首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于GPS数据分析渭河盆地现今地壳形变特征   总被引:2,自引:2,他引:0       下载免费PDF全文
基于2001—2015年流动及连续GPS观测资料,借助多面函数拟合法建立渭河盆地水平速度场模型,并计算球面坐标下的应变特征参数。结合陕西地区地质构造背景,分析渭河盆地水平速度场及应变场分布特征。结果表明:(1)渭河盆地西部GPS速度场受青藏块体及鄂尔多斯块体共同作用明显,西部GPS速度场大于中东部,且GPS速度场有顺时针旋转的运动特征。(2)渭河盆地西部主应力场变化复杂,中部的西安地区主应变差异变化明显,与2009年11月5日高陵M_S4.4地震对应;渭河盆地西部出现最大剪应变及面应变高值区及差异变化高梯度带,在西安附近出现最大剪应变及面应变差异变化梯度带,高陵地震震中位于零值线附近。(3)2001—2010年的主应变、最大剪应变、面应变变化比2011—2015年显著,表明高陵地震发生后,应力场进行了释放调整,近期渭河盆地地震紧迫性相对较低。  相似文献   

2.
基于2009—2014年渭河盆地及邻区GPS资料,利用Shen提出的连续形变场与应变场计算方法,获得渭河盆地及邻区的水平形变场及应变率场,结合构造地质、地震目录等资料对渭河盆地及邻区的现今地壳形变及构造特征进行研究,并得到如下结论:(1)鄂尔多斯地块南缘西段和东段GPS形变场变化差异明显,六盘山—陇县—宝鸡断裂带形变场以挤压变形为主,渭河盆地中部西安—咸阳地区的形变场呈现EW向挤压、SN向拉张特征;(2)主应变率、剪应变率、面应变率变化明显的区域位于鄂尔多斯地块西南缘的六盘山—陇县—宝鸡断裂带、渭河盆地中部的长安—临潼断裂与渭南塬前断裂以及韩城断裂与双泉—临猗断裂附近;(3)未来需要警惕六盘山—陇县—宝鸡断裂带、长安—临潼断裂与渭南塬前断裂以及韩城断裂与双泉—临猗断裂附近的地震危险性。  相似文献   

3.
鄂尔多斯块体周缘地区现今地壳水平运动与应变   总被引:7,自引:1,他引:6       下载免费PDF全文
位于青藏块体和华北块体之间的鄂尔多斯块体及其周缘地区是中国大陆构造活动最活跃的地区之一,从1300年至今,在块体周边断陷盆地和西南缘断裂带上发生了五次8级以上的地震.为了了解该地区现今地壳运动、应变状态以及断裂滑动分布,我们收集了中国大陆构造环境监测网络2009—2013年、国家GPS控制网、跨断陷盆地的8个GPS剖面等共527个流动站和32个连续站GPS观测数据,获得了高空间分辨率的地壳水平运动速度场,进一步用均匀弹性模型计算了应变率分布.结果表明,块体内部GPS站点向NEE方向运动,速度变化较小,应变率大多在(-1.0~1.0)×10~(-8)/a之间;山西断陷带构造运动与变形最为强烈,盆地相对于鄂尔多斯块体为拉张变形,应变率为(1.0~3.0)×10~(-8)/a,相对于东部山地则为挤压变形,应变率为(-2.0~-3.0)×10~(-8)/a,盆地西侧断裂(如罗云山断裂、交城断裂)以拉张运动为主,拉张速率为2~3mm·a-1,盆地东侧断裂主要以右旋缩短运动为主,速率为1~3mm·a-1;河套断陷带西部的临河凹陷处于较强的张性应变状态,应变率为(2.0~3.0)×10~(-8)/a;块体西南边缘处于压缩应变状态,应变率为(-1.0~-2.0)×10~(-8)/a,六盘山断裂存在明显的地壳缩短运动,速率约为2.1mm·a-1,速率在断裂附近逐渐减小,反映了断裂处于闭锁状态;相对于鄂尔多斯块体内部渭河断裂带为左旋运动,速率为1.0mm·a-1,盆地处在弱拉张变形状态.  相似文献   

4.
张永  张永志  瞿伟 《地震工程学报》2015,37(4):996-1000
基于向错-位错组合模型模拟渭河盆地内主要断层的滑动与转动运动变形,通过数值计算获得断层滑动及转动变形引起的地表水平位移,并与盆地内实测GPS水平位移进行了对比。结果表明:采用向错-位错组合模型能够完整地描述断层实际的滑动与转动运动变形状态,组合模型模拟断层滑动与转动引起的地表水平位移与实测GPS水平位移,无论在量级或是运动趋势上均具有较好的一致性特征。  相似文献   

5.
渭河盆地频发的地质灾害与其活跃的现今地壳构造活动密切相关.本文利用渭河盆地2001—2010年高精度GPS监测资料,采用多面函数法在球坐标系下建立了区域地壳速度与应变场模型,并探讨了平面与球面距离在多面函数模型构建中的最优化问题.结果表明:(1)利用多面函数法建立渭河盆地速度场时,随着区域结点数的增大,球面距离拟合精度较平面距离提升更大;(2)盆地内剪应变高梯度带主要位于三原—泾阳—咸阳、宝鸡—岐山一带,同时上述区域也是面膨胀与面压缩的显著过渡带,且为地震活动的多发区域;(3)盆地内最大、最小主应变轴优势方向与中强震震源机制解获得的P、T轴分布方位具有较好的一致性.研究结果进一步在大范围尺度内获得了渭河盆地现今地壳形变趋势性变化特征,为掌握该区域地壳运动及地质灾害深部驱动机制提供了一定的参考.  相似文献   

6.
汾渭断裂带近10年GPS观测获得的剖面变形与应变积累分析   总被引:1,自引:0,他引:1  
利用1999~2009年汾渭断裂带GPS速度场观测资料,研究了跨断裂剖面变形动态演化特性、应变积累的分段差异性以及汶川大地震等的可能影响.结果表明:近10年来山西断陷带南段、渭河盆地中东部应变积累相对较快,山西断陷带北端的蔚广盆地南缘断裂、渭河断裂西段也存在一定程度应变积累.汶川大地震影响相对明显,2007~2009年...  相似文献   

7.
利用美国麻省理工学院的GAMIT/GLOBK数据处理软件,计算获得了山西GPS观测网2001—2003年观测点在ITRF2000框架下的运动速率,并扣除了欧亚板块的整体运动。在此基础上,根据距离加权的最小二乘估计法计算了该区在2001-2003年的水平主应变,有效地避免了三角均匀应变场计算方法易受点位分布及划分网格形式的影响。得到的应变率结果显示,在山西断陷带内部,大同和运城盆地拉张较为明显,太原一临汾盆地之间呈现出一定的挤压特征,表明了山西各盆地内部区域应力场的差异以及整体构造的不连续性。  相似文献   

8.
鄂尔多斯地块周围的现代地壳应力场   总被引:8,自引:1,他引:8       下载免费PDF全文
根据近十年来区域台网的P波初动方向观测资料,得到了鄂尔多斯地块周围13个分区的综合地震节面解;结合已有的结果进行分析,地块周围确实存在有别于华北地区地壳应力场基本情况的小区域应力场:地块西南边缘的六盘山褶皱带处于北东东向的水平挤压应力状态;地块边缘的断陷盆地处于北西向的水平拉张应力状态,尤其是渭河盆地到临汾盆地的主压应力轴已近于直立;地块西北角和东北角处于北西向的水平拉张与北东向的水平挤压共同作用的应力状态;在地块的西面与北面,从北到南和由西往东,主压应力轴的走向由北北东向逐渐转变为近东西向。 此外,还对本文结果在板内动力学中的意义进行了简要的讨论。  相似文献   

9.
汶川8.0级地震前区域地壳运动与应变场动态特征   总被引:4,自引:1,他引:3  
江在森  武艳强  方颖  李鹏  王武星 《地震》2009,29(1):68-76
利用中国地壳运动观测网络GPS资料, 通过获取水平相对运动、 水平应变场分布变化等, 研究了汶川8.0级地震前的区域水平运动与应变率场变化, 以及大尺度地壳运动动态特征等。 研究结果表明, 发生汶川8.0级地震的龙门山断裂带, 由于受到其西侧巴颜喀拉地块向东运动的构造动力作用, 处于缓慢的应变积累状态。 在汶川地震前龙门山断裂带相对华南地块的差异运动小于GPS观测误差。 川滇地区应变场图像显示2004-2007年面应变率负值最高区出现在汶川8.0级地震震中区及其附近, 可能反应了局部挤压增强。 GPS基准站资料反映的大尺度北东向地壳缩短的相对运动增强, 也形成了促进龙门山断裂带发生大破裂的区域构造动力增强的背景条件。  相似文献   

10.
许多研究人员利用GPS测量的速度资料计算了地应变率场,但其结果差异较大. 本文将地质统计学中的Kriging方法引入到GPS观测的速度场研究中, 通过Kriging插值得到青藏高原及邻区均匀网格节点上的速度值,然后运用有限单元中形函数(Lagrange插值函数)的求导方法,计算每个网格单元积分点处的地应变率分量,从而获得青藏高原及邻区的地应变率场的分布. 计算结果显示,青藏高原主体处在南北向受挤压、东西向被拉张的应变状态之中,但高原东部地区则正好相反,即南北向拉张、东西向出现挤压. 青藏高原及邻区主应变率的方位与震源机制解中P轴、T轴的方向基本一致;最大主压应变率的高值区分布在喜马拉雅主边界冲断带及附近地区,高原内部出现主张应变率大于压应变率的现象,且高原内部处在拉张应变状态. 面膨胀率结果也表明,喜马拉雅山及附近地区为面收缩区,而高原内部其他地区主要为膨胀区;最大剪应变率分布清晰地显示出青藏高原周边的主要断裂带轮廓. 文中的应变率计算结果预示青藏高原及周边地区现今的地应变与较长期的地质活动之间有一定的继承关系.  相似文献   

11.
研究帕米尔高原的构造变形特征对于理解印度板块向北推挤过程中的应变分配方式以及应力转换模式具有重要的意义.本文利用区域GPS应变场、地震应变场与震源应力场分析帕米尔高原的构造形变特征.主要结论为:(1)该区域变形主要以NNW-SSE或近N-S向的挤压为主,在高原内部伴有明显的近ENE-WSW或E-W向拉张,应力方向在帕米尔高原与塔吉克盆地区域呈现逆时针旋转的趋势,而在塔里木盆地则显示几乎与帕米尔高原的一致的应力状态,这可能与两侧盆地块体的强度差异有关.(2)安德森断层参数A∅显示帕米尔高原北缘与西侧区域为逆断层应力状态,在高原内部为正断层应力状态,这与GPS应变的结果显示的应变主要集中在主帕米尔断裂与阿莱谷地附近而在高原内部应变较低是一致的,另外应力在喀喇昆仑断裂北段的方向基本平行于断层走向,以及断层北端较低的滑动速率,这说明了地壳挤压缩短可能是帕米尔高原主要的的构造变形特征,并不支持由于边界走滑断裂导致的应变分异或者块体挤出的模式.(3)综合考虑地震应变方向与SHmax从帕米尔北部NNW-SSE方向到天山北部的近N-S方向的转换,GPS应变方向在帕米尔高原两侧盆地都存在不同程度的旋转,应力场安德森参数A∅显示的应力状态以及SKS的结果显示的近ENE-WSW方向,我们认为印度板块向北推挤与天山造山带碰撞导致帕米尔高原不对称的径向逆冲是帕米尔高原现今构造变形的主要成因与构造模式.  相似文献   

12.
2008年3月21日新疆于田发生MS7.3级地震,2014年2月12日于田再次发生MS7.3级地震,两次地震相距约110 km.但是,前者震源机制为正断层,后者震源机制为左旋走滑断层.为进一步探讨这两次地震的孕育应力环境、发震机制及其动力学成因,本文进行三维有限元数值试验分析,计算了该区域在GPS约束条件下的速度场、应力和应变场变化,并与实际观测资料进行对比.数值计算得到的区域内几条主要大的走滑断层错动性质,与实际地质观察到的断层左旋或右旋性质吻合,验证了计算结果的可靠性.结果表明于田及其临近区域整体上处于北东-南西向挤压和北西-南东向拉张状态.在GPS速度约束条件下,2008年于田地震震中区域最大主张应变率大于最大主压应变率,处于以拉张为主的应力状态,NE走向断层受到北东-南西方向的拉应力作用,从而形成正断层;2014年于田地震处于拉张应变率与压应变率几乎一致的区域,NEE走向断层在NE-SW主压应力和NW-SE主张应力作用下发生左旋走滑.  相似文献   

13.
为了深入研究渭河盆地氦气资源分布规律,本文基于1∶200,000航空磁力ΔT总场异常数据计算了航磁化极异常,并对布格重力异常及航磁化极异常数据利用正则化滤波方法进行了异常的分解,获取了渭河盆地局部重力异常及局部磁力异常.结合已有的地质及地球物理研究成果,对布格重力异常、局部重力异常、航磁化极异常以及局部磁力异常特征进行了深入分析,并就重力异常、磁力异常、主要断裂及岩浆岩与不同氦气含量的钻井分布之间的关系进行了深入研究,探讨了本区氦气资源的分布规律.研究结果表明,渭河盆地氦气资源主要分布于盆地南部宝鸡-周至-长安-渭南-潼关一带,其中咸阳、周至、长安、蓝田、华阴等地区氦气含量较高.渭河盆地氦气资源分布与本区断裂有密切关系,尤其是秦岭北缘断裂、渭河断裂以及临潼-长安断裂.渭河盆地南部氦气资源的分布还与该区发育的花岗岩有密切关系.  相似文献   

14.
本文基于陕西2001—2010年流动GPS网观测数据,利用GAMIT/GLOBK软件对该数据进行处理,获得了渭河盆地高精度的水平运动速度场。利用最小二乘配置法得到区域应变背景特征参数,进而对高陵4.4级地震发震的可能原因进行分析。通过对主应变、剪切应变、面应变等分析研究,得到如下结论:高陵地震的发震区域易于积累剪切应变,并且容易受到应力调整的影响。汶川大震后引起周边应力重新分配调整,可能是高陵地震发生的关键要素。GPS应变场可以反映区域断层运动性质,与地质构造活动有着较好的一致性。  相似文献   

15.
喜马拉雅构造带及其临近区域是印度板块与欧亚大陆板块挤压碰撞的前缘地带.本文利用GPS实测速度场与震源机制解数据分别计算了研究区域现今地壳岩石圈表面的GPS应变场及岩石圈内部的主应力分布,研究了印度板块持续挤压作用下板块边界带地壳岩石圈现今地壳形变的空间分布特征.结果显示,南北向的剧烈挤压变形与东西向的拉伸变形是现今青藏高原南缘地壳岩石圈的主要变形特征.其中南北向的地壳挤压变形主要集中在主前缘冲断带与雅鲁藏布江缝合带之间.东西方向上,南北走向的亚东—谷露断裂是区域地壳东西向伸展变形的重要分界断裂.75°E是研究区域地壳形变的另一条显著不连续边界,其西侧地壳主压应变强度低、方向弥散且最大主压应力方向一致性较差,而东侧地壳主压应变方向与主压应力方向以及地壳水平运动速度场方向均具有较好的一致性.布格重力异常的小波多尺度辨析结果显示该分界带与循喜马拉雅西构造结楔入欧亚大陆的印度板块密切相关.  相似文献   

16.
GPS初步揭示的渭河盆地及边邻地区地壳水平运动特征h   总被引:16,自引:0,他引:16       下载免费PDF全文
利用中国地壳运动观测网络工程1999~2002年渭河盆地及邻近地区GPS观测资料,以及陕西省地震局2001~2002年的GPS观测资料,研究了渭河盆地及周邻地区地壳运动速度场. 结果表明, 渭河盆地及邻区的运动速率有明显的北东向条带状变化特征,鄂尔多斯块体南缘呈整体不连续性逆时针旋转运动,相对鄂尔多斯块体内部的榆林测点,平均速率约为5.7 mm/a;渭河盆地中部的彬县——西安——蓝田一线,两侧存在一个显著的左旋剪切带,其北部区域与铜川——泾阳——临潼——渭南小震频发区有较好的对应关系.   相似文献   

17.
渭河盆地是我国典型的断陷盆地,是中国大陆地裂缝活动、地面沉降活动最剧烈的地区之一.本文利用2004-2007年间的GPS数据,采用粒子群算法与位错理论模型相结合,对渭河盆地主要断裂的三维滑动速率进行了反演计算分析.结果表明:(1)断裂活动性质与地质测量方法获得的结果基本一致:除韩城—华县断裂以张裂为主外,渭河盆地主要断裂均以正倾滑为主,并具有走滑特征,呈张裂的运动趋势;(2)从滑动速率来看,秦岭北侧大断裂速率最大,可达4.5 mm/a.固关—宝鸡断裂活动最小,活动速率仅为1 mm/a左右;(3)在趋势上与现有的地质资料基本一致,以EW向断裂活动最强,NE方向较强,而NW方向较弱,并且分布上呈现南强北弱的特征.  相似文献   

18.
青藏高原东缘现今三维地壳运动特征研究   总被引:17,自引:9,他引:8       下载免费PDF全文
利用国家重大科学工程"中国地壳运动观测网络"、"中国构造环境观测网络"和相关项目1999-2011年GPS区域站观测资料,获得了青藏高原东缘地区现今地壳水平运动速度场图像;结合地质构造动力环境和区内发生的特大地震事件,初步分析了GPS观测反映的水平运动空间分布的分区差异性和时间变化的阶段性;进而与本研究区1970s-2011年水准测量获得的垂直运动背景场进行综合对比,进一步研究和探讨了区域现今三维地壳运动的时空分布特征及其机理.结果认为:①青藏高原东缘不同构造地带水平运动强度和方式的差异,受控于青藏高原向北挤压、向东挤出和绕东构造结旋转作用;而运动状态随时间变化的阶段性(尤其是汶川地震发震断裂及其相关构造地带)与特大地震的孕育、发生有关.②现今三维地壳运动呈现的高原山地挤压缩短隆升、盆地伸展下沉的山、盆构造活动分异与构造动力环境和深部物质活动有关,反映了新构造活动的继承性.③龙门山汶川发震地段长期受压、闭锁积累的应变能经Ms8.0特大地震集中释放之后处于松弛调整运动状态,但与之相关联的构造部位以及外围的西秦岭、川滇菱形块体东边界等构造地带应变积累仍在持续.  相似文献   

19.
随着空间大地测量技术不断发展,GPS观测的地壳水平形变速度场精度也在不断提高,更加严密的GPS应变分析模型将有助于促进更高精度的地壳运动模型的构建.大地线长度与对应球面弧长之间的差异与纬度、经度变化均有关,并且与纬度变化影响最为显著,纬度越低,相应的椭球面效应约显著.本文在最小二乘配置模型的基础上进一步研究并推导了基于椭球坐标系的GPS应变分析模型,通过该模型进一步计算了青藏高原南部喜马拉雅构造带及阿萨姆构造结地区现今GPS应变分布.最大、最小主应变的显示喜马拉雅山脉中部的南北向压缩变形最强,西部次之,东部最弱.在印度板块的俯冲推挤作用下,喜马拉雅构造带内部地壳的变形过程并不统一.本文研究发现雅鲁藏布江缝合带与亚东—古鲁断裂带是该区域地壳水平形变的两条重要分界构造,雅鲁藏布江缝合带南部、亚东—古鲁断裂西侧的条带状地区可能是青藏南部吸收来自印度板块俯冲挤压作用的主要区域,最大剪应变分布及面膨胀值分布均表明亚东—古鲁断裂带是喜马拉雅构造带东西向拉伸变形过程中的一条重要的分界构造.沿喜马拉雅构造带分布的地壳剧烈变形区域集中分布在断裂以西,向东跨过该断裂的GPS应变场大幅减弱.青藏高原东南缘以阿萨姆构造结为中心的顺时针旋转变形存在旋转内、外圈层速度不一致现象,旋转速率由内向外逐渐增强.  相似文献   

20.
针对2015年4月25日尼泊尔Mw7.8地震的孕震特征,本文首先对覆盖尼泊尔及周边地区的5套GPS水平速度场结果进行了融合,得到了近似统一参考框架下的速度场结果;在此基础上通过对此次地震震源区及周边地区的速度场、应变率场、基线时间序列分析,识别了震前变形特征.GPS应变率场结果显示,喜马拉雅主边界断裂存在大范围挤压应变积累,震源区处于近南北向应变积累高值过渡区.跨喜马拉雅构造带的GPS基线时间序列结果表现为持续缩短现象,表明印度板块与欧亚板块之间的持续挤压变形特征,2012年以来的缩短增强现象反映了印度板块对青藏块体的推挤增强作用明显.距离震中较近的西藏南部GPS同震位移结果以南向运动为主且指向震中,反映了青藏高原存在逆冲应变释放现象.综合此次尼泊尔地震前变形和同震应变释放特征,认为此次地震的孕震区域和同震应变释放区域均较大,将会对青藏高原的地壳变形与强震孕育产生深远影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号