首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paleogeotherm derived from spinel and garnet lherzolites xenoliths for the upper mantle beneath Zhejiang Province, China is higher than the oceanic geotherm but is similar to the geotherm for the upper mantle beneath eastern China constructed by Xu et al. and the upper mantle geotherm of southeastern Australia. The crust-mantle boundary defined by this geotherm is about 34 km, while the lithosphere-asthenosphere boundary is about 75 km. This result coincides well with geophysical data. The study of rheological features of the xenoliths has revealed that at least two periods of deformation events occurred in the upper mantle beneath this region. The first event might be related to upper mantle diapir occurring in this region before or during late Tertiary, and the second might be related to the occurrence of small-scale shear zones in the upper mantle. Project supported by the National Natural Science Foundation of China (Grant No. 49472105).  相似文献   

2.
通过对采自河北汉诺坝玄武岩中的下地壳和上地幔包体的详细研究 ,建立了本区下地壳—上地幔地温线。该地温线高于大洋地温线和古老地盾地温线 ,接近克拉通边缘的地温线 ,符合该区的大地构造环境。由该地温线建立的下地壳—上地幔地质结构剖面表明 ,该区下地壳主要由不同类型的麻粒岩相岩石组成 ,其化学成分以镁铁质为主 ,深度范围为 2 5~ 4 2km。上地幔由超镁铁质的二辉橄榄岩组成 ,在尖晶石二辉橄榄岩和石榴石二辉橄榄岩之间有一过渡层。由地温线确定的壳幔边界位于 4 2km附近 ,与地震资料确定的莫霍面一致 ,但在壳幔边界之上的下地壳底部有下地壳麻粒岩和超镁铁质岩的互层。这一现象可以解释在下地壳底部常见的层状反射层。该区岩石圈底界大约在 95km ,其下的软流层仍由石榴石二辉橄榄岩组成  相似文献   

3.
For a lherzolite mantle with about 0.1 wt.-percent CO2 or less, and a CO2/H2O mole ratio greater than about one, the mantle solidus curve in P-T space will have two important low-temperature regions, one centered at about 9 kbar (30 km depth) and another beginning at about 28 kbar (90 km depth). It is argued that the depth of generation of primary tholeiitic magmas beneath ridge crests is about 9 kbar, and that the geotherm changes from an adiabatic gradient at greater pressures to a strongly superadiabatic gradient at lesser pressures. Such a ridge geotherm would intersect the solidus at two separate depth intervals corresponding to the two low-temperature regions on the solidus. With increasing age and cooling of the lithosphere, the shallow partial melt zone would pinch out and the thickness of the deep partial melt zone would decrease. With increasing depth in a mature oceanic lithosphere, the rock types would consist of depleted harzburgite from directly beneath the crust to about 30 km depth, fertile spinel lherzolite from about 30 km to 50–60 km, and fertile garnet lherzolite from about 50–60 km to the top of the deep partial melt zone at about 90 km.  相似文献   

4.
Two localities on the Leizhou Peninsula, southern China (Yingfengling and Tianyang basaltic volcanoes) yield a wide variety of mantle-derived xenoliths including Cr-diopside series mantle wall rocks and two distinct types of Al-augite series pyroxenites. Metapyroxenites have re-equilibrated granoblastic microstructures whereas pyroxenites with igneous microstructures have not thermally equilibrated to the mantle conditions. An abundant suite of megacrysts and megacrystic aggregates (including garnet, plagioclase, clinopyroxene, ilmenite and apatite) is interpreted as the pegmatitic equivalents of the igneous pyroxenite suite. Layered spinel lherzolite/spinel websterite xenoliths were formed by metamorphic differentiation caused by mantle deformation, inferred to be related to lithospheric thinning. Some metapyroxenites have garnet websterite assemblages that allow calculation of their mantle equilibration temperatures and pressures and the construction of the first xenolith geotherm for the southernmost China lithosphere. Heat flow data measured at the surface in this region yield model conductive geotherms (using average crustal conductivity values) that are consistent with the xenolith geotherm for the mantle. The calculated mean surface heat flux is 110 mW/m2. This high heat flux and the high geotherm are consistent with young lithospheric thinning in southern China, and with recent tomography results showing shallow low-velocity zones in this region. The xenolith geotherm allows the construction of a lithospheric rock type section for the Leizhou region; it shows that the crust–mantle boundary lies at about 30 km, consistent with seismic data, and that the lithosphere–asthenosphere boundary lies at about 100 km.  相似文献   

5.
First results are presented of a recent onshore seismic survey complementary to the Valsis-2 Cruise, which consisted of ESP, COP and CDP marine seismic profiles across the Valencia Trough (Western Mediterranean).The marine energy source used was an airgun array of 5800 cubic inch recorded at 2 land stations on the western flank of the Valencia Trough, at distances between 10–120 km.The experiment has resulted in an extended sampling of the deep crustal structure of the eastern Mediterranean flank of the Iberian peninsula, as well as the offshore-onshore transition.Three transverse NW-SE profiles have been interpreted. Local thinning of the sedimentary cover has been determined towards the centre of the basin which, together with the shallow high velocities observed on the southern profile, could be related to volcanic episodes.A seismic continental basement has been found at depths between 3 and 5 km. A thin lower crust (3–5 km) with velocities around 6.8 km/s has been identified in the northern part of the basin. Alternative crustal models considered for the 3 profiles have been tested, not only from arrival times but also from relative amplitude distributions. A first-order Moho discontinuity fits the data best. The welldefined Moho boundary results in energetic PMP reflections, and a clear updoming is observed towards the interior of the basin, from depths about 20–21 km inshore of Barcelona to 15–17 km depths 60 km offshore. An anomalous upper mantle with low Pn velocities of about 7.7 km/s is confirmed in most of the sampled areas.  相似文献   

6.
A genetic algorithm inversion of receiver functions derived from a dense seismic network around Iwate volcano, northeastern Japan, provides the fine S wave velocity structure of the crust and uppermost mantle. Since receiver functions are insensitive to an absolute velocity, travel times of P and S waves propagating vertically from earthquakes in the subducting slab beneath the volcano are involved in the inversion. The distribution of velocity perturbations in relation to the hypocenters of the low-frequency (LF) earthquakes helps our understanding of deep magmatism beneath Iwate volcano. A high-velocity region (dVS/VS=10%) exists around the volcano at depths of 2–15 km, with the bottom depth decreasing to 11 km beneath the volcano’s summit. Just beneath the thinning high-velocity region, a low-velocity region (dVS/VS=−10%) exists at depths of 11–20 km. Intermediate-depth LF (ILF) events are distributed vertically in the high-velocity region down to the top of the low-velocity region. This distribution suggests that a magma reservoir situated in the low-velocity region supplies magma to a narrow conduit that is detectable by the hypocenters of LF earthquakes. Another broad low-velocity region (dVS/VS=−5 to −10%) occurs at depths of 17–35 km. Additional clusters of deep LF (DLF) events exist at depths of 32–37 km in the broad low-velocity zone. The DLF and ILF events are the manifestations of magma movement near the Moho discontinuity and in the conduit just beneath the volcano, respectively.  相似文献   

7.
The densities of silicate liquids with basic, picritic, and ultrabasic compositions have been estimated from the melting curves of minerals at high pressures. Silicate liquids generated by partial melting of the upper mantle are denser than olivine and pyroxenes at pressures higher than 70 kbar, and garnet is the only phase which is denser than the liquid at pressures from 70 kbar to at least 170 kbar. In this pressure range, garnet and some fraction of liquid separate from ascending partially molten diapirs. It is therefore suggested that aluminium-depleted komatiite with a high Ca/OAl2O3 ratio may be derived from diapirs which originated in the deep upper mantle at pressures from 70 kbar to at least 140 kbar (200–400 km in depth), where selective separation of pyropic garnet occurs effectively. On the other hand, aluminium-undepleted komatiite is probably derived from diapirs originating at shallower depths (< 200 km). Enrichment of pyropic garnet is expected at depths greater than 200 km by selective separation of garnet from ascending diapirs. The 200-km discontinuity in the seismic wave velocity profile may be explained by a relatively high concentration of pyropic garnet at depths greater than 200 km.  相似文献   

8.
Twenty-seven dives of the submersible “Nautile” in the subduction zone around Japan conducted in the French-Japanese Project Kaiko proved that fairly luxuriant benthic communities dominated by deep-sea giant clams of the genusCalyptogena (family Vesicomyidae) were consistently present on the accretionary prism at abyssal depths.Benthic communities characterized by three hitherto undescribed bivalves of the genusCalyptogena were found between depths of about 3800 and 4020 m at the mouth of Tenryu Canyon and at the top of basement swell of the Zenisu Ridge, both situated in the eastern Nankai subduction zone. Sporadic but discrete patches of organisms characterized by one more undescribed bivalve belonging to the genusCalyptogena were observed and collected between depths of 5130 and 5960 m on the landward wall of the Japan and Kouriles Trenches.Photographic inventories were prepared semiquantitatively using each series of bottom photographs taken in these areas with bow cameras of the submersible “Nautile”.Observations on the sporadic but dense distribution of the clams and other characteristic associated organisms match well with the scheme that communities sustained by chemosynthetic energy sources can be present at connate water seepages in subduction zones. These are to date the deepest record of benthic communities supposedly associated with chemosynthetic processes.  相似文献   

9.
High-resolution P wave tomography shows that the subducting Pacific slab is stagnant in the mantle transition zone and forms a big mantle wedge beneath eastern China. The Mg isotopic investigation of large numbers of mantle-derived volcanic rocks from eastern China has revealed that carbonates carried by the subducted slab have been recycled into the upper mantle and formed carbonated peridotite overlying the mantle transition zone, which becomes the sources of various basalts. These basalts display light Mg isotopic compositions(δ26 Mg = –0.60‰ to –0.30‰) and relatively low87 Sr/86 Sr ratios(0.70314–0.70564) with ages ranging from 106 Ma to Quaternary, suggesting that their mantle source had been hybridized by recycled magnesite with minor dolomite and their initial melting occurred at 300-360 km in depth. Therefore, the carbonate metasomatism of their mantle source should have occurred at the depth larger than 360 km, which means that the subducted slab should be stagnant in the mantle transition zone forming the big mantle wedge before 106 Ma. This timing supports the rollback model of subducting slab to form the big mantle wedge. Based on high P-T experiment results, when carbonated silicate melts produced by partial melting of carbonated peridotite was raising and reached the bottom(180–120 km in depth) of cratonic lithosphere in North China, the carbonated silicate melts should have 25–18 wt% CO2 contents, with lower Si O2 and Al2 O3 contents, and higher Ca O/Al2 O3 values, similar to those of nephelinites and basanites, and have higher εNdvalues(2 to 6). The carbonatited silicate melts migrated upward and metasomatized the overlying lithospheric mantle, resulting in carbonated peridotite in the bottom of continental lithosphere beneath eastern China. As the craton lithospheric geotherm intersects the solidus of carbonated peridotite at 130 km in depth, the carbonated peridotite in the bottom of cratonic lithosphere should be partially melted, thus its physical characters are similar to the asthenosphere and it could be easily replaced by convective mantle. The newly formed carbonated silicate melts will migrate upward and metasomatize the overlying lithospheric mantle. Similarly, such metasomatism and partial melting processes repeat, and as a result the cratonic lithosphere in North China would be thinning and the carbonated silicate partial melts will be transformed to high-Si O2 alkali basalts with lower εNdvalues(to-2). As the lithospheric thinning goes on,initial melting depth of carbonated peridotite must decrease from 130 km to close 70 km, because the craton geotherm changed to approach oceanic lithosphere geotherm along with lithospheric thinning of the North China craton. Consequently, the interaction between carbonated silicate melt and cratonic lithosphere is a possible mechanism for lithosphere thinning of the North China craton during the late Cretaceous and Cenozoic. Based on the age statistics of low δ26 Mg basalts in eastern China, the lithospheric thinning processes caused by carbonated metasomatism and partial melting in eastern China are limited in a timespan from 106 to25 Ma, but increased quickly after 25 Ma. Therefore, there are two peak times for the lithospheric thinning of the North China craton: the first peak in 135-115 Ma simultaneously with the cratonic destruction, and the second peak caused by interaction between carbonated silicate melt and lithosphere mainly after 25 Ma. The later decreased the lithospheric thickness to about70 km in the eastern part of North China craton.  相似文献   

10.
11.
A new model is proposed for the structure of the Kaapvaal craton lithosphere. Based on chemical thermodynamics methods, profiles of the chemical composition, temperature, density, and S wave velocities are constructed for depths of 100–300 km. A solid-state zone of lower velocities is discovered on the S velocity profile in the depth interval 150–260 km. The temperature profiles are obtained from absolute values of P and S velocities, taking into account phase transformations, anharmonicity, and anelastic effects. The examination of the sensitivity of seismic models to the chemical composition showed that relatively small variations in the composition of South African xenoliths result in lateral temperature variations of ~200°C. Inversion of some seismic profiles (including IASP91) with a fixed bulk composition of garnet peridotites (the primitive mantle material) leads to a temperature inversion at depths of 200–250 km, which is physically meaningless. It is supposed that the temperature inversion can be removed by gradual fertilization of the mantle with depth. In this case, the craton lithosphere should be stratified in chemical composition. The depleted lithosphere composed by garnet peridotites exists to depths of 175–200 km. The lithospheric material at depths of 200–250 km is enriched in basaltoid components (FeO, Al2O3, and CaO) as compared with the material of garnet peridotites but is depleted in the same components as compared with the fertile substance of the underlying primitive mantle. The material composing the craton root at a depth of ~275 km does not differ in its physical and chemical characteristics from the composition of the normal mantle, and this allows one to estimate the thickness of the lithosphere at 275 km. The results of this work are compared with data of seismology, thermal investigations, and thermobarometry.  相似文献   

12.
We used teleseismic recordings of a temporary deployment of seismic stations and of permanent short period stations in the western Eger Rift system to study the lithosphere with the help of Receiver Functions. The crust-mantle boundary (Moho) is observed at almost all stations by strong P-to-S converted phases. The Moho is basically flat between about 26 – 30 km depth in the entire region. At one station in the Eger Rift (BOH-1, Loket castle) no Moho is observed. We interpret this with the existence of a broad gradient zone there, instead of a sharp discontinuity. This observation, however, needs to be confirmed by more data.  相似文献   

13.
Many earthquakes within the crust near Ruapehu and Ngauruhoe volcanoes, recorded at epicentral distances less than 20 km on vertical seismometers, show S-waves of lower dominant frequency than the P-waves. A large number also have amplitudes in the S-group less than those of the P-waves. Whereas the reduced amplitude of S-waves relative to that of P-waves can be a source mechanism effect, the corresponding reduction in dominant frequency should be independent of the source radiation pattern. The most plausible reason for such a reduction in dominant S-wave frequency is that the waves have passed through a zone of partially molten rock. The data are therefore interpreted in terms of the presence of magma in restricted zones near the volcanoes.Using ray paths from 232 hypocentres to three permanent seismograph stations, together with paths from three additional earthquakes to one permanent and two temporary stations, an interpretation in three dimensions has been made of the source of the anomalous attenuation at depths between 2 and 10 km below datum (Ruapehu Crater Lake). Wave paths which lie largely at depths shallower than 2 km cannot be used, as almost all such paths show evidence of enhanced S-wave attenuation, and this is attributed to the presence of superficial pyroclastic and unconsolidated laharic material within 2 km of the surface.At Ruapehu, the data suggest the presence of three principal intrusions, one underlying much of the southwest slopes and reaching as far east as Crater Lake, one beneath the eastern side of the Summit Plateau, and one beneath part of the northeast slopes of the volcano. All three are essentially vertical or steeply dipping structures, detectable to a depth of between 7 and 9 km. The first appears to extend to within about 5 km of the surface, whereas the other two have intruded to within 2 or 3 km. Other, less well-defined, and comparatively small bodies exist beneath both the western and eastern slopes of Ruapehu.In the Ngauruhoe area, few earthquakes have occurred and all have been at depths less than 6 km. Therefore, only shallow attenuating areas can be defined. A small area of anomalous S-wave attenuation occurs beneath the northwest slopes of Ngauruhoe, and another, elongated, body appears to coincide with a fault zone west of the volcano. Both of these lie at depths of about 3 km below datum (less than 2 km below surface in one locality).Finally, areas of high attenuation, at depths of 4–5 km below datum, appear to define a narrow east-west zone about 6 km long in the immediate area of Whakapapa village. Other zones exist east of the volcanic axis, defining a line which cuts the axis on the north east slopes of Ruapehu, at a point where a parasite crater formed a few thousand years ago.  相似文献   

14.
This study is based on the detailed geometry of the Hokkaido Wadati-Benioff zone and the paleosubduction zone as delineated by Hanus and Vanek (1984). The used data includes 217 CMT Harvard solutions for earthquakes, which belong to the Wadati-Benioff zone and 13 for the paleosubduction zone. The inverse technique by Gephart and Forsyth (1984) was incorporated for determining the best fit principal stress directions σ1, σ2, σ3 and the ratio (R2−σ13−σ1) for 20 km depth intervals in the Wadati-Benioff zone and for the paleosubduction zone considered as a single body. In almost all the considered depth layers, the maximum compressive stress σ1 is normal to the strike of the slab and dips less than 25°, indicating the NW-SE convergence between the Pacific and Eurasian lithospheric plates. Exceptions are in the depth layer 81–120 km, the paleosubduction zone with steeply dipping along-strike σ1, and the lower part of the subduction zone (161–220 km) where σ1 is almost horizontal and of E trend. The minimum compressive stress σ3 is mostly along-strike and of a different dip with the exception of the 21–60 km layer wher they are down-dipping. The results obtained for the depth ranges 0–20 km, 81–100 km, 121–160 km, and the paleosubduction zone indicate heterogeneous stress fields. These results show that the slab pull and the mantle resistance, acting on the slab edge, are not the main forces which control the contemporary plate tectonics in the Hokkaido region. Along-strike compression at depths 81–120 km and along-strike extension at 0–20 and 61–220 km are involved in the slab dynamics. These can be related to horizontal bending of the subducting Pacific plate.  相似文献   

15.
The roles of subduction of the Pacific plate and the big mantle wedge (BMW) in the evolution of east Asian continental margin have attracted lots of attention in past years. This paper reviews recent progresses regarding the composition and chemical heterogeneity of the BMW beneath eastern Asia and geochemistry of Cenozoic basalts in the region, with attempts to put forward a general model accounting for the generation of intraplate magma in a BMW system. Some key points of this review are summarized in the following. (1) Cenozoic basalts from eastern China are interpreted as a mixture of high-Si melts and low-Si melts. Wherever they are from, northeast, north or south China, Cenozoic basalts share a common low-Si basalt endmember, which is characterized by high alkali, Fe2O3T and TiO2 contents, HIMU-like trace element composition and relatively low 206Pb/204Pb compared to classic HIMU basalts. Their Nd-Hf isotopic compositions resemble that of Pacific Mantle domain and their source is composed of carbonated eclogites and peridotites. The high-Si basalt endmember is characterized by low alkali, Fe2O 3 T and TiO2 contents, Indian Mantle-type Pb-Nd-Hf isotopic compositions, and a predominant garnet pyroxenitic source. High-Si basalts show isotopic provinciality, with those from North China and South China displaying EM1-type and EM2-type components, respectively, while basalts from Northeast China containing both EM1- and EM2-type components. (2) The source of Cenozoic basalts from eastern China contains abundant recycled materials, including oceanic crust and lithospheric mantle components as well as carbonate sediments and water. According to their spatial distribution and deep seismic tomography, it is inferred that the recycled components are mostly from stagnant slabs in the mantle transition zone, whereas EM1 and EM2 components are from the shallow mantle. (3) Comparison of solidi of garnet pyroxenite, carbonated eclogite and peridotite with regional geotherm constrains the initial melting depth of high-Si and low-Si basalts at <100 km and ~300 km, respectively. It is suggested that the BMW under eastern Asia is vertically heterogeneous, with the upper part containing EM1 and EM2 components and isotopically resembling the Indian mantle domain, whereas the lower part containing components derived from the Pacific mantle domain. Contents of H2O and CO2 decrease gradually from bottom to top of the BMW. (4) Melting of the BMW to generate Cenozoic intraplate basalts is triggered by decarbonization and dehydration of the slabs stagnated in the mantle transition zone.  相似文献   

16.
During ten days of phreatomagmatic activity in early April 1977, two maars formed 13 km behind the Aleutian arc near Peulik volcano on the Alaska Peninsula. They have been named “Ukinrek Maars”, meaning “two holes in the ground” in Yupik Eskimo. The western maar formed at the northwestern end of a low ridge within the first three days and is up to 170 m in diameter and 35 m in depth. The eastern maar formed during the next seven days 600 m east of West Maar at a lower elevation in a shallow saddle on the same ridge and is more circular, up to 300 m in diameter and 70 m in depth. The maars formed in terrain that was heavily glaciated in Pleistocene times. The groundwater contained in the underlying till and silicic volcanics from nearby Peulik volcano controlled the dominantly phreatomagmatic course of the eruption.During the eruptions, steam and ash clouds reached maximum heights of about 6 km and a thin blanket of fine ash was deposited north and east of the vents up to a distance of at least 160 km. Magma started to pool on the floor of East Maar after four days of intense phreatomagmatic activity.The new melt is a weakly undersaturated alkali olivine basalt (Ne = 1.2%) showing some transitional character toward high-alumina basalts. The chemistry, an anomaly in the tholeitic basalt-andesite-dominated Aleutian arc, suggests that the new melt is primitive, generated at a depth of 80 km or greater by a low degree of partial melting of garnet peridotite mantle with little subsequent fractionization during transport.The Pacific plate subduction zone lies at a depth of 150 km beneath the maars. Their position appears to be tectonically controlled by a major regional fault, the Bruin Bay fault, and its intersection with cross-arc structural features. We favor a model for the emplacement of the Ukinrek Maars that does not link the Ukinrek conduit to the plumbing system of nearby Peulik volcano. The Ukinrek eruptions probably represent a genetically distinct magma pulse originating at asthenospheric depths beneath the continental lithosphere.  相似文献   

17.
华北地区上地幔温度及岩石圈厚度分布研究   总被引:2,自引:2,他引:0       下载免费PDF全文
杨嵩  熊熊  郑勇  单斌 《地球物理学报》2013,56(11):3855-3867
上地幔温度是控制地幔流变性和动力学过程的关键参数之一.本文利用高分辨率S波地震层析成像速度结果,基于岩石温度与地震波速度的关系,研究了华北地区上地幔50~300 km深度范围内的温度分布和"热"岩石圈厚度.为了验证结果的可靠性,本文用计算的上地幔60 km深度处的温度作为底面约束,得到了相应的地表热流.计算地表热流与观测地表热流之间符合程度较好,相对误差大部分都在地表热流观测误差范围之内.通过对上地幔的温度分布进行分析,我们研究发现:(1)在上地幔浅部,温度与地表构造之间有很好的对应关系.在小于170 km的深度上,温度呈现东高西低的分布态势.温度较高的区域集中在东部的河淮盆地、渤海湾盆地、华北平原和中部陆块的交界处、西部鄂尔多斯高原北缘的银川―河套地堑以及阴山地区,同时,这些地区的岩石圈厚度也相应较薄,大约为80~100 km;(2)西部的鄂尔多斯高原是整个华北地区岩石圈地幔温度最低的地区,比东部地区低200~400 ℃,岩石圈厚度相应最厚,平均岩石圈厚度达到140~150 km,最厚处超过160 km.(3)在170 km以下的软流圈地幔部分,温度分布发生反转,西部温度高于东部,表明东、西部陆块在地质历史时期经历了不同的深部地幔动力学过程.  相似文献   

18.
Summary Elastic waves from explosions were recorded at NORSAR and at a number of field stations, and the data were used for determining a crust-mantle model under the array. The number of explosions was eleven distributed on seven shot points. The total number of recording points was fifty-one, and the interpretation was based on 350 individual records.The velocities obtained for the crustal phases were 6.2, 6.6 and 8.2 km/sec for theP g ,P g andP n waves respectively. A deep crustal phase with a velocity of about 7.4 km/sec was observed. The mean depths to the discontinuities within the crust were determined to be 17 and 26 km. The depth to Moho varied greatly across the array from 31.5 km in the central part to 38 km under the C-ring. The maximum dip observed for the Moho was 12o.Contribution No. 57 to Norwegian Geotraverse Project.  相似文献   

19.
The Baikal is a deep long and narrow basin in East Siberia which follows a huge fault zone adjoining the Siberian Platform. The basin was formed by rapid subsidence of continental crust during the pas 3–4 Ma. It is bounded by normal faults which indicate extension of the crust during the subsidence. According to seismic reflection profiling data, the intensity of extension is not large (3–7%). It is much smaller than the thinning of the crystalline crust under the basin (up to 38%). The thinning and crustal subsidence can be explained by the transformation of gabbro in the lower crust into dense garnet granulites. The latter rocks (with Vp 7.7−7.8 km/sec) are still located under the remnant part of the crust. Rapid transformation took place due to an inflow of catalyzing fluid along the fault zone from the asthenospheric upwelling. This upwelling, which is at a depth of 80–90 km, caused a general uplift of a broad area in the south of East Siberia.  相似文献   

20.
长江中下游成矿带中段岩石圈电性结构研究   总被引:2,自引:2,他引:0       下载免费PDF全文
长江中下游成矿带位于大别造山带、长江中下游凹陷、江南隆起带等大地构造单元结合部位,通过在研究区内布设两条首尾相接共计150km长的大地电磁剖面,获得了50km以浅岩石圈尺度的电性分布.长江中下游地区中段地下电性结构显示出在地下10km和30km处分别存在明显的圈层结构,以此认为现今横向稳定的"电莫霍"反映了研究区经历燕山期陆内构造-岩浆活动后已基本上完成壳幔重新平衡;而分隔大地构造单元的郯庐断裂带、长江断裂带以及江南断裂带在电性上具有特征的梯度显现,在印支造山期后的引张背景下,断裂带成为强伸展活动带与控制了燕山期大范围的陆内岩浆活动;高导地幔的局域性存在以及从北向南地幔导电性的变化反映了在经受深部动力学过程中处于不同大地构造部位的地幔所遭受的不同类型的改造以及地幔深部的构造极性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号