首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wave disturbances in the troposphere over north and central India during winter when the subtropical westerlies prevail in the upper air over the area have been investigated by power-and cross-spectrum analysis. The power-spectrum study revealed the existence of basically two systems of periods 10.0–12.5 days and 4.5–5.5 days in the middle and upper troposphere. Both the long-and short-period systems have been found to be propagating eastwards at rates 5° and 10° long./day respectively. In both the cases lower temperatures are found to the east of the troughs. It is also noted that these systems build up the meridional temperature gradient and hence strengthen the upper tropospheric westerlies. Synoptic study of the transient systems is presented.  相似文献   

2.
Contrasting features associated with surplus and deficient precipitation years are studied to examine atmospheric circulation characteristics during the winter season viz., December, January February and March (DJFM) to assess the wintertime synoptic weather system affecting the western Himalayas. Large-scale balances of kinetic energy, vorticity, angular momentum, heat and moisture fields are analyzed. Winter circulations are studied over the domain 15°S–45°S and 30°E–120°E. This domain is considered particularly to illustrate the distribution of precipitation due to wintertime eastward moving synoptic weather systems called western disturbances. Surplus and deficient years of seasonal (DJFM) precipitation are identified using±20% departure from mean from uninitialized daily reanalysis data of fourty (1958–1997) years of the National Center for Environmental Prediction (NCEP), USA. The years 1965–1969, 1973 and 1991 are found to be surplus years and years 1962, 1963, 1971, 1977 and 1985 are found to be deficient years. Composites of these two categories are made. Comparative study is made using Students t-test of significance. Examining the aspects associated with energetics during the two extreme categories of winter seasonal precipitation years, higher heat flux convergence in excess years in the area of study of precipitation takes place. Diabatic heating shows cooling. Higher flux of convergence of kinetic energy and higher dissipation of kinetic energy are observed during surplus years.  相似文献   

3.
In the austral summer of 1992–1993 the passage of a storm system drove a strong upper ocean response at 45°S in the mid-South Atlantic. Good in situ observations were obtained. CTD casts revealed that the mixed layer deepened by \sim40 m over 4 days. Wind stirring dominated over buoyancy flux-driven mixing during the onset of high winds. Doppler shear currents further reveal this to be intimately related to inertial dynamics. The penetration depth of inertial currents, which are confined to the mixed layer, increases with time after a wind event, matched by a downward propagation of low values of the Richardson number. This suggests that inertial current shear is instrumental in producing turbulence at the base of the mixed layer. Evolution of inertial transport is simulated using a time series of ship-observed wind stress. Simulated transport is only 30-50% of the observed transport, suggesting that much of the observed inertial motion was forced by an earlier (possibly remote) storm. Close proximity of the subtropical front further complicates the upper ocean response to the storm. A simple heat balance for the upper 100 m reveals that surface cooling and mixing (during the storm) can account for only a small fraction of an apparent \sim1 °C mixed layer cooling.  相似文献   

4.
Variability of the subsurface temperature, current, and heat content in the tropical Pacific Ocean has been extracted in association with the two dominant modes of the sea surface temperature anomaly (SSTA): the low-frequency mode and the biennial mode. In a recent paper, these two modes were identified as the major modes of El Niño-Southern Oscillation (ENSO). The low-frequency mode, which explains about 36% of the total SSTA variability, represents the dominant component of SSTA variability in the tropical Pacific, and is associated not with a fast physical evolution but with a slow stochastic undulation. The biennial mode, which is the second dominant component and explains about 12% of the total variability exhibits, on the other hand, a strong physical evolution. The space–time patterns of the subsurface variability were derived from an assimilated data set via a cyclostationary empirical orthogonal functions (CSEOF) analysis and the regression of the resulting principal component (PC) time series on the target PC time series of the surface modes. Extracted space–time patterns describe the detailed evolution of the physical changes in the upper ocean of the tropical Pacific that are associated with the corresponding surface modes. Specifically, they clearly show the surface and subsurface connection of the physical changes during ENSO events, and the role of equatorial waves in the manifestation of physical changes at the surface. The derived patterns of heat content, subsurface temperature, and zonal current anomalies realistically depict the detailed temporal changes of those variables and are consistent with our understanding of the physics in the tropical Pacific Ocean. The biennial mode appears to depict faithfully the phase progression of El Niño and La Niña. The propagation of equatorial Kelvin waves along the thermocline is clearly visible during El Niño and La Niña events in the cyclostationary representation of the physical modes in the tropical Pacific Ocean. Although the low-frequency mode explains three times more SSTA variability than the biennial mode, the former does not induce strong equatorial wave activity. This observation is significant considering that both El Niño or La Niña are often viewed simply in terms of a significant SST change in the tropical Pacific. The results of the present study indicate: (1) that the two ENSO modes represent significantly different physical evolutions; (2) that the amount of SST warming or cooling does not dictate the physical evolution of ENSO; and (3) that the two modes play essentially different dynamical roles including the generation of equatorial waves.Responsible Editor: John Wilkin  相似文献   

5.
Observations taken by aircraft and conventional platforms are used to investigate dynamical, physical, and radiative processes within a marine stratus cloud during the Canadian Atlantic Storms Program (CASP) II field project which took place over the east coast of Canada. Stratus which formed over the ocean on February 6, 1992 during the nighttime, is studied to analyze cloud top and base processes. The cloud was supercooled during the study period. Fluctuations and fluxes are calculated along constant flight altitude legs approximately 100 km long in space. The scales of structures larger than 5 km are removed from the analysis using a running average technique. Droplet spectra obtained by a forward scattering spectrometer probe (FSSP) were used in a 1-D radiative transfer model to calculate infrared (IR) fluxes and radiative heating rates. A heat conservation equation was used to estimate vertical air velocity (w a ) within the cloud. The results showed that, because of a warmer ocean surface, significant moisture and heat were transferred from the ocean surface to the boundary layer. The cloud base was at about 400 m height and the top was at about 1.4 km.w a at the cloud base was estimated about 5 cm s–1. Strong IR cooling rate at the cloud top was calculated to be 75°C day–1 for a 100 m thick layer. Negative skewness inw a , suggesting narrow downdrafts, was likely due to radiative cooling at the cloud top. The entrainment velocity was found to be about 1.5 cm s–1 at cloud top. Mean moisture and heat fluxes within the cloud were estimated to be comparable to those from the ocean surface. Vertical air velocity at the cloud top due to radiative cooling was found to be about –40 cm s–1.  相似文献   

6.
The EISCAT UHF radar system was used to study the characteristics of E-region coherent backscatter at very large magnetic aspect angles (5–11°). Data taken using 60 s pulses during elevation scans through horizontally uniform backscatter permitted the use of inversion techniques to determine height profiles of the scattering layer. The layer was always singly peaked, with a mean height of 104 km, and mean thickness (full width at half maximum) of 10 km, both independent of aspect angle. Aspect sensitivities were also estimated, with the Sodankylä-Tromsø link observing 5 dB/degree at aspect angles near 5°, decreasing to 3 dB/degree at 10° aspect angle. Observed coherent phase velocities from all three stations were found to be roughly consistent with LOS measurements of a common E-region phase velocity vector. The E-region phase velocity had the same orientation as the F-region ion drift velocity, but was approximately 50% smaller in magnitude. Spectra were narrow with skewness of about –1 (for negative velocities), increasing slightly with aspect angle.  相似文献   

7.
基于中国气象局提供的气象站点月值资料,NOAA、CMAP降水格点月值资料,NDVI卫星资料及再分析资料,利用统计方法分析了1961-2014年青藏高原感热与中国东部季风雨带关键区夏季降水的年代际变化,并根据热动力平衡方程结合CESM模式试验解释了21世纪初高原感热异常对关键区夏季降水的影响机理.结果表明:21世纪初,黄淮、江淮地区降水增加,而长江以南地区降水减少.同时,高原感热也发生年代际增强,当春季感热增强后,大气热能上传导致夏季高原近地面产生气旋性环流异常,大气辐合;高层产生反气旋性环流异常,大气辐散.黄淮、江淮地区在对流层中低层受异常偏南风控制,高层受高原上空的大尺度反气旋环流影响产生异常偏北风.此外,高原感热增强通过影响黄淮、江淮地区产生暖平流输送和非绝热加热正异常,该区域产生异常的上升运动,降水量增加.长江以南地区在对流层中低层存在一个异常的反气性环流,有来自海洋的冷平流输送,同时大气非绝热加热在该地区为负异常,产生异常的下沉运动,降水量减少.模式敏感性试验的结果证实了当高原感热发生年代际增强,黄淮、江淮地区水平温度平流及非绝热加热为正异常,而在华南地区为负异常,从而导致黄淮、江淮地区大气上升运动增强,降水增加;而华南地区下沉运动增强,降水减少.  相似文献   

8.
Data on the South Atlantic monthly sea surface temperature anomalies (SSTA) are analysed using the maximum-entropy method. It is shown that the Markov first-order process can describe, to a first approximation, SSTA series. The region of maximum SSTA values coincides with the zone of maximum residual white noise values (sub-Antarctic hydrological front). The theory of dynamic-stochastic climate models is applied to estimate the variability of South Atlantic SSTA and air-sea interactions. The Adem model is used as a deterministic block of the dynamic-stochastic model. Experiments show satisfactorily the SSTA intensification in the sub-Antarctic front zone, with appropriate standard deviations, and demonstrate the leading role of the abnormal drift currents in these processes.  相似文献   

9.
An attempt is made to obtain a combined geophysical model along two regional profiles: Black Sea— White Sea and Russian Platform—French Central Massif. The process of the model construction had the following stages: 1. The relation between seismic velocity (Vp, km/s) and density (σ, g/cm3) in crustal rocks was determined from seismic profiles and observed gravity fields employing the trial and error method. 2. Relations between heat production HP (μW/m3), velocity and density were established from heat flow data and crustal models of old platforms where the mantle heat flow HFM is supposed to be constant. The HFM value was also determined to 11 ± 5 mW/m2. 3. A petrological model of the old platform crust is proposed from the velocity-density models and the observed heat flow. It includes 10–12 km of acid rocks, 15–20 km of basic/metamorphic rocks and 7–10 km of basic ones. 4. Calculation of the crustal gravity effects; its substraction from the observed field gave the mantle gravity anomalies. Extensively negative anomalies have been found in the southern part of Eastern Europe (50–70 mgal) and in Western Europe (up to 200 mgal). They correlate with high heat flow and lower velocity in the uppermost mantle. 5. A polymorphic advection mechanism for deep tectonic processes was proposed as a thermal model of the upper mantle. Deep matter in active regions is assumed to be transported (advected) upwards under the crust and in its place the relatively cold material of the uppermost mantle descends. The resulting temperature distribution depends on the type of endogeneous regime, on the age and size of geostructure. Polymorphic transitions were also taken into account.  相似文献   

10.
Two Fourier transform spectrometers have been used to investigate the properties of the near-infrared hydroxyl (OH) nightglow emission under high-latitude summertime conditions and any association with noctilucent clouds (NLCs). The measurements were made from Poker Flat Research Range, Alaska (65.1°N, 147.5°W), during August 1986. Simultaneous photographic observations of the northern twilight sky were made from Gulkana, Alaska (62.2°N, 145.5°W), approximately 340 km to the south to establish the presence of NLCs over the spectrometer site. Data exhibiting significant short-term variations in the relative intensity (as much as 50-100%) and rotational temperature (typically 5–15 K) were recorded on six occasions when NLCs were observed. Joint measurements were also obtained on several “cloud-free” nights. No obvious relationship was found linking the mean OH intensity or its variation with the occurrence of NLCs. However, a clear tendency was found for the mean OH temperature to be lower on NLC nights than on cloud-free nights. In particular, a significant fraction of the OH(3-1) band spectra recorded by each instrument (16-57%) exhibited temperatures below \sim154 K on NLC nights compared with <3% on cloud-free nights. This result is qualitatively consistent with current models for ice particle nucleation and growth, but the mean OH temperature on NLC nights (\sim156 K) was significantly higher than would be expected for long-term particle growth in this region. These observations raise questions concerning the expected proximity of the high-latitude, summertime OH layer and the NLC growth region.  相似文献   

11.
A continental shelf scale survey from 22°S to 34°S along the Western Australia coast provides the first detailed synoptic examination of the structure, circulation and modification of the southward flowing Leeuwin Current (LC) during the late austral autumn-early winter (May-June 2007). At lower latitudes (22°S-25°S), the LC was masked within a broad expanse of warm ambient surface water, which extended across the shelf and offshore before becoming constrained at the shelf break and attaining its maximum velocity of ∼1.0 m s−1 at 28°S. The temperature and salinity signature of the LC experienced substantial modification as it flowed poleward; surface temperature of the LC decreased by ∼5.25 °C while surface salinity increased by ∼0.72, consistent with climatology estimates and smaller (larger) for temperature (salinity) than those found during summer. Subsequently, LC water was denser by ∼2σT in the south compared to the north, and the surface mixed layer of the LC revealed only a small deepening trend along its poleward trajectory. Modification of the LC resulted from a combination of mixing due to geostrophic inflow and entrainment of cooler, more saline surrounding subtropical waters, and convective mixing driven by large heat loss to the atmosphere. Air-sea heat fluxes accounted for 50% of the heat lost from the LC in the south, whilst only accounting for 25% in the north, where large geostrophic inflow occurred and the LC displayed its maximum flow. The onshore transport was characterised by distinct jet-like structures, enhanced in the upper 200 m of the water column, and the presence of eddies in the vicinity of the shelf break generated offshore transport.  相似文献   

12.
The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).  相似文献   

13.
The variability of sedimentary thermal conductivities with increasing temperature are explored for their impact on estimates of present-day heat flux and subsurface temperature gradient. For sand thicknesses less than about 10–20 km, or shale thicknesses less than about 40–80 km, the subsurface temperature is closely linearly proportional to the thermal resistance integral obtained in the absence of the temperature dependence of thermal conductivity. Estimates of heat flux should be increased (decreased) by about 5% for sands and decreased by about 1% for shales. For salt, because of the much shorter temperature range over which its thermal conductivity decreases, effects produced by the temperature dependence are more noticeable: heat flux should be increased by around 13%, salt thicknesses in excess of 5 km will yield major (around 30–100°C) changes in their temperature regimes solely as a consequence of the temperature-dependent thermal conductivity, and the linear increase of temperature with increasing thermal resistance is not an adequate approximation but has to be replaced with a more exact exponential increase.The impact of the variations, particularly in the case of salt, for geologic processes is briefly considered.  相似文献   

14.
Summary Temperature and conductivity measurements show, that in the Southern part of Transdanubia (the part of Hungary which lies Westwards from Danube) the heat flow is about 2–2.4·10–6 cal/cm2 sec. Eastward from the Danube, in the Hungarian Plain estimates are even higher, and vary between 2.3·10–6 and 2.8·10–6 cgs. The gradient of temperature is everywhere quite high, 5.0 resp. 5.8·10–4 deg. C/cm on the average. Thus, at a depth of 1000 m, the virgin rock temperature is about 60–70 deg. C, at 2000 m about 110–130 deg. C.  相似文献   

15.
The effects of small water bodies or lakes on the surface sensible and latent heat fluxes and the transport of heat and water vapour in the atmospheric boundary layer (ABL) over the Mackenzie River Basin (MRB) are studied from two cases, which occurred on 2 and 8 June 1999 during the warm season. The synoptic condition for the cases is representative of about 33% of the synoptic situation over the MRB. The two events are simulated using the Canadian mesoscale compressible community (MC2) model. A one‐way nesting grid approach is employed with the highest resolution of 100 m over a domain of 100 km2. Experiments were conducted with (LAKE) and without (NOLAKE) the presence of small water bodies, whose size distribution is obtained through an inversion algorithm using information of their linear dimension determined from aircraft measurement of surface temperature during MAGS (the Mackenzie GEWEX (Global Energy and Water Cycle Experiment) Study) in 1999. The water bodies are assumed to be distributed randomly in space with a fractional area coverage of 10% over the MRB. The results show that, in the presence of lakes, the domain‐averaged surface sensible heat flux on 2 June 1999 (8 June 1999) decreases by 9·3% (6·6%). The surface latent heat flux is enhanced by 18·2% (81·5%). Low‐level temperature advection and the lake surface temperature affect the air–land/lake temperature contrast, which in turn controls the sensible heat flux. In the absence of lakes the surface wind speed impacts the latent heat flux, but in the presence of lakes the moisture availability and the atmospheric surface layer stability control the latent heat flux. The enhancement is smaller on 2 June 1999 as a result of a stable surface layer caused by the presence of colder lake temperatures. The domain‐averaged apparent heat source and moisture sink due to turbulent transports were also computed. The results show that, when lakes are present, heating and drying occur in the lowest 100 m from the surface. Above 100 m and within the ABL, there was apparent cooling. However, the apparent moistening profiles reveal that lakes tend to moisten the ABL through transfer of moisture from the lowest 50–100 m layer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Active and break phases of the Indian summer monsoon are associated with sea surface temperature (SST) fluctuations at 30–90 days timescale in the Arabian Sea and Bay of Bengal. Mechanisms responsible for basin-scale intraseasonal SST variations have previously been discussed, but the maxima of SST variability are actually located in three specific offshore regions: the South-Eastern Arabian Sea (SEAS), the Southern Tip of India (STI) and the North-Western Bay of Bengal (NWBoB). In the present study, we use an eddy-permitting 0.25° regional ocean model to investigate mechanisms of this offshore intraseasonal SST variability. Modelled climatological mixed layer and upper thermocline depth are in very good agreement with estimates from three repeated expendable bathythermograph transects perpendicular to the Indian Coast. The model intraseasonal forcing and SST variability agree well with observed estimates, although modelled intraseasonal offshore SST amplitude is undere-stimated by 20–30 %. Our analysis reveals that surface heat flux variations drive a large part of the intraseasonal SST variations along the Indian coastline while oceanic processes have contrasted contributions depending of the region considered. In the SEAS, this contribution is very small because intraseasonal wind variations are essentially cross-shore, and thus not associated with significant upwelling intraseasonal fluctuations. In the STI, vertical advection associated with Ekman pumping contributes to ~30 % of the SST fluctuations. In the NWBoB, vertical mixing diminishes the SST variations driven by the atmospheric heat flux perturbations by 40 %. Simple slab ocean model integrations show that the amplitude of these intraseasonal SST signals is not very sensitive to the heat flux dataset used, but more sensitive to mixed layer depth.  相似文献   

17.
前冬南半球环状模对春季华南降水的影响及其机理   总被引:11,自引:0,他引:11       下载免费PDF全文
郑菲  李建平 《地球物理学报》2012,55(11):3542-3557
利用相关、合成、奇异值分解等统计诊断和数值模拟方法,分析了前冬(12—2月)南半球环状模(SAM)对春季(3—5月)中国华南降水的可能影响及其机理.诊断分析的结果表明,前冬南半球环状模与春季华南降水存在显著的负相关关系,也即前冬SAM偏强(弱),对应春季华南降水偏少(多).为了探讨这种南半球中高纬信号影响滞后一个季节的华南降水的物理机制,需要考虑下垫面海洋的桥梁作用.诊断分析的结果表明,当前冬SAM偏强时,南半球中高纬海洋的潜热释放受到海表风速影响发生变化,导致30°S—45°S海温偏高, 45°S—70°S海温偏低,并且异常的海温信号可以持续到次年春季.这种前冬SAM偏强时的春季海温异常信号,对应着春季西北太平洋副热带高压位置偏东且强度偏弱,西北太平洋上盛行异常气旋式环流,华南地区上空对流层低层有异常东北风和风场辐散,西南水汽输送较常年减弱,为春季降水偏少提供了有利的条件.前冬SAM偏弱时,南半球中高纬的海温异常及其引起的华南区域大气环流异常相反,有利于华南降水偏多.利用CAM3进行海温敏感性试验,也证明了上述南半球中高纬海温异常对应的环流异常.模拟结果表明,SAM偏强时的海温异常,对应着华南上空对流层低层的东北风异常、风场辐散、以及下沉运动,不利于华南降水生成;SAM偏弱时的海温异常,对应的环流异常相反,有利于华南降水增多,验证了资料诊断的结论.综上,在前冬SAM影响春季华南降水的过程中,体现了海气耦合桥的作用,即:海洋储存了冬季SAM的异常信号并在春季释放,通过影响春季大气环流,进一步影响华南春季降水.因此,前冬SAM为华南春季降水预测提供了一个有意义的前期信号.  相似文献   

18.
Summary Ozone observations made during 1964 and 1965 at nine Mediterranean, central and southeast European stations (latitudes 38–52°N, longitudes 9–23°E) reveal patterns of seasonal and shorter time-variations in total ozone as well as in vertical ozone distribution. During the winter-spring season, a significant increase (20%) of ozone occurs essentially simultaneously with the spring stratospheric warming, and is noticed at all stations.—Autocorrelation coefficients show that the total ozone on any day is strongly related to the total ozone of the preceding four days in summer or one or two days in winter-spring or autumn. Changes of total ozone in southeast Europe correlate closely with those in Mediterranean Europe, and less closely with those from north central Europe.—Power spectrum analysis detects the dependence of ozone changes on processes with periods longer than 6–8 days, and indicates a significant oscillation with a period of 14–15 days, perhaps a result of the direct influence of lower stratospheric circumhemispheric circulation. — Reliable vertical ozone soundings were not available from all stations. The mean vertical profiles at Arosa, Switzerland (47°N) and Belsk, Poland (51°) are very similar. More than 60% of the variability of the total ozone is contributed by changes in ozone concentration between 10 and 24 km; less than 10% is due to variations above 33 km. Changes in ozone partial pressure at different altitudes, and relationships of those changes to total ozone, indicates that a mean vertical ozone distribution may be described adequately by considering the ozone changes in four layers: a) the troposphere, b) the lower stratosphere up to 24 km, c) a transition layer from 24 km to a variable upper border at 33–37 km, and d) the layer above 33–37 km.Part of this paper was presented at the Ozone Seminar in Potsdam, Germany, 27 September 1966.  相似文献   

19.
Upper oceanographic and surface meteorological time-series observations from a moored buoy located at 9.98°N, 88°E in the south-western Bay of Bengal (BoB) were used to quantify variability in upper ocean, forced by a tropical cyclone (TC) Jal during November 2010. Before the passage of TC Jal, salinity and temperature profiles showed a typical BoB post-monsoon structure with relatively warm (30 °C) and low-saline (32.8 psu) waters in the upper 30- to 40-m layer, and relatively cooler and higher salinity (35 psu) waters below. After the passage of cyclone, an abrupt increase of 1 psu (decrease of 1 °C) in salinity (temperature) in the near-surface layers (up to 40-m depth) was observed from buoy measurements, which persisted up to 10–12 days during the relaxation stage of cyclone. Mixed layer heat budget analysis showed that vertical processes are the dominant contributors towards the observed cooling. The net surface heat flux and horizontal advection together contributed approximately 33 % of observed cooling, during TC Jal forced stage. Analysis showed the existence of strong inertial oscillation in the thermocline region and currents with periodicity of ~2.8 days. During the relaxation stage of the cyclone, upward movement of thermocline in near-inertial frequencies played significant role in mixed layer temperature and salinity variability, by much freer turbulent exchange between the mixed layer and thermocline.  相似文献   

20.
Summary Winter and summer Mid-Latitude (45oN) atmospheres to 90 km, two of a family of nine atmospheres supplemental to the U.S. Standard Atmosphere (1962), provide information on atmospheric structure by seasons rather than the mean annual data shown in the Standard, which is described for reference. Principal data sources for constructing these atmospheres consisted of summaries of Northern Hemisphere radiosonde observations at stations near, 45oN, and observations made from rockets and instruments released by rockets, from nearly a dozen Northern Hemisphere launching sites.Winter and summer temperature-height profiles begin with surface temperatures of –1° and +21 °C, respectively, and contain three isothermal layers: –58°C at 19 to 27 km in winter and –57.5°C at 13 to 17 km in summer; –7.5° and +2.5°C at 47 to 52 km; and –79.5 and –99°C at 80 to 90 km, respectively. The temperature-height curve for the U.S. Standard has a surface temperature of +15°C with isothermal regions at 11 to 20 km (–56.5°C), 47 to 52 km (–2.5°C), and 80 to 90 km (–92.5°C). In all three atmospheres, temperature gradients for various segments are linear with geopotential, height. Humidity is incorporated into the lowest 10 km of the Supplemental Atmospheres, whereas the Standard is dry. Figures and tables depict temperature, relative humidity, pressure, and density for winter and summer, and temperature, pressure, density, speed of sound, and dynamic viscosity for the U.S. Standard Atmosphere.The Supplemental Atmospheres are mutually consistent; zonal wind profiles, computed from the geostrophic wind equation and selected pressure heights, compare favorably with existing radiosonde and rocket wind observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号