首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   

2.
M. Umeda 《Island Arc》1998,7(4):637-646
Five radiolarian zones, from the Upper Silurian to Middle Devonian, are discriminated from the tuffaceous successions of the Joryu and Nakahata Formations of the Yokokurayama Group of the Yokokurayama area and the Konomori area in the Kurosegawa Belt, Southwest Japan. The definition of the zones is based on the first appearance biohorizon of the characteristic species. The zones are the Pseudospongoprunum sagittatum, Futobari solidus, Trilonche (?) sp. A, Glanta fragilis and Protoholoeciscus hindea zones, in ascending order. The preliminary age assignments for the zones are discussed on the basis of the comparison with other previous documented faunas. The age determination of the formations suggests the presence of unconformities and the episodic sedimentation of the tuffaceous strata in the Yokokurayama Group.  相似文献   

3.
In order to test two different proposals for the poorly defined African Paleozoic apparent polar wander path (APWP), a paleomagnetic study was carried out on Ordovician through Carboniferous clastic sediments from the Cape Fold belt, west of the 22nd meridian. One proposal involves a relatively simple APWP connecting the Ordovician Gondwana poles in North Africa with the Late Paleozoic poles to the east of South Africa in a more or less straight line crossing the present equator in the Devonian. The other proposal adds a loop to this path, connecting Ordovician poles in North Africa with poles to the southwest of South Africa and then returning to central Africa. This loop would occur mainly in Silurian time. New results reported herein yield paleopoles in northern and central Africa for Ordovician to lowermost Silurian and Lower to Middle Devonian formations. The best determined paleopole of our study is for the Early Ordovician Graafwater Formation and falls at 28°N, 14°E (k = 25, α95 = 8.8°, N = 28 samples). The other paleopoles are not based on sufficient numbers of samples, but can help to constrain the apparent polar wander path for Gondwana. Our results give only paleopoles well to the north of South Africa and we observe no directions within the proposed loop. Hence, if the loop is real, it must have been of relatively short duration (60–70 Ma) and be essentially of Silurian/Early Devonian age, implying very high drift velocities for Gondwana (with respect to the pole) during that interval.  相似文献   

4.
The Izumi Group in southwestern Japan is considered to represent deposits in a forearc basin along an active volcanic arc during the late Late Cretaceous. The group consists mainly of felsic volcanic and plutonic detritus, and overlies a Lower to Upper Cretaceous plutono‐metamorphic complex (the Ryoke complex). In order to reconstruct the depositional environments and constrain the age of deposition, sedimentary facies and U–Pb dating of zircon grains in tuff were studied for a drilled core obtained from the basal part of the Izumi Group. On the basis of the lithofacies associations, the core was subdivided into six units from base to top, as follows: mudstone‐dominated unit nonconformably deposited on the Ryoke granodiorite; tuffaceous mudstone‐dominated unit; tuff unit; tuffaceous sandstone–mudstone unit; sandstone–mudstone unit; and sandstone‐dominated unit. This succession suggests that the depositional system changed from non‐volcanic muddy slope or basin floor, to volcaniclastic sandy submarine fan. Based on a review of published radiometric age data of the surrounding region of the Ryoke complex and the Sanyo Belt which was an active volcanic front during deposition of the Izumi Group, the U–Pb age (82.7 ±0.5 Ma) of zircon grains in the tuff unit corresponds to those of felsic volcanic and pyroclastic rocks in the Sanyo Belt.  相似文献   

5.
In the Cleaverville area of Western Australia, the Regal, Dixon Island, and Cleaverville Formations preserve a Mesoarchean lower‐greenschist‐facies volcano‐sedimentary succession in the coastal Pilbara Terrane. These formations are distributed in a rhomboidal‐shaped area and are unconformably overlain by two narrowly distributed shallow‐marine sedimentary sequences: the Sixty‐Six Hill and Forty‐Four Hill Members of the Lizard Hills Formation. The former member is preserved within the core of the Cleaverville Syncline and the latter formed along the northeast‐trending Eighty‐Seven Fault. Based on the metamorphic grade and structures, two deformation events are recognized: D1 resulted in folding caused by a collisional event, and D2 resulted in regional sinistral strike‐slip deformation. A previous study reported that the Cleaverville Formation was deposited at 3020 Ma, after the Prinsep Orogeny (3070–3050 Ma). Our SHRIMP U–Pb zircon ages show that: (i) graded volcaniclastic–felsic tuff within the black shale sequence below the banded iron formation in the Cleaverville Formation yields an age of (3 114 ±14) Ma; (ii) the youngest zircons in sandstones of the Sixty‐Six Hill Member, which unconformably overlies pillow basalt of the Regal Formation, yield ages of 3090–3060 Ma; and (iii) zircons in sandstones of the Forty‐Four Hill Member show two age peaks at 3270 Ma and 3020 Ma. In this way, the Cleaverville Formation was deposited at 3114–3060 Ma and was deformed at 3070–3050 Ma (D1). Depositional age of the Cleaverville Formation is at least 40–90 Myr older than that proposed in previous studies and pre‐dates the Prinsep Orogeny (3070–3050 Ma). After 3020 Ma, D2 resulted in the formation of a regional strike‐slip pull‐apart basin in the Cleaverville area. The lower‐greenschist‐facies volcano‐sedimentary rocks are distributed only within this basin structure. This strike‐slip deformation was synchronous with crustal‐scale sinistral shear deformation (3000–2930 Ma) in the Pilbara region.  相似文献   

6.
The South Kitakami Massif is one of the oldest geological domains in Japan having Silurian strata with acidic pyroclastic rocks and Ordovician–Silurian granodiorite–tonalite basement, suggesting that it was matured enough to develop acidic volcanisms in the Silurian period. On the northern and western margin of the South Kitakami Massif, an Ordovician arc ophiolite (Hayachine–Miyamori Ophiolite) and high‐pressure and low‐temperature metamorphic rocks (Motai metamorphic rocks) exhumed sometime in the Ordovician–Devonian periods are distributed. Chronological, geological, and petrochemical studies on the Hayachine–Miyamori Ophiolite, Motai metamorphic rocks, and other early Paleozoic geological units of the South Kitakami Massif are reviewed for reconstruction of the South Kitakami arc system during Ordovician to Devonian times with supplementary new data. The reconstruction suggests a change in the convergence polarity from eastward‐ to westward‐dipping subduction sometime before the Late Devonian period. The Hayachine–Miyamori Ophiolite was developed above the eastward‐dipping subduction through three distinctive stages. Two separate stages of overriding plate extension inducing decompressional melting with minor involvement of slab‐derived fluid occurred before and after a stage of melting under strong influence of slab‐derived fluids. The first overriding plate extension took place in the back‐arc side forming a back‐arc basin. The second one took place immediately before the ophiolite exhumation and near the fore‐arc region. We postulate that the second decompressional melting was triggered by slab breakoff, which was preceded by slab rollback inducing trench‐parallel wedge mantle flow and non‐steady fluid and heat transport leaving exceptionally hydrous residual mantle. The formation history of the Hayachine–Miyamori Ophiolite implies that weaker plate coupling may provide preferential conditions for exhumation of very hydrous mantle. Very hydrous peridotites involved in arc magmatism have not yet been discovered except for in the Cambrian–Ordovician periods, suggesting its implications for global geodynamics, such as the thermal state and water circulation in the mantle.  相似文献   

7.
The Upper Cretaceous Himenoura Group in the Amakusa‐Kamishima Island area, southwest Japan is subdivided into the Hinoshima and Amura Formations. In order to determine the numerical depositional age of the formations, zircon U–Pb ages were investigated using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) for acidic tuff samples from the lower part of the Hinoshima Formation and the upper part of the Amura Formation. Although the two samples contain some accidental zircons, the samples have a definite youngest age cluster and their weighted mean ages are 85.4 ± 1.3 and 81.5 ± 1.1 Ma, respectively (errors are 95 % confidence interval). These age data indicate that the Himenoura Group in the Amakusa‐Kamishima Island area was deposited mainly in the early Santonian to early Campanian which is consistent with biostratigraphic ages. Additionally, zircon age distributions of the two tuff samples from the upper part of the Hinoshima Formation do not show a distinct youngest peak of eruption age but characteristics of detrital zircons suggestive of maximum depositional age of the host sediments. These results demonstrate that the mean age of the youngest zircon age cluster of a tuff sample does not always indicate depositional age of the tuff, and statistical evaluation of age data is effective to determine depositional age of a tuff bed using zircon U–Pb ages.  相似文献   

8.
Within the north‐eastern part of the Palawan Continental Terrane, which forms the south‐western part of the Philippine archipelago, several metamorphic complexes are exposed that are considered to be rifted parts of the Asian margin in South‐East China. The protolith age(s) and correlations of these complexes are contentious. The largest metamorphic complex of the Palawan Continental Terrane comprises the Mindoro Metamorphics. The north‐eastern part of this metamorphic complex has recently been found to be composed of protoliths of Late Carboniferous to Late Permian protolith age. However, meta‐sediments exposed at the westernmost tip and close to the southern boundary of the exposure of the Mindoro Metamorphics contain detrital zircons and with U–Pb ages, determined by LA–ICP–MS, in the range 22–56 Ma. In addition, zircons as young as 112 Ma were found in a sample of the Romblon Metamorphics in Tablas. As the youngest detrital zircons provide an upper age limit for the time of deposition in meta‐sediments, these results suggest that the Mindoro and Romblon Metamorphics comprise protoliths of variable age: Late Carboniferous to Late Permian in NE Mindoro; Eocene or later in NW Mindoro; Miocene at the southern margin of the Mindoro metamorphics; and Cretaceous or later on Tablas. The presence of non‐metamorphic sediments of Late Eocene to Early Oligocene age in Mindoro (Lasala Formation), which are older than the youngest metasediments, suggests that metamorphism of the young meta‐sediments of Mindoro is the result of the collision of the Palawan Continental terrane with the Philippine Mobile Belt in Late Miocene. Similarities of the age spectra of zircons from the Eocene to Miocene metamorphics with the Eocene to Early Miocene Lasala Formation suggest that the protoliths of the young metamorphics may be equivalents of the Lasala Formation or were recycled from the Lasala Formation.  相似文献   

9.
Abstract Radiolarians extracted from marine siliceous sediments from the Bentong-Raub suture zone, Peninsular Malaysia have indicated a range of ages for olistostromal blocks of bedded chert, siliceous argillite and tuffaceous argillite, and chert clasts and lenses within the mélange from the suture zone. Late Devonian (Faniennian), Early Carboniferous (Tournaisian and Viséan) and Early Permian (Wolfcampian and Leonardian) ages are represented by seven radiolarian zones from ten localities along the suture zone. In stratigraphic order these include Holoeciscus 2–3 Assemblage Zones, Albaillella paradoxa Zone, Albaillella dejendrei Zone, Albaillella cartalla Zone, Pseudoalbaillella lomentaria Zone, Albaillella sinuata Zone and Pseudoalbaillella longtanensis Zone. Fifteen genera are represented by 35 species. The range of ages from Late Devonian to Early Permian suggests that an ocean existed between the Sibumasu and East Malaya terranes from at least Late Devonian to late Early Permian time and that closure of the ocean between the two terranes could not have occurred until after late Early Permian time. The range of ages and rock types from different depositional environments, indicate that the Bentong-Raub suture zone includes a disrupted accretionary complex.  相似文献   

10.
Mesozoic, Cenozoic and especially Holocene ostracod faunas have been documented from Japan. Not surprisingly, considering the plate tectonic factors at play, very few ostracod faunas are known from its early Paleozoic successions. Our pilot studies have recovered new ostracod assemblages from early Paleozoic terranes of Japan. Acid preparation of carbonates has yielded low diversity, poorly preserved yet significant palaeocopid and podocopid ostracod faunas from Wenlock/Ludlow Series Silurian rocks at Gionyama in the Kurosegawa Terrane, Miyazaki Prefecture, Kyushu, and Hitoegane in the Hida‐Gaien Terrane, Gifu Prefecture, Honshu. The ostracod faunas include new eurychilinoid (Pauproles supparata gen. et sp. nov.), hollinoid (Hollinella orienta sp. nov.) and beyrichioid (Clintiella antifrigga sp. nov.) palaeocopid taxa. Conodonts recovered from the same sample as the ostracods from Gionyama confirm a mid‐Silurian age for the part of the Gionyama Formation in question. The ostracod faunas recovered from Gionyama and Hitoegane are the first confirmed, well‐documented record of the group from the Silurian of Japan and are therefore the earliest known ostracods from that country (a previous record of purported Ordovician ostracods from Japan is incorrect). The ostracod taxa display links with the paleocontinents of particularly Laurentia and Baltica and demonstrate a pan‐tropical signature; it appears that climate control was stronger than geographical control in shaping this pattern of ostracod distribution. The material recovered includes adult dimorphic (assumed sexual) pairs of three palaeocopid species, which represent Japan's oldest (423–433 million years) known ‘couples’.  相似文献   

11.
A method for regional assessment of the distribution of saline outbreaks is demonstrated for a large area (68 000 km2) in north Queensland, Australia. Soil samples were used in conjunction with a digital elevation model and a map of potentially saline discharge zones to examine the landscape distribution of soluble salts in the region. The hypothesis of atmospheric accession of salt was tested for the topographically defined catchment regions feeding into each potentially saline discharge area. Most catchments showed a salt distribution consistent with this hypothesis, i.e. %TSS was large near the discharge areas and decreased rapidly with distance uphill from the discharge areas. In some catchments, however, local saline outbreaks were apparent at significant distances uphill from discharge areas. The possibility of geological sources of this salt was examined by comparing random point distributions with the location of saline points with distance downhill from geological units (excluding points near discharge zones). The distribution of some saline outbreaks was consistent with the occurrence of Cambro‐Ordovician metasediments, Devonian limestone, Upper Devonian–Lower Carboniferous volcanics, and Triassic sediments. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The Dixon Island Formation of the coastal Pilbara Terrane, Western Australia is a 3.2 Ga volcanic–sedimentary sequence influenced by syndepositional hydrothermal activity formed in an island‐arc setting. We documented lateral variations in stratigraphy, hydrothermal alteration, and biological activity recorded in the sedimentary rocks (over several kilometers), with the aim of identifying areas of biological activity and related small‐scale structures. The Dixon Island Formation comprises volcaniclastics, black chert, and iron‐rich chert within seven tectonic blocks. Based on detailed geological mapping, stratigraphic columns, carbon isotope composition, and organic carbon (Corg) content, we found lateral (>5 km) variations in stratigraphy and carbon isotope compositions in a black chert sequence above the Mesoarchean seafloor with hydrothermal activity. Two felsic tuff layers are used as stratigraphic marker beds within a black chert sequence, which was deposited on altered volcanic rocks. The black chert sequence in each tectonic block is 10–20 m thick. Thickness variations reflect topographical undulations in the paleo‐ocean floor due to faulting. Early‐stage normal faults indicate extensional conditions after hydrothermal activity. Black chert beds in the topographically subsided area contain higher Corg contents (about 0.4 wt%) than in areas around the depression (<0.1 wt%). Carbon isotope compositions for the black chert vary from ?40 to ?25‰, which are similar to values obtained for a black chert vein within the komatiite–rhyolite tuff sequence (underlying the black chert sequence). Those for other rock types in the Dixon Island Formation are ?33 to ?15‰. Results indicate that deformation occurred soon after the final stages of hydrothermal activity. After this early‐stage deformation, organic‐rich sediments were deposited over an area several kilometers across. The organic‐rich sediments indicate stagnant anoxic conditions that resulted in the deposition of siliceous and organic matter from hydrothermal vein systems. When hydrothermal activity terminated, normal faulting occurred and organic matter was deposited from the sea surface and silica from the seafloor.  相似文献   

13.
Biostratigraphy of Famennian in Hainan Island, South China   总被引:1,自引:0,他引:1  
On the basis of the faunas including conodonts Palmatolepis gracilis sigmoidalis, P.gracilis gracilis, Polygnathus germanus, which are found for the first time, and corals Cystophrentis kalaohoensis it is confirmed that the Changjiang Formation refers to the Famennian, and may correlate with the Shaodong Formation and Menggongao Formation of central Hunan. This is the only Devonian deposits known in Hainan Island so far. It means that the outstanding problem of whether the Devonian rocks exist in that island is now settled. Meanwhile, the new evidences indicate that the lectostratotype section of Nanhao Formation of Baoting area refers to the Silurian,rather than the Lower Carboniferous as considered by most geologists formerly. Furthermore, the Member 3 of Nanhao Formation at Shilu-Jinbo district is proved to be the Upper Carboniferous,rather than Tournaisian or Middle-Upper Devonian as deemed to be before.  相似文献   

14.
The Hangenberg Crisis at the Devonian–Carboniferous boundary is known as a polyphase extinction event that affected more than 45 % of marine and terrestrial genera. As the cause of this event is still debated, analyses were carried out on sedimentary samples from the Devonian–Carboniferous Pho Han Formation in northeastern Vietnam to reconstruct the paleoenvironment around the time of this event using stable carbon isotopes; total sulfur; manganese; vanadium; molybdenum; and sedimentary organic matter, such as dibenzothiophenes, cadalene, and regular steranes. These geochemical signatures provide a high‐resolution redox history for this section and show that transgression‐driven high primary productivity, possibly enhanced by terrestrial input, caused severe oxygen depletion along the continental margin of the South China block during the Hangenberg Crisis.  相似文献   

15.
Zircon U–Pb ages of two acidic tuff and two turbidite sandstone samples from the Nakanogawa Group, Hidaka Belt, were measured to estimate its depositional age and the development of the Hokkaido Central Belt, northeast Japan. In the northern unit, homogeneous zircons from pelagic acidic tuff from a basal horizon dated to 58–57 Ma, zircons from sandstone from the upper part of the unit dated to 56–54 Ma, and zircons from acidic tuff from the uppermost part dated to 60–56 Ma and 69–63 Ma. Both of the tuff U–Pb ages are significantly older than the youngest radiolarian fossil age (66–48 Ma). Therefore, the maximum depositional age of the turbidite facies in the northern unit is 58 Ma and the younger age limit, estimated from the fossil age, is 48 Ma. In the southern unit, homogeneous zircons from turbidite sandstone dated to 58–57 Ma. Thus the depositional age of this turbidite facies was interpreted to be 66–56 Ma from the fossil age, probably close to 57 Ma. Most of the zircon U–Pb ages from the Nakanogawa Group are younger than 80 Ma, with a major peak at 60 Ma. This result implies that around Hokkaido volcanic activity occurred mainly after 80 Ma. Older zircon ages (120–80 Ma, 180–140 Ma, 340–220 Ma, 1.9 Ga, 2.2 Ga, and 2.7 Ga) give information about the provenance of other rocks in the Hidaka Belt. It is inferred that the Nakanogawa Group comprises protoliths of the upper sequence of the Hidaka Metamorphic Zone, which therefore has the same depositional age as the Nakanogawa Group (66–48 Ma). The depositional ages of the lower sequence of the Hidaka Metamorphic Zone and the Nakanogawa Group are probably the same.  相似文献   

16.
On the basis of new paleontological data,the sequence and distributions of the Middle Devonian-Tournaisian rocks on Hainan Island have been sorted out for the first time.The Devonian rocks include the Middle Devonian Jinbo Formation and the Upper Devonian Changjiang Formation,which are distributed in northwestern Hainan Island.The Jinbo Formation is represented by631 m of littoral facies deposits,and was intruded by the Yanshanian granite in the base.The presence of chitinozoans Eisenackitina caster,Funsochitina pilosa,and Lagenochitina amottensis indicates the Givetian in age.The Changjiang Formation is made up of 140 m of neritic facies rocks,and contains the Famennian conodonts Palmatolepis gracilis sigmoidalis,Polygnathus germanus,and corals Cystophrentis kalaohoensis.The Devonian-Tournaisian transition beds,the lower part of the Jishi Formation,are composed of 61–129 m sandstone and siltstone,with gastropods Euomphalus spp.and brachiopods,and marked by conglomerate with the underlying Devonian rocks.The middle-upper part of the Tournaisian Jishi Formation consists of 100–251 m clastic and carbonate rocks,containing abundant corals Pseudoularinia irregularis,conodonts Siphonodella isosticha,trilobites Weberiphillipsia linguiformis,and brachiopods.On the basis of the occurrence of Xinanosprifer flabellum and Homotoma sp.,the Nanhao Formation in southern Hainan Island is now regarded as the Lower Silurian,instead of the previously designated Lower Carboniferous.It is confirmed that no Carboniferous rocks occurred in the area south to the Gancheng-Wanning Fault.  相似文献   

17.
Abstract   An absolute age has been determined for the Cretaceous Uhangri Formation in which web-footed bird tracks, pterosaur tracks and dinosaur tracks have been discovered recently. This combined track discovery is a first from Asia. There is one other similar find in the world, however, the Uhangri site is greater in abundance and frequency. Moreover, the size of the pterosaur tracks indicates that the track maker had a wingspan of 10 m or more. Well-preserved tuffaceous rocks in the formation made it possible to measure geological age by Rb–Sr and K–Ar methods. Rb–Sr whole rock ages for the volcanic rocks are: 96.0 ± 2.5 Ma (MSWD = 0.354) for lapilli andesitic tuff, 81.0 ± 2.0 Ma (MSWD = 0.296) for felsic tuff and 77.9 ± 4.1 Ma (MSWD = 4.41) for Hwangsan welded tuff. K–Ar ages are younger, 83.2–68.8 Ma. The layer containing fossil tracks of pterosaurs and web-footed birds are preserved in black shale sandwiched by the lapilli andesitic tuff and felsic tuff, and are thus 96–81 Ma in age. Dinosaur footprints are dated at 96–78 Ma. Thus the pterosaurs, web-footed birds and dinosaurs coexisted in the same environment from Cenomanian to Campanian time.  相似文献   

18.
The last appearance datum of the radiolarian Kilinora spiralis is recorded above the first appearance datum of the ammonite Ataxioceras (A.) kurisakense in the Todoro Section of the Kurisaka Formation, Southern Kurosegawa Terrane, Shikoku, SW Japan. The constraint by ammonite age prolongs the range of the Kilinora spiralis Zone, a remarkable Jurassic radiolarian zone in Japan-NW Pacific region, into the lower Kimmeridgian. The direct correlation of the Kilinora spiralis zone with the Late Jurassic ammonite faunal succession in the Kurisaka Formation will provide a clue to the still pending chronological difference between European and North American radiolarian zones.  相似文献   

19.
We present field and core observations, nannofossil biostratigraphy, and stable oxygen isotope fluctuations in foraminiferal tests to describe the geology and to construct an age model of the Lower Pleistocene Nojima, Ofuna, and Koshiba Formations (in ascending order) of the middle Kazusa Group, a forearc basin‐fill succession, exposed on the northern Miura Peninsula on the Pacific side of central Japan. In the study area, the Nojima Formation is composed of sandy mudstone and alternating sandy mudstone and mudstone, the Ofuna Formation of massive mudstone, and the Koshiba Formation of sandy mudstone, muddy sandstone, and sandstone. The Kazusa Group contains many tuff beds that are characteristic of forearc deposits. Thirty‐six of those tuff beds have characteristic lithologies and stratigraphic positions that allow them to be traced over considerable distances. Examination of calcareous nannofossils revealed three nannofossil datum planes in the sequences: datum 10 (first appearance of large Gephyrocapsa), datum 11 (first appearance of Gephyrocapsa oceanica), and datum 12 (first appearance of Gephyrocapsa caribbeanica). Stable oxygen isotope data from the tests of the planktonic foraminifer Globorotalia inflata extracted from cores were measured to identify the stratigraphic fluctuations of oxygen isotope ratios that are controlled by glacial–interglacial cycles. The observed fluctuations were assigned to marine isotope stages (MISs) 49–61 on the basis of correlations of the fluctuations with nannofossil datum planes. Using the age model obtained, we estimated the ages of 24 tuff beds. Among these, the SKT‐11 and SKT‐12 tuff beds have been correlated with the Kd25 and Kd24 tuff beds, respectively, of the Kiwada Formation on the Boso Peninsula. The Kd25 and Kd24 tuff beds are widely recognized in Pleistocene strata in Japan. We used our age model to date SKT‐11 at 1573 ka and SKT‐12 at 1543 ka.  相似文献   

20.
Ion microprobe dating of zircon from meta‐igneous samples of the Hitachi metamorphic terrane of eastern Japan yields Cambrian magmatic ages. Tuffaceous schist from the Nishidohira Formation contains ca 510 Ma zircon, overlapping in age with hornblende gneiss from the Tamadare Formation (ca 507 Ma), and meta‐andesite (ca 507 Ma) and metaporphyry (ca 505 Ma) from the Akazawa Formation. The latter is unconformably overlain by the Carboniferous Daioin Formation, in which a granite boulder from metaconglomerate yields a magmatic age of ca 500 Ma. This date overlaps a previous estimate for granite that intrudes the Akazawa Formation. Intrusive, volcanic, and volcaniclastic lithologies are products of a Cambrian volcanic arc associated with a continental shelf, as demonstrated by the presence of arkose and conglomerate in the lowermost Nishidohira Formation. Granitic magmatism of Cambrian age is unknown elsewhere in Japan, except for a single locality in far western Japan with a similar geological context. Such magmatism is also unknown on the adjacent Asian continental margin, with the exception of the Khanka block in far northeastern China. A ‘great hiatus’ in the Paleozoic stratigraphy of the Sino–Korean block also exists in the Hitachi terrane between Cambrian volcanic arc rocks and Early Carboniferous conglomerate, and may indicate a common paleogeographic provenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号