliffe efficiency, root mean square error‐observations standard deviation ratio, percent bias and index of agreement criterion. It was found that SWAT model can be successfully applied for hydrological evaluation of the Ken basin, India. The water balance analysis was carried out to evaluate water balance of the Ken basin for 25 years (1985–2009). The water balance exhibited that the average annual rainfall in the Ken basin is about 1132 mm. In this, about 23% flows out as surface run‐off, 4% as groundwater flow and about 73% as evapotranspiration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The assessment of surface water resources (SWRs) in the semi‐arid Yongding River Basin is vital as the basin has been in a continuous state of serious water shortage over the last 20 years. In this study, the first version of the geomorphology‐based hydrological model (GBHM) has been applied to the basin over a long period of time (1956–2000) as part of an SWR assessment. This was done by simulating the natural hydrological processes in the basin. The model was first evaluated at 18 stream gauges during the period from 1990 to 1992 to evaluate both the daily streamflows and the annual SWRs using the land use data for 1990. The model was further validated in 2000 with the annual SWRs at seven major stream gauges. Second, the verified model was used in a 45‐year simulation to estimate the annual SWRs for the basin from 1956 to 2000 using the 1990 land use data. An empirical correlation between the annual precipitation and the annual SWRs was developed for the basin. Spatial distribution of the long‐term mean runoff coefficients for all 177 sub‐basins was also achieved. Third, an additional 10‐year (1991–2000) simulation was performed with the 2000 land use data to investigate the impact of land use changes from 1990 to 2000 on the long‐term annual SWRs. The results suggest that the 10‐year land use changes have led to a decrease of 8·3 × 107 m3 (7·9% of total) for the 10‐year mean annual SWRs in the simulation. To our knowledge, this work is the first attempt to assess the long‐term SWRs and the impact of land use change in the semi‐arid Yongding River Basin using a semi‐distributed hillslope hydrological model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Simple runoff models with a low number of model parameters are generally able to simulate catchment runoff reasonably well, but they rely on model calibration, which makes their use in ungauged basins challenging. In a previous study it has been shown that a limited number of streamflow measurements can be quite informative for constraining runoff models. In practice, however, instead of performing such repeated flow measurements, it might be easier to install a stream level logger. Here, a dataset of 600+ gauged basins in the USA was used to study how well models perform when only stream level data, rather than streamflow data, are available. A runoff model (the HBV model) was calibrated assuming that only stream level observations were available, and the simulations were evaluated on the full observed streamflow record. The results indicate that stream level data alone can already provide surprisingly good model simulation results in humid catchments, whereas in arid catchments some form of quantitative information (e.g. a streamflow observation or a regional average value) is needed to obtain good results. These results are encouraging for hydrological observations in data scarce regions as level observations are much easier to obtain than streamflow measurements. Based on runoff modelling, it might even be possible to derive streamflow time series from the level data obtained from loggers, satellites or community‐based approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
《水文科学杂志》2013,58(6):857-880
Abstract

Drainage basins in many parts of the world are ungauged or poorly gauged, and in some cases existing measurement networks are declining. The problem is compounded by the impacts of human-induced changes to the land surface and climate, occurring at the local, regional and global scales. Predictions of ungauged or poorly gauged basins under these conditions are highly uncertain. The IAHS Decade on Predictions in Ungauged Basins, or PUB, is a new initiative launched by the International Association of Hydrological Sciences (IAHS), aimed at formulating and implementing appropriate science programmes to engage and energize the scientific community, in a coordinated manner, towards achieving major advances in the capacity to make predictions in ungauged basins. The PUB scientific programme focuses on the estimation of predictive uncertainty, and its subsequent reduction, as its central theme. A general hydrological prediction system contains three components: (a) a model that describes the key processes of interest, (b) a set of parameters that represent those landscape properties that govern critical processes, and (c) appropriate meteorological inputs (where needed) that drive the basin response. Each of these three components of the prediction system, is either not known at all, or at best known imperfectly, due to the inherent multi-scale space—time heterogeneity of the hydrological system, especially in ungauged basins. PUB will therefore include a set of targeted scientific programmes that attempt to make inferences about climatic inputs, parameters and model structures from available but inadequate data and process knowledge, at the basin of interest and/or from other similar basins, with robust measures of the uncertainties involved, and their impacts on predictive uncertainty. Through generation of improved understanding, and methods for the efficient quantification of the underlying multi-scale heterogeneity of the basin and its response, PUB will inexorably lead to new, innovative methods for hydrological predictions in ungauged basins in different parts of the world, combined with significant reductions of predictive uncertainty. In this way, PUB will demonstrate the value of data, as well as provide the information needed to make predictions in ungauged basins, and assist in capacity building in the use of new technologies. This paper presents a summary of the science and implementation plan of PUB, with a call to the hydrological community to participate actively in the realization of these goals.  相似文献   

15.
16.
The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi‐distributed rainfall–runoff model for a gauged basin, including the flood‐prone area, and that furnishes the inlet flow conditions for a two‐dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built‐up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall–runoff model was adapted and calibrated through three flood events without over‐bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of −58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ‘shock‐capturing’ one‐dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built‐up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Distributed hydrological modelling using space–time estimates of rainfall from weather radar provides a natural approach to area-wide flood forecasting and warning at any location, whether gauged or ungauged. However, radar estimates of rainfall may lack consistent, quantitative accuracy. Also, the formulation of hydrological models in distributed form may be problematic due to process complexity and scaling issues. Here, the aim is to first explore ways of improving radar rainfall accuracy through combination with raingauge network data via integrated multiquadric methods. When the resulting gridded rainfall estimates are employed as input to hydrological models, the simulated river flows show marked improvements when compared to using radar data alone. Secondly, simple forms of physical–conceptual distributed hydrological model are considered, capable of exploiting spatial datasets on topography and, where necessary, land-cover, soil and geology properties. The simplest Grid-to-Grid model uses only digital terrain data to delineate flow pathways and to control runoff production, the latter by invoking a probability-distributed relation linking terrain slope to soil absorption capacity. Model performance is assessed over nested river basins in northwest England, employing a lumped model as a reference. When the distributed model is used with the gridded radar-based rainfall estimators, it shows particular benefits for forecasting at ungauged locations.  相似文献   

18.
Long‐term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, such as Central America, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information—to locally observed discharge—can be used to constrain model parameter uncertainty for ungauged catchments. Given the strong influence that climatic large‐scale processes exert on streamflow variability in the Central American region, we explored the use of climate variability knowledge as process constraints to constrain the simulated discharge uncertainty for a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty, we first rejected parameter relationships that disagreed with our understanding of the system. Then, based on this reduced parameter space, we applied the climate‐based process constraints at long‐term, inter‐annual, and intra‐annual timescales. In the first step, we reduced the initial number of parameters by 52%, and then, we further reduced the number of parameters by 3% with the climate constraints. Finally, we compared the climate‐based constraints with a constraint based on global maps of low‐flow statistics. This latter constraint proved to be more restrictive than those based on climate variability (further reducing the number of parameters by 66% compared with 3%). Even so, the climate‐based constraints rejected inconsistent model simulations that were not rejected by the low‐flow statistics constraint. When taken all together, the constraints produced constrained simulation uncertainty bands, and the median simulated discharge followed the observed time series to a similar level as an optimized model. All the constraints were found useful in constraining model uncertainty for an—assumed to be—ungauged basin. This shows that our method is promising for modelling long‐term flow data for ungauged catchments on the Pacific side of Central America and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.  相似文献   

19.
ABSTRACT

This paper assesses the possibility of using multi-model averaging techniques for continuous streamflow prediction in ungauged basins. Three hydrological models were calibrated on the Nash-Sutcliffe Efficiency metric and were used as members of four multi-model averaging schemes. Model weights were estimated through optimization on the donor catchments. The averaging methods were tested on 267 catchments in the province of Québec, Canada, in a leave-one-out cross-validation approach. It was found that the best hydrological model was practically always better than the others used individually or in a multi-model framework, thus no averaging scheme performed statistically better than the best single member. It was also found that the robustness and adaptability of the models were highly influential on the models’ performance in cross-verification. The results show that multi-model averaging techniques are not necessarily suited for regionalization applications, and that models selected in such studies must be chosen carefully to be as robust as possible on the study site.
Editor M.C. Acreman; Associate editor S. Grimaldi  相似文献   

20.
L. Brocca  F. Melone  T. Moramarco 《水文研究》2011,25(18):2801-2813
Nowadays, in the scientific literature many rainfall‐runoff (RR) models are available ranging from simpler ones, with a limited number of parameters, to highly complex ones, with many parameters. Therefore, the selection of the best structure and parameterisation for a model is not straightforward as it is dependent on a number of factors: climatic conditions, catchment characteristics, temporal and spatial resolution, model objectives, etc. In this study, the structure of a continuous semi‐distributed RR model, named MISDc (‘Modello Idrologico Semi‐Distribuito in continuo’) developed for flood simulation in the Upper Tiber River (central Italy) is presented. Most notably, the methodology employed to detect the more relevant processes involved in the modelling of high floods, and hence, to build the model structure and its parameters, is developed. For this purpose, an intense activity of monitoring soil moisture and runoff in experimental catchments was carried out allowing to derive a parsimonious and reliable continuous RR model operating at an hourly (or smaller) time scale. Specifically, in order to determine the catchment hydrological response, the important role of the antecedent wetness conditions is emphasized. The application of MISDc both for design flood estimation and for flood forecasting is reported here demonstrating its reliability and also its computational efficiency, another important factor in hydrological practice. As far as the flood forecasting applications are concerned, only the accuracy of the model in reproducing discharge hydrographs by assuming rainfall correctly known throughout the event is investigated indepth. In particular, the MISDc has been implemented in the framework of Civil Protection activities for the Upper Tiber River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号