首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 168 毫秒
1.
地震走时层析成像是反演地层各向异性参数分布的有效方法,但是关于地震各向异性介质走时层析成像的研究并不多,其技术远远没有达到成熟的阶段.在野外数据采集时,地表反射波观测方式相对井间和垂直地震剖面观测方式的成本更低,利用qP反射波走时反演各向异性参数具有更加广泛的实用价值.本文实现的TI介质地震走时层析成像方法结合了TI介质反射波射线追踪算法、走时扰动方程和非线性共轭梯度算法,它可以对任意强度的TI介质模型进行反演,文中尝试利用qP反射波走时重建TI介质模型的参数图像.利用qP反射波对层状介质模型和块状异常体模型进行走时反演,由于qP波相速度对弹性模量参数和Thomsen参数的偏微分不同,所以可以分别反演弹性模量参数和Thomsen参数.数值模拟结果表明:利用qP反射波可以反演出TI介质模型的弹性模量参数与Thomsen参数,不同模型的走时迭代反演达到了较好的收敛效果,与各向同性介质走时反演结果相比较,各向异性介质走时反演结果具有较好的识别能力.  相似文献   

2.
正交各向异性介质P波走时分析及Thomsen参数反演   总被引:10,自引:3,他引:10  
对于包含有垂向裂缝的横向各向同性地层或含有多组正交裂缝的各向同性地层,正交各向异性介质模型是最简单的与实际地层相符的方位各向异性模型.本文对单层水平反射界面正交各向异性模型采用射线追踪法计算了全方位角变化的P波走时,时距曲线表现出强方位各向异性.采用小生境遗传算法,对三条成一定角度的测线的走时信息进行速度和各向异性参数反演.模型算例表明,此方法可以得到高精度的裂缝方位角、P波垂直速度和较高精度的Thomsen各向异性参数.  相似文献   

3.
TTI介质各向异性参数多波反演与PS波AVO分析   总被引:1,自引:1,他引:0       下载免费PDF全文
把遗传算法引入到了TTI介质AVO信息反演各向异性参数的过程中,依据TTI介质PP波、PS波反射系数公式,建立Thomsen参数和TTI介质对称轴倾角、方位角的目标函数,分别通过PP波和PS波的反射系数反演出了各向异性参数和对称轴倾角、方位角等信息.文中对反演结果的精确度和稳定性进行了分析,发现PS波的反演结果优于PP波反演结果;对称轴倾角的反演准确性明显优于对称轴方位角.本文通过模型正演合理解释了这一现象的原因.最后,本文通过对PS波AVO梯度的研究,提出了利用PS波振幅定性分析TTI介质对称轴倾角的方法.  相似文献   

4.
裂隙型单斜介质中多方位地面三分量记录模拟   总被引:23,自引:3,他引:20       下载免费PDF全文
针对裂隙型储集层中更具代表性的各向异性介质模型,即在各向同性背景介质中含有两组斜交的垂直裂隙所构成的单斜各向异性介质模型,利用时间和空间上可达任意阶的高阶交错网格有限差分技术,对具有不同裂隙填充物性质的单斜介质中波的传播快照进行了模拟.结果证实各向异性介质中波的传播速度随传播方向的不同而产生明显的差异;裂隙填充物的性质对于速度各向异性具有很大的影响.另外,利用坐标旋转法,对水平层状各向异性介质中多方位地面三分量记录进行了模拟,结果表明了方位各向异性介质中,波的传播速度不仅随入射角的变化而变化,同时也随观测方位的不同而产生差异.数值模拟结果为进一步利用地面多方位地震属性进行各向异性参数的反演及裂隙参数的描述提供理论基础.  相似文献   

5.
VTI介质多参数联合走时层析成像方法   总被引:4,自引:4,他引:0       下载免费PDF全文
本文基于球谐展开群速度表达式计算走时关于各向异性参数的Fréchet核函数,利用共轭梯度法对两种参数化方法进行了VTI介质中多参数联合反演方法研究.经过理论分析和数值试验发现,与经典的Thomsen参数化方法相比,垂直慢度、水平慢度与动校正慢度的参数化方式更有利于VTI介质多参数联合走时层析反演.为了克服走时对ε参数的不敏感性,我们采用了两步法进行双参数反演,理论模型试验反演得到了与垂直速度精度相当的ε参数.可以将两步法扩展到三步法以同时反演各向异性介质中的三个参数,数值试验展示了该策略的应用潜力.  相似文献   

6.
Thomsen各向异性参数的求取对于正确的时深转换和深度域偏移成像处理至关重要。相比其它各向异性参数估算方法,从VSP资料中更容易获取准确的各向异性参数用于地面地震偏移成像。本文分析研究了利用Walkaway VSP资料估算VTI介质Thomsen各向异性参数的方法,该方法基于VTI介质近偏移距动校正公式利用Walkaway VSP近偏移距初至信息求取各向异性参数δ;基于各向异性介质纵波速度Thomsen近似公式采用射线追踪时差扫描方法求取各向异性参数ε。数值模型正演表明利用该方法估算的各向异性参数误差较小。利用塔里木盆地8个方位的Walkaway VSP实际资料求取了该区深度域Thomsen各向异性参数ε和δ值,同时结合地面三维地震资料建立了较为准确的各向异性深度一速度模型用于叠前深度偏移成像,进一步提高了碳酸盐岩储层的成像精度,减小了目标地质体的深度误差。  相似文献   

7.
邵媛媛  郑需要 《地震学报》2014,36(3):390-402
提出了利用人工爆破P波走时反演地壳介质方位各向异性参数的方法. 在假定介质是弱各向异性介质的情况下, 使用扰动理论得到了线性化的反演公式, 其中待反演的弱各向异性参数是P波走时的线性函数. 如果在反演公式中参考走时取相同震中距接收点的P波平均走时, 那么所获得的弱各向异性参数与参考介质速度的选取无关. 反演得到的弱各向异性参数可以看作是不同震中距和不同深度范围内介质的等效弱各向异性参数. 等效弱各向异性参数在一定程度上反映了不同深度范围内水平方向相速度随方位的变化. 这种变化可能是不同时期构造应力作用的结果. 2007年中国地震局在首都圈怀来地区实施了一次大吨位人工爆破实验, 以爆破点为中心, 布设了高密度的地震观测台网和台阵. 台站相对于爆破点具有360°的全方位覆盖, 所得到的地震记录数据为研究怀来、 延庆地区地壳介质P波方位各向异性提供了必要条件. 我们通过走时反演获得了与水平方位相关的弱各向异性参数, 并对弱各向异性参数进行坐标变换, 得到了能够直观描述岩石弱各向异性的具有水平对称轴的横向各向同性介质, 给出了对应的3个独立弱各向异性参数及其对称轴方位, 讨论了介质各向异性与构造应力场的关系. 结果表明该地区地壳介质存在明显的方位各向异性, 其最大值约为4.6%.   相似文献   

8.
黄国娇  巴晶  钱卫 《地球物理学报》2020,63(7):2846-2857
微地震监测被广泛应用于非常规油气资源的水力压裂作业、油藏描绘和水驱前缘监测工程中.微地震定位采用的初始速度模型一般是基于地震测井记录和射孔数据建立,该速度模型的不准确性易引起定位误差.为降低这种定位误差,本文发展了一种微地震定位和各向异性速度结构同时反演的方法.研究对象为1-D的层状TI介质,其中对称轴方向任意.利用改进的分区多步最短路径算法计算qP、qSV和qSH波的到达时间和射线路径,结合共轭梯度法求解带约束的阻尼最小二乘问题.数值模拟结果表明,该算法能同时进行各向异性速度结构模型(每层的Thomsen参数和界面深度)和微震震源参数(空间坐标和发震时刻)的反演,并且对随机噪声不敏感,有利于实际工程应用.  相似文献   

9.
裂隙各向异性介质中的NMO速度   总被引:1,自引:4,他引:1       下载免费PDF全文
推导了各向异性介质中由弹性系数表示的方位动校NMO速度的具体表达式,表明各向异性介质中方位NMO速度程椭圆形状,并分别对具水平对称轴的横向各向同性介质(HTI)、正交介质和单斜各向异性介质及在不同的裂隙填充物的性质下方位NMO速度进行了计算,结果表明裂隙的存在对NMO速度的影响不仅与裂隙密度有关,还取决于裂隙填充物的性质.同时,研究表明对于裂隙型单斜各向异性介质,其方位NMO速度椭圆轴向并不象HTI介质和正交介质中的那样与自然坐标系的坐标轴一致,而是发生了一定角度的偏离,其大小与裂隙填充物的性质、两组裂隙密度的比值及裂隙间的夹角等因素有关,研究结果为进一步区分裂隙介质的类型及裂隙填充物的性质提供依据.  相似文献   

10.
地下地层普遍存在各向异性,忽略介质各向异性会导致速度估计不准确,成像精度下降.基于二阶声波方程的最小二乘逆时偏移忽略了介质各向异性及密度变化的影响,致使模拟地震数据与实际观测数据不匹配,影响收敛速度和反演成像质量.VTI介质一阶速度-应力方程能较好适应各向异性变密度情况,为此,本文首先从VTI介质一阶速度-应力方程出发,进行波动方程线性化;其次推导了相应的扰动方程和伴随方程,并通过伴随状态法得到梯度更新公式;最终形成基于一阶方程的LSRTM算法理论及实现流程.在实现算法的基础上,通过数值试算及成像结果对比,验证了本文算法在处理变密度和VTI介质时的有效性和优越性.偏移速度以及各向异性Thomsen参数误差的敏感性测试及误差收敛曲线对比结果进一步表明:速度及Thomsen参数对成像结果存在明显影响,其中速度敏感性最强,参数epsilon次之,参数delta的敏感性最弱.  相似文献   

11.
Multiple vertical fracture sets, possibly combined with horizontal fine layering, produce an equivalent medium of monoclinic symmetry with a horizontal symmetry plane. Although monoclinic models may be rather common for fractured formations, they have hardly been used in seismic methods of fracture detection due to the large number of independent elements in the stiffness tensor. Here, we show that multicomponent wide-azimuth reflection data (combined with known vertical velocity or reflector depth) or multi-azimuth walkaway VSP surveys provide enough information to invert for all but one anisotropic parameters of monoclinic media. In order to facilitate the inversion procedure, we introduce a Thomsen-style parametrization for monoclinic media that includes the vertical velocities of the P-wave and one of the split S-waves and a set of dimensionless anisotropic coefficients. Our notation, defined for the coordinate frame associated with the polarization directions of the vertically propagating shear waves, captures the combinations of the stiffnesses responsible for the normal-moveout (NMO) ellipses of all three pure modes. The first group of the anisotropic parameters contains seven coefficients (ε(1,2), δ(1,2,3) and γ(1,2)) analogous to those defined by Tsvankin for the higher-symmetry orthorhombic model. The parameters ε(1,2), δ(1,2) and γ(1,2) are primarily responsible for the pure-mode NMO velocities along the coordinate axes x1 and x2 (i.e. in the shear-wave polarization directions). The remaining coefficient δ(3) is not constrained by conventional-spread reflection traveltimes in a horizontal monoclinic layer. The second parameter group consists of the newly introduced coefficients ζ(1,2,3) which control the rotation of the P-, S1- and S2-wave NMO ellipses with respect to the horizontal coordinate axes. Misalignment of the P-wave NMO ellipse and shear-wave polarization directions was recently observed on field data by Pérez et al. Our parameter-estimation algorithm, based on NMO equations valid for any strength of the anisotropy, is designed to obtain anisotropic parameters of monoclinic media by inverting the vertical velocities and NMO ellipses of the P-, S1- and S2-waves. A Dix-type representation of the NMO velocity of mode-converted waves makes it possible to replace the pure shear modes in reflection surveys with the PS1- and PS2-waves. Numerical tests show that our method yields stable estimates of all relevant parameters for both a single layer and a horizontally stratified monoclinic medium.  相似文献   

12.
Although it is believed that natural fracture sets predominantly have near‐vertical orientation, oblique stresses and some other mechanisms may tilt fractures away from the vertical. Here, we examine an effective medium produced by a single system of obliquely dipping rotationally invariant fractures embedded in a transversely isotropic with a vertical symmetry axis (VTI) background rock. This model is monoclinic with a vertical symmetry plane that coincides with the dip plane of the fractures. Multicomponent seismic data acquired over such a medium possess several distinct features that make it possible to estimate the fracture orientation. For example, the vertically propagating fast shear wave (and the fast converted PS‐wave) is typically polarized in the direction of the fracture strike. The normal‐moveout (NMO) ellipses of horizontal reflection events are co‐orientated with the dip and strike directions of the fractures, which provides an independent estimate of the fracture azimuth. However, the polarization vector of the slow shear wave at vertical incidence does not lie in the horizontal plane – an unusual phenomenon that can be used to evaluate fracture dip. Also, for oblique fractures the shear‐wave splitting coefficient at vertical incidence becomes dependent on fracture infill (saturation). A complete medium‐characterization procedure includes estimating the fracture compliances and orientation (dip and azimuth), as well as the Thomsen parameters of the VTI background. We demonstrate that both the fracture and background parameters can be obtained from multicomponent wide‐azimuth data using the vertical velocities and NMO ellipses of PP‐waves and two split SS‐waves (or the traveltimes of PS‐waves) reflected from horizontal interfaces. Numerical tests corroborate the accuracy and stability of the inversion algorithm based on the exact expressions for the vertical and NMO velocities.  相似文献   

13.
This paper presents a new explicit method for the estimation of layered vertical transverse isotropic (VTI) anisotropic parameters from walkaway VSP data. This method is based on Dix‐type normal moveout (NMO) inversion. To estimate interval anisotropic parameters above a receiver array, the method uses time arrivals of surface‐related double‐reflected downgoing waves. A three‐term NMO approximation function is used to estimate NMO velocity and a non‐hyperbolic parameter. Assuming the vertical velocity is known from zero‐offset VSP data, Dix‐type inversion is applied to estimate the layered Thomsen anisotropic parameters ?, δ above the receivers array. Model results show reasonable accuracy for estimates through Dix‐type inversion. Results also show that in many cases we can neglect the influence of the velocity gradient on anisotropy estimates. First breaks are used to estimate anisotropic parameters within the walkaway receiver interval. Analytical uncertainty analysis is performed to NMO parameter estimates. Its conclusions are confirmed by modelling.  相似文献   

14.
A major complication caused by anisotropy in velocity analysis and imaging is the uncertainty in estimating the vertical velocity and depth scale of the model from surface data. For laterally homogeneous VTI (transversely isotropic with a vertical symmetry axis) media above the target reflector, P‐wave moveout has to be combined with other information (e.g. borehole data or converted waves) to build velocity models for depth imaging. The presence of lateral heterogeneity in the overburden creates the dependence of P‐wave reflection data on all three relevant parameters (the vertical velocity VP0 and the Thomsen coefficients ε and δ) and, therefore, may help to determine the depth scale of the velocity field. Here, we propose a tomographic algorithm designed to invert NMO ellipses (obtained from azimuthally varying stacking velocities) and zero‐offset traveltimes of P‐waves for the parameters of homogeneous VTI layers separated by either plane dipping or curved interfaces. For plane non‐intersecting layer boundaries, the interval parameters cannot be recovered from P‐wave moveout in a unique way. Nonetheless, if the reflectors have sufficiently different azimuths, a priori knowledge of any single interval parameter makes it possible to reconstruct the whole model in depth. For example, the parameter estimation becomes unique if the subsurface layer is known to be isotropic. In the case of 2D inversion on the dip line of co‐orientated reflectors, it is necessary to specify one parameter (e.g. the vertical velocity) per layer. Despite the higher complexity of models with curved interfaces, the increased angle coverage of reflected rays helps to resolve the trade‐offs between the medium parameters. Singular value decomposition (SVD) shows that in the presence of sufficient interface curvature all parameters needed for anisotropic depth processing can be obtained solely from conventional‐spread P‐wave moveout. By performing tests on noise‐contaminated data we demonstrate that the tomographic inversion procedure reconstructs both the interfaces and the VTI parameters with high accuracy. Both SVD analysis and moveout inversion are implemented using an efficient modelling technique based on the theory of NMO‐velocity surfaces generalized for wave propagation through curved interfaces.  相似文献   

15.
Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which make the medium anisotropic on the scale of seismic wavelength. Applying the linear‐slip theory, we investigate seismic signatures of the effective medium produced by a single set of ‘general’ vertical fractures embedded in a purely isotropic host rock. The generality of our fracture model means the allowance for coupling between the normal (to the fracture plane) stress and the tangential jump in displacement (and vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine independent effective parameters and possesses several distinct features which help to identify the physical model and estimate the fracture compliances and background velocities. For example, the polarization vector of the vertically propagating fast shear wave S1 and the semi‐major axis of the S1‐wave normal‐moveout (NMO) ellipse from a horizontal reflector always point in the direction of the fracture strike. Moreover, for the S1‐wave both the vertical velocity and the NMO velocity along the fractures are equal to the shear‐wave velocity in the host rock. Analysis of seismic signatures in the limit of small fracture weaknesses allows us to select the input data needed for unambiguous fracture characterization. The fracture and background parameters can be estimated using the NMO ellipses from horizontal reflectors and vertical velocities of P‐waves and two split S‐waves, combined with a portion of the P‐wave slowness surface reconstructed from multi‐azimuth walkaway vertical seismic profiling (VSP) data. The stability of the parameter‐estimation procedure is verified by performing non‐linear inversion based on the exact equations.  相似文献   

16.
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e. plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. For the model of a single homogeneous layer above a dipping reflector, we obtain an explicit NMO expression valid for all pure modes and any orientation of the CMP line with respect to the reflector strike. The contribution of anisotropy to NMO velocity is contained in the slowness components of the zero-offset ray (along with the derivatives of the vertical slowness with respect to the horizontal slownesses) — quantities that can be found in a straightforward way from the Christoffel equation. If the medium above a dipping reflector is horizontally stratified, the effective NMO velocity is determined through a Dix-type average of the matrices responsible for the ‘interval’ NMO ellipses in the individual layers. This generalized Dix equation provides an analytic basis for moveout inversion in vertically inhomogeneous, arbitrarily anisotropic media. For models with a throughgoing vertical symmetry plane (i.e. if the dip plane of the reflector coincides with a symmetry plane of the overburden), the semi-axes of the NMO ellipse are found by the more conventional rms averaging of the interval NMO velocities in the dip and strike directions. Modelling of normal moveout in general heterogeneous anisotropic media requires dynamic ray tracing of only one (zero-offset) ray. Remarkably, the expressions for geometrical spreading along the zero-offset ray contain all the components necessary to build the NMO ellipse. This method is orders of magnitude faster than multi-azimuth, multi-offset ray tracing and, therefore, can be used efficiently in traveltime inversion and in devising fast dip-moveout (DMO) processing algorithms for anisotropic media. This technique becomes especially efficient if the model consists of homogeneous layers or blocks separated by smooth interfaces. The high accuracy of our NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. We also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.  相似文献   

17.
ANISOTROPIC TRAVELTIME TOMOGRAPHY   总被引:1,自引:0,他引:1  
Velocity estimation technique using seismic data is often based on time/distance equations which are independent of direction, and even though we now know that many rocks are quite anisotropic, useful results have been obtained over the years from these isotropic estimates. Nevertheless, if velocities are significantly direction-dependent, then the isotropic assumption may lead to serious structural interpretation errors. Additionally, information on angle-dependence may lead to a better understanding of the lithology of the rocks under measurement. VSP and cross-well data may each lack the necessary aperture to estimate more than two velocity parameters for each wave type, and if the data straddle a symmetry axis, then these may be usefully chosen to be the direct velocities (from time-and-distance measurements along the axis) and NMO velocities (from differential time-offset measurements). These sets of two parameters define ellipses, and provide intermediate models for the variation of velocity with angle which can later be assembled and translated into estimates of the elastic moduli of the rocks under scrutiny. If the aperture of the measurements is large enough e.g. we have access to both VSP and cross-well data, we divide the procedure into two independent steps, first fitting best ellipses around one symmetry axis and then fitting another set around the orthogonal axis. These sets of four elliptical parameters are then combined into a new, double elliptical approximation. This approximation keeps the useful properties of elliptical anisotropy, in particular the simple relation between group and phase velocities which simplifies the route from the traveltimes measurements to the elastic constants of the medium. The inversion proposed in this paper is a simple extension of well-known isotropic schemes and it is conceptually identical for all wave types. Examples are shown to illustrate the application of the technique to cross-well synthetic and field P-wave data. The examples demonstrate three important points: (a) When velocity anisotropy is estimated by iterative techniques such as conjugate gradients, early termination of the iterations may produce artificial anisotropy. (b) Different components of the velocity are subject to different type of artifacts because of differences in ray coverage, (c) Even though most rocks do not have elliptical dispersion relations, our elliptical schemes represent a useful intermediate step in the full characterization of the elastic properties.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号