首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 498 毫秒
1.
冉慧敏  张志斌  赵庆 《中国地震》2014,30(3):432-441
利用CAP方法反演了2012年6月30日新源-和静Ms6.6地震序列震源机制解.反演得到Ms6.6地震节面Ⅰ的参数为:走向299°,倾角68°,滑动角164°;节面Ⅱ的参数为:走向35°,倾角75°,滑动角23°;P轴方位角166°,倾角5°,T轴方位角258°,倾角26°;矩震级Mw为6.3;矩心深度为21km.此次地震序列破裂优势方向为NWW,倾角以60°~90°为主,滑动角以±180°±30°为主;P轴方位的优势取向为近NS向,T轴优势取向为近EW向.初步分析表明,主震节面Ⅰ为发震断层,是走向为NWW、近乎直立的左旋走滑断层.此次6.6级地震震源断错性质和主压应力方向以及序列P轴优势方位与震源区周围构造应力场特征基本一致.  相似文献   

2.
江苏南部地区现今震源机制和应力场特征   总被引:1,自引:0,他引:1  
利用2000年3月至2014年4月江苏及邻区数字地震波形资料,采用P波、S波初动和振幅比求解方法计算了江苏南部地区123次中小地震震源机制解。分析震源机制解特征表明,研究区中小地震震源类型以走滑型为主,其次为正断层类型,P、T轴优势方向分别为NEE—SWW和NNW—SSE向。依据盆地和断裂发育、历史及现代中小地震分布、震源机制等特征将研究区划分为A区和B区。采用Gphart方法分别反演了这两个区域应力张量,结果显示:A区最大主应力方位角为78°,倾角为23°,最小主应力方位角为340°,倾角为17°;B区最大主应力方位角为60°,倾角为25°,最小主应力方位角为330°,倾角为1°。两个分区应力场结果的差异显示了局部应力场的不均匀性,体现了局部地区地质条件、构造活动等差异性。各分区应力场特征与区内的中强地震震源机制特征较为一致,这在一定程度也佐证了反演结果的可靠性。  相似文献   

3.
利用FOCMEC方法反演了2011年9月10日江西瑞昌与湖北阳新交界MS4.6地震的震源机制解。反演结果为:节面I的走向304°,倾角76°,滑动角4°;节面Ⅱ的走向213°,倾角86°,滑动角165°;P轴的方位角、倾角分别为260°、7°;T轴的方位角、倾角分别为168°、13°;B轴的方位角、倾角分别为19°、75°。其中节面Ⅱ的走向和活动性质与震中附近的郯庐断裂带的分支断裂——池河—西山驿断裂较为接近。分析认为NNE向的池河—西山驿断裂可能是瑞昌—阳新MS4.6地震的发震构造。  相似文献   

4.
2008年5月12日四川汶川8.0级地震与部分余震的震源机制解   总被引:4,自引:0,他引:4  
郭祥云  陈学忠  李艳娥 《地震》2010,30(1):50-60
采用区域和远台Pn或Pg初至波初动符号, 利用下半球等面积投影, 求解了2008年5月12日四川汶川8.0级地震和截止到2008年12月10日发生的部分4级以上余震的震源机制解。 汶川8.0级地震的震源机制为: 节面Ⅰ的走向为5°, 倾角为48°, 滑动角为39°; 节面Ⅱ的走向为247°, 倾角为62°, 滑动角为131°。 P轴方位角为309°, 仰角为8°, T轴方位角为208°, 仰角为54 °, B轴方位角为44°, 仰角为35°。 结合地质构造和余震空间分布, 可以确定节面Ⅱ为发震断层面。 根据震源机制解, 引发本次地震的断层活动主要表现为逆冲, 主破裂面为S67°W与该地震所在断层的走向基本一致(断裂总体走向N45°E)[1]; 主压应力轴P轴为N51 °W, 主压应力轴P轴方位与该区域构造应力场方向基本一致。 根据余震震源机制解结果, 龙门山断裂带南段发生的余震与北段发生的余震的震源机制都具有优势分布, 且两者差异明显。 早期发生在南段的余震的破裂是以逆倾滑动为主, 兼有走向滑动; 而随着时间的推移, 余震向北段迁移, 在龙门山构造的北段地震震源的破裂方式以走向滑动为主, 兼有一定的逆倾滑动; 龙门构造带南段震源应力场受主震应力场的控制, 而龙门构造带北段震源应力场不仅受区域应力场的影响, 还受主震应力场的影响。  相似文献   

5.
北京时间2014年7月9日麦盖提县发生M_S 5.1地震,基于新疆地震台网数字波形资料,利用CAP方法反演本次地震及附近区域2009—2014年M_S 3.0以上地震震源机制解,得到麦盖提M_S 5.1地震节面Ⅰ的参数为:走向0°,倾角80°,滑动角-169°;节面Ⅱ的参数为:走向268°,倾角79°,滑动角-10°;P轴方位角224°,倾角15°;T轴方位角314°,倾角1°。经震源机制解和地质资料综合研究认为,节面Ⅱ为可能破裂面。该区域地震以走向滑动为主,构造应力场主要表现为受近南北向挤压为主的应力场作用,局部叠加塔里木块体和南天山扭力作用。  相似文献   

6.
运用CAP方法反演2018年9月4日新疆伽师MS5.5地震及MS≥3.0余震的震源机制解,计算得出伽师MS5.5地震的震源机制解为:节面Ⅰ:走向48°,倾角83°,滑动角3°;节面Ⅱ:走向318°,倾角87°,滑动角173°;主压应力P轴方位角为3°,倾角为3°,主张应力T轴方位角273°,倾角为7°;矩震级为MW5.3。使用双差定位法对主震及余震共计129个MS≥1.5地震进行重新定位,并对震源机制解和重定位结果进行综合分析,发现此次重定位地震结果与CAP方法反演结果的展布方向一致,地震集中分布在NEE向,因此认为节面I是此次地震的主破裂面;重定位后NS、EW和UD方向的平均相对误差分别为0.25、0.23及0.09 km,平均走时残差为0.026 s,震源深度集中分布在5~15 km。此次地震及其余震附近地表无明显的断层出露,所以初步判定2018年新疆伽师MS5.5地震可能受控于柯坪断裂带附近的隐伏断裂。  相似文献   

7.
采用震中距范围约200 km内的P波初动资料,确定了西宁盆地及邻近区域2008~2011年发生的62个M_L2.3~5级的中小地震的震源机制,并统计了与震源机制解对应的主应力轴的方向性等参数.结果显示,地震性质主要显示为逆断层和走滑断层,小震的震源机制解虽然具有一定的随机性.北部区域应力场计算结果表明P轴方位角可确定范围为47°~52°,仰角为4°~5.5°,T轴方位角可确定范围为142°~148°,仰角为43°~45°;南部区域应力场计算结果表明P轴方位角可确定范围为155°~255°,仰角为1°左右,T轴方位角可确定范围为0°,仰角为89°~90°.综合数据结果显示,北部区域地震的性质以逆走滑为主,南部区域较为复杂,但显示出地震性质仍以逆断层性质为主.从区域应力场统计特征来看,看似无规律的小震震源机制卖质上主要受北东—西南向压缩应力及北西西—东南东方向上的拉张应力所控制.分析表明,在区域应力场的构造背景下,地震(尤其是小地震)的震源机制解可能存在多样性,但大量样本反映的主应力轴仍然与该区域内的构造背景一致.这一现象可为相关工作,如小区域震源机制解和余震震源机制解的统计等方面研究,提供必要的借鉴和参考.  相似文献   

8.
2011年4月10日四川省炉霍县发生了Ms5.3级地震,利用这次地震的观测数据,采用了CAP、TDMT-INVC和Snoke三种方法,研究不同解算方法得到的此次地震震源机制解结果。结果显示:(1)三种方法计算出的震源机制解参数基本一致,说明三种方法求解结果是稳定、可靠的。(2)计算得到的地震矩震级Mw为5.2;节面I的参数为:走向45°,倾角84°,滑动角-160°;节面Ⅱ的参数为:走向313°,倾角70°,滑动角-6°;P轴方位角271°,仰角18°;T轴方位角177°,仰角10°;发震断层属于走滑型略兼正倾滑分量性质。(3)最佳拟合震源深度为11 km,与该区域的优势发震层位深度比较一致。(4)该次地震震源机制解节面II参数与震中附近鲜水河断裂带的产状较为相同,主压应力方向与区域应力方向也比较一致,这些说明此次地震是鲜水河断裂左旋走滑错动的结果。  相似文献   

9.
通过收集整理关中盆地1972—2018年中小地震的震源机制解,分析其震源破裂类型与空间分布特征,反演得到关中盆地地壳应力场特征为:最大主压应力轴方位261.8°,倾角48.8°;中等主压应力轴方位74.3°,倾角40.9°;最小主压应力轴方位167.4°,倾角3.7°。同时结合活动构造,探讨关中盆地构造变形和强震发生的动力学机制。  相似文献   

10.
北京时间2020年7月23日04时07分,西藏自治区那曲市尼玛县发生MS6.6地震,震源深度10 km,震中位置为(33.19°N,86.81°E)。主震发生当日18时50分,发生一次MS4.8强余震,震源深度为10 km。本文基于西藏、青海、新疆区域波形资料,采用ISOLA近震全波形方法对这两次地震进行震源机制反演。结果显示,尼玛MS6.6主震的最佳断层面解为:节面Ⅰ走向8°/倾角46°/滑动角?93°,节面Ⅱ走向191°/倾角44°/滑动角?87°;矩震级MW6.4,最佳矩心深度7 km。震源区应力主轴的空间取向为:主压力轴P的方位角220°、倾伏角88°,主张力轴T方位角99°、倾伏角1°。MS4.8强余震的最佳断层面解为:节面Ⅰ走向12°/倾角47°/滑动角?106°,节面Ⅱ走向214°/倾角45°/滑动角?74°;矩震级MW5.0,最佳矩心深度6 km。震源区应力主轴的空间取向为:主压力轴P的方位角207°、倾伏角78°,主张力轴T方位角113°、倾伏角1°。震源机制反演结果表明,这两次地震均为以正断型为主的地震事件,与震源区附近先前地震的震源机制有较好的一致性。结合周边地质构造和余震分布,我们认为尼玛MS6.6地震可能是由位于日干配错断裂和依布茶卡盆地西缘断裂之间的一条正断层活动所引发的。   相似文献   

11.
汶川8.0级地震序列的小震震源机制及应力场特征   总被引:4,自引:1,他引:3  
利用区域地震台网的数字地震波记录资料,由垂直向记录P和S振幅比值,结合部分清晰的P波初动记录资料,反演得到了2008年5月12日至2009年4月12日汶川8.0级地震序列中829个ML≥3.5的小震震源机制解。采用统计和力轴张量计算方法,分析了震源机制解参数并求取了余震区平均应力场。结果表明:用余震区北段小震震源机制解求得的节面为直立或倾斜,走向为NNE-SSW向,主压应力P轴方位为SWW-NEE方向,计算得到的平均应力张量σ1方向为77.1°;用余震区南段小震震源机制解求得的节面倾角较陡,在50°~90°之间,走向相对较分散,平均应力张量σ1方向为92.4°,呈EW向。从余震区南、北段的平均应力场方位随时间演化过程可以看出,余震区在2008年8月、9月、12月和2009年1月处于应力场调整阶段。最后研究了余震区南、北段的震源机制一致性参数θ及逆冲型地震类型随时间的变化,得到了一些有意义的结果。  相似文献   

12.
利用全球震源机制解资料,采用力轴张量计算法,反演中国大陆附近板块边界线上的构造应力场空间分布,其最大主压应力轴的方位角与GPS研究得到的板块运动方向一致,太平洋板块西边界和菲律宾板块琉球岛弧段的最大主压应力轴的倾角与板块俯冲倾角基本相当,因此认为该方法反演的构造应力场真实可靠。1999年、2005年和2011年太平洋板块日本本州段的最大主压应力轴方位角存在转折现象,震例总结显示该转折现象往往对应华北地区5级以上,甚至6级左右地震,但2011年的转折变化对应华北地震的震级在5级左右。根据对太平洋板块西边界的分段研究,认为2011年的转折变化主要是由42°~50°N段的构造应力场转折引起的,而该段从地理位置结合俯冲方向来看,影响的主要地区是东北地区,而对华北的影响相对较小,因此导致对应地震的震级偏低。1992—2000年菲律宾板块琉球岛弧段的最大主压应力轴方位角存在大幅度、长时间的逆时针偏转现象,分析认为是造成同期华北南部地区发生多次具有典型华南应力场特征地震的原因。  相似文献   

13.
李君  王勤彩  郑国栋  刘庚  周辉  周聪 《地震学报》2019,41(2):207-218
利用双差定位方法对2018年松原MS5.7地震序列中ML≥1.0地震重新定位,之后使用CAP方法求解松原MS5.7地震序列中强地震的震源机制解,再借助MSATSI软件包反演得到松原地区的区域应力场。综合分析以上研究结果得到如下结论:① 松原MS5.7地震序列发生在NW走向的第二松花江断裂与NE走向的扶余—肇东断裂交会处,将地震精定位结果沿两条断层走向作剖面分析,NW向剖面主轴长度约为5 km,震中分布均匀,NE向剖面主轴长度亦约为5 km,震中呈倾向NE的高倾角分布;② 该序列中的4次ML≥3.7地震的震源机制解具有良好的一致性:节面Ⅰ走向为NE向,节面Ⅱ走向为NW向,均为高倾角走滑断层。中强地震的震源机制节面解与第二松花江断裂性质基本一致,由此推断第二松花江断裂是本次松原地震的发震断层;③ 松原地区的主压应力方位角为N86°E,倾角为7°,主张应力方位角为N24°E,倾角为71°。松原地区的区域应力场既受到大尺度的板块构造运动的控制,又受到区域构造运动的影响。在太平洋板块对北东亚板块向西俯冲作用下,东北地区产生了近EW向的主压应力,受周边地质构造控制,松辽盆地内NE向断裂与NW向断裂交会处易发生走滑型地震,2018年松原MS5.7地震正是在这种构造作用控制下发生的中强地震。   相似文献   

14.
The Oct.1,2014 M5.0 Yuexi earthquake occurred on the Daliang Shan fault zone where only several historical moderate earthquakes were recorded.Based on the waveform data from Sichuan regional seismic network,we calculated the focal mechanism solution and centroid depth of the M5.0 Yuexi earthquake by CAP (Cut and Paste) waveform inversion method,and preliminarily analyzed the seismogenic structure.We also calculated the apparent stress values of the M5.0 earthquake and other 14 ML≥4.0 events along the Shimian-Qiaojia fault segment of the eastern boundary of the Sichuan-Yunnan block.The result indicates that the parameters of the focal mechanism solution are with a strike of 256°,dip of 62°,and slip of 167° for the nodal plane Ⅰ,and strike of 352°,dip of 79°,and slip of 29° for the nodal plane Ⅱ.The azimuth of the P axis is 121° with dip angle of 11°,the azimuth of T axis is 217° with dip angle of 28°,and the centroid depth is about 11km,and moment magnitude is MW5.1.According to the focal mechanism solution and the fault geometry near the epicenter,we infer that the seismogenic fault is a branch fault,i.e.,the Puxiong Fault,along the central segment of the Daliang Shan fault zone.Thus,the nodal plane Ⅱ was interpreted as the coseismic rupture plane.The M5.0 Yuexi earthquake is a strike-slip faulting event with an oblique component.The above findings reveal the M5.0 Yuexi earthquake resulted from the left-lateral strike-slip faulting of the NNW Dalang Shan fault zone under the nearly horizontal principal compressive stress regime in an NWW-SEE direction.The apparent stress value of the Yuexi earthquake is 0.99MPa,higher than those of the ML ≥ 4.0 earthquakes along the eastern boundary of the Sichuan-Yunnan block since 2008 Wenchuan M8.0 earthquake,implying a relatively high stress level on the seismogenic area and greater potential for the moderate and strong earthquake occurrence.It may also reflect the current increasing stress level of the entire area along the eastern boundary,and therefore,posing the risk of strong earthquakes there.  相似文献   

15.
Analysis of stress state of faults is helpful to understand crustal mechanical properties and seismicity. In the paper, we invert the horizontal crustal stress field in the southeastern Tibetan plateau using focal mechanism solutions of small and medium-size earthquakes, and apply them to estimate the stability of regional major faults. Firstly, we collect focal mechanism solutions of small and medium-sized earthquakes in the southeastern Tibetan plateau. The dataset includes more than 1 000 focal mechanism solutions in the past twenty years. Magnitudes of these earthquakes vary from M3.0 to M6.0. Most of the focal mechanism solutions were determined using waveform inversion technique. Although most of focal mechanism solutions in the southeastern Tibetan plateau are strike-slip faulting, their spatial pattern is different in sub-regions. Normal faulting earthquakes mainly occurred in the western Sichuan region, reverse faulting earthquakes mainly occurred in the boundary zone between the Tibetan plateau and the South China craton, and strike-slip faulting earthquakes mainly occurred in the central and southern Yunnan region. Next, we settle on a mesh with grid spacing of 0.5° in longitude and latitude in the region and invert the horizontal crustal stress field at each grid point. Spatial variation of the maximum principal stress axis in the southeastern Tibetan plateau shows a clockwise rotation around the eastern Himalaya syntax. The azimuth of maximum compressional stress axis is about 88.1° in the western Sichuan region, about 124.6° in the South China craton, and about 21.6° in the western and southern Yunnan region. The azimuth of regional maximum compressional stress is nearly parallel to the direction of terrain elevation gradient, and that of the minimum compressional stress is nearly parallel to the tangential direction of the topographic elevation contours. The spatial pattern reflects the control role of gravity spreading of the Tibetan plateau on the regional horizontal stress field. Finally, we analyzed regional fault stability based on these collected focal mechanism solutions. The fault instability parameter (I) is defined based on the Mohr-Coulomb criterion and indicates the degree of fault approximating to rupture. The instability parameters on fourteen major faults in the southeastern Tibetan plateau were calculated. Our results show that the stability of the Lianfeng-Zhaotong Fault is the lowest before 2014 in the region, which indicates the fault zone is close to rupture at that time. Our results provide a new useful tool to assess regional seismic potential using dense focal mechanism solutions.  相似文献   

16.
利用双差定位法对2021年5月22日玛多MS7.4地震序列中1 434个地震进行重新定位,使用TDMT矩张量反演方法求解玛多地震序列M≥4.5地震的震源机制解,综合分析得到如下结论:(1)玛多地震序列震中整体走向为NWW-SEE向,与昆仑山口—江错断裂展布方向相吻合,序列总长度170 km,呈NWW向和SEE向双侧破裂,主震西北侧存在NW向条带,可能是此次地震的分支断裂活动,在南东侧存在余震稀疏段以及横穿玛多—甘德断裂的余震分布带,推测可能是地下速度结构差异所致;(2)主震附近地震序列以左旋走滑型地震为主,优势走向为NWW向,倾向NE,倾角较高,与昆仑山口—江错断裂性质基本一致,结合余震定位结果推断昆仑山口—江错断裂为本次地震的发震断层;(3)主震附近地震序列P轴平均方位角为237°,P轴,T轴平均倾角分别为15°、16°,N轴平均倾角为65°,结合研究区构造特征推断,本次地震是由NEE-SWW向水平挤压应力推动NWW-SEE向断裂发生左旋走滑错动所致。  相似文献   

17.
求解鹤岗强矿震震源机制解结果,表现出走滑伴随逆断层和正断层活动、非双力偶型的多样性。两组节面优势分布方向和节面的倾角优势分布不显著,两者分布无明显规律,反映出矿井下破裂面比较复杂。矿震震源主压应力释放优势方向北西310°左右,优势倾角为25°~60°;主张应力轴走向NE,主张应力场优势方向为北东60°左右,仰角在30~70°之间;中等应力轴(N)近于垂直,优势倾角为70~90°。矿震震源机制解显示的矿区最大主应力方向与区域构造应力场的最大主应力方向近似正交,矿震震源机制主应力轴优势倾角远大于区域构造地震,反映的是矿区采煤生产的次生构造应力环境重力应力场的贡献明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号