首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Polycyclic Aromatic Hydrocarbons (PAHs) are one of the components found in oil and are of interest because some are toxic. We studied the environmental fate of PAHs and the effects of chemical dispersants using experimental 500 l mesocosm tanks that mimic natural ecosystems. The tanks were filled with seawater spiked with the water-soluble fraction of heavy residual oil. Water samples and settling particles in the tanks were collected periodically and 38 PAH compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Low molecular weight (LMW) PAHs with less than three benzene rings disappeared rapidly, mostly within 2 days. On the other hand, high molecular weight (HMW) PAHs with more than four benzene rings remained in the water column for a longer time, up to 9 days. Also, significant portions (10-94%) of HMW PAHs settled to the bottom and were caught in the sediment trap. The addition of chemical dispersant accelerated dissolution and biodegradation of PAHs, especially HMW PAHs. The dispersant amplified the amounts of PAHs found in the water column. The amplification was the greater for the more hydrophobic PAHs, with an enrichment factor of up to six times. The increased PAHs resulting from dispersant use overwhelmed the normal degradation and, as a result, higher concentrations of PAHs were observed in water column throughout the experimental period. We conclude that the addition of the dispersant could increase the concentration of water column PAHs and thus increase the exposure and potential toxicity for organisms in the natural environment. By making more hydrocarbon material available to the water column, the application of dispersant reduced the settling of PAHs. For the tank with dispersant, only 6% of chrysene initially introduced was detected in the sediment trap whereas 70% was found in the trap in the tank without dispersant.  相似文献   

2.
The aquatic organisms toxicity testing protocols developed by the chemical response to oil spills: Ecological Research Forum (CROSERF) were evaluated for applicability to assessing chemical dispersant toxicity under subarctic conditions. CROSERF participants developed aquatic toxicity testing protocols with the foremost objective of standardizing test methods and reducing inter-laboratory variability. A number of refinements are recommended to adapt the CROSERF protocols for testing with subarctic species under conditions of expected longer oil persistence. Recommended refinements of the CROSERF protocols include testing fresh and moderately weathered oil under conditions of moderate mixing energy, preparing toxicity test solutions using variable dilutions rather than variable loading, performing tests with subarctic species using static exposures in open chambers, increasing the duration of tests from 4 to 7 days, quantifying approximately 40 PAHs and their alkyl homologs, assessing the potential for photoenhanced toxicity, and incorporating a bioaccumulation endpoint by measuring tissue concentrations of PAHs. Refinements in the preparation of oil dosing solutions, exposure and light regimes, and analytical chemistry should increase the utility of the test results for interpreting the toxicity of chemically dispersed oil and making risk management decisions regarding dispersant use under subarctic conditions.  相似文献   

3.
The following article discusses the relevance of laboratory toxicity studies of a chemical oil dispersant, in general, and the foregoing paper. While Lönning and Hagström use a sensitive means to determine the more subtle, sublethal effects of chemicals on marine life, two major aspects of their work should be clarified. First, a concentration of 1–10 ppm of chemical dispersant, wherein fertilization of the sea urchin egg was affected in their work, does not occur in the usual marine environment with proper use of the dispersant. Second, there is no evidence to support the conclusion that the specific chemical dispersants studied by Lönning and Hagström preferentially release ‘toxic substances’ from the crude oil.  相似文献   

4.
In order to better understand the practice of dispersant use, a review has been undertaken of marine oil spills over a 10 year period (1995-2005), looking in particular at variations between different regions and oil-types. This viewpoint presents and analyses the review data and examines a range of dispersant use policies. The paper also discusses the need for a reasoned approach to dispersant use and introduces past cases and studies to highlight lessons learned over the past ten years, focussing on dispersant effectiveness and monitoring; toxicity and environmental effects; the use of dispersants in low salinity waters; response planning and future research needs.  相似文献   

5.
Petroleum products discharged at the water surface are rapidly modified under the effect of physico-chemical and biological transformations, themselves closely dependent on ecological factors. The rôle of some of these, such as illumination, may be particularly significant. This report deals with the effect of this parameter on the phytotoxicity of Kuwait crude oil on the primary production of a microalga: (Phaeodactylum tricornutum) and marine plankton communities.The result of these investigations indicates that the toxicity of extracts made from a crude oil is about two to three times greater when the latter is previously subjected to illumination of sufficient intensity and duration. The incorporation of a chemical dispersant (Corexit 8666) magnifies this phenomenon. In the case of a weathered crude oil mixed in equal parts with the dispersant, illumination raises the toxicity of the extracts by a factor of about 30.  相似文献   

6.
Toxicity of 1,4-dichlorobenzene in sediments to juvenile polychaete worms   总被引:1,自引:0,他引:1  
Investigation of sediment contamination associated with a marine sewage outfall in Victoria (BC, Canada) found elevated concentrations of 1,4-dichlorobenzene (1,4-DCB). Juvenile polychaete worm (Neanthes) growth was significantly reduced at or near the outfall, roughly corresponding to elevated 1,4-DCB concentrations. There are few data on 1,4-DCB toxicity to marine organisms and no published literature on its toxicity to benthic marine organisms. To determine whether reduced polychaete growth (measured as dry weight) was due to 1,4-DCB exposure, a laboratory investigation was conducted. Uncontaminated marine sediment was spiked with 1,4-DCB and juvenile Neanthes were exposed in 20-d sublethal toxicity tests. There were no adverse effects on survival at any test concentration; mean survival was 80–100%. Statistically significant decreases in average dry weight only occurred at the highest 1,4-DCB concentration (19,900 μg/kg, dry weight); this represented a 1,4-DCB concentration more than 10 times higher than previously measured at the outfall (1710 μg/kg, dry weight). There were no adverse effects on survival or dry weight at the range of concentrations previously measured in sediments from the vicinity of the outfall.  相似文献   

7.
Non-eroding silicone-based coatings can effectively reduce fouling of ship hulls and are an alternative to biocidal and heavy metal-based antifoulings. The products, whose formulations and make up are closely guarded proprietary knowledge, consist of a silicone resin matrix and may contain unbound silicone oils (1-10%). If these oils leach out, they can have impacts on marine environments: PDMS are persistent, adsorb to suspended particulate matter and may settle into sediment. If oil films build up on sediments, infiltration may inhibit pore water exchange. PDMS do not bioaccumulate in marine organisms and soluble fractions have low toxicity to aquatic and benthic organisms. At higher exposures, undissolved silicone oil films or droplets can cause physical-mechanic effects with trapping and suffocation of organisms. These 'new' effects are not covered by current assessment schemes. PDMS make the case that very low water solubility and bioavailability do not necessarily preclude damage to marine environments.  相似文献   

8.
Shallow water bays located in the western Arabian Gulf experience harsh environmental conditions. Some of these bays, including Manifa-Tanajib Bay System (MTBS), were also exposed to the 1991 oil pollution event. This study investigates the status of the macrobenthos in MTBS during 2006. This bay system is characterized by very shallow inner bays with elevated salinity and temperature compared to the rest of the bay area. As a result mainly of the hyper salinity, the inner bay communities are distinct from the outer bay communities. Overall, fairly high species richness with several rare species was observed. High Shannon-Wiener diversity values and ABC plots indicated the healthy status of the polychaete communities, while BOPA index indicated slightly polluted status in 20% of the stations. The oil sensitive amphipods were not completely re-colonized in 20% of the stations, even after 15 years of recovery from the 1991 oil spill.  相似文献   

9.
Our study examined the effects of Corexit 9500 and sediment on microbial mineralization of specific aliphatic and aromatic hydrocarbons found in crude oil. We also measured gross mineralization of crude oil, dispersed crude oil and dispersant by a marine microbial consortium in the absence of sediment. When provided as carbon sources, our consortium mineralized Corexit 9500 the most rapidly, followed by fresh oil, and finally weathered oil or dispersed oil. However, mineralization in short term assays favored particular components of crude oil (2-methyl-naphthalene > dodecane > phenanthrene > hexadecane > pyrene) and was not affected by addition of nutrients or sediment (high sand, low organic carbon). Adding dispersant inhibited hexadecane and phenanthrene mineralization but did not affect dodecane and 2-methyl-naphthalene mineralization. Thus, the effect of dispersant on biodegradation of a specific hydrocarbon was not predictable by class. The results were consistent for both high and low oiling experiments and for both fresh and weathered oil. Overall, our results indicate that environmental use of Corexit 9500 could result in either increases or decreases in the toxicity of residual oil through selective microbial mineralization of hydrocarbons.  相似文献   

10.
An oil spill-food chain interaction model, composed of a multiphase oil spill model (MOSM) and a food chain model, has been developed to assess the probable impacts of oil spills on several key marine organisms (phytoplankton, zooplankton, small fish, large fish and benthic invertebrates). The MOSM predicts oil slick thickness on the water surface; dissolved, emulsified and particulate oil concentrations in the water column; and dissolved and particulate oil concentrations in bed sediments. This model is used to predict the fate of oil spills and transport with respect to specific organic compounds, while the food chain model addresses the uptake of toxicant by marine organisms. The oil spill-food chain interaction model can be used to assess the environmental impacts of oil spills in marine ecosystems. The model is applied to the recent Evoikos-Orapin Global oil spill that occurred in the Singapore Strait.  相似文献   

11.
Marine sediment can function both as a source and as a sink of marine chemical contaminants. The toxicity of contaminated marine sediment can be assessed by toxic evaluation of its pore water, the inter-particle water of sediment, because toxicants in the pore water may be bioavailable to marine organisms. In this study, the toxicity identification evaluation (TIE) was performed to identify the major toxicants in the pore water of marine sediment collected in Hong Kong waters. In Phase 1 TIE, the suspected toxicants were characterized as anions or organic compounds that are either oxidizable or filterable in alkaline medium. In Phase 2 TIE, the suspected toxicants were identified as sulfide (S2−) based on the reduction of toxicity due to lowering of sulfide concentrations by experimental manipulations. The mass balance and spiking analyses in Phase 3 confirmed that S2− was one of the major toxicants and that some non-toxic unknown compounds measured by LC–MS, which was removed by C18 solid phase extraction, enhanced the toxicity of S2− in the pore water samples.  相似文献   

12.
This study evaluated the toxicity of dispersant application which is, in nearshore area, a controversial response technique to oil spill. Through an experimental approach with juveniles of Liza aurata, the toxicity of five exposure conditions was evaluated: (i) a chemically dispersed oil simulating dispersant application; (ii) a single dispersant as an internal control of chemically dispersed oil; (iii) a mechanically dispersed oil simulating natural dispersion of oil; (iv) a water soluble fraction of oil simulating an undispersed and untreated oil slick and (v) uncontaminated seawater as a control exposure condition. The relative concentration of PAHs (polycyclic aromatic hydrocarbons) biliary metabolites showed that the incorporation of these toxic compounds was increased if the oil was dispersed, whether mechanically or chemically. However, toxicity was not observed at the organism level since the aerobic metabolic scope and the critical swimming speed of exposed fish were not impaired.  相似文献   

13.
Zinc pyrithione (ZnPT) is widely applied in conjunction with copper (Cu) in antifouling paints as a substitute for tributyltin. The combined effects of ZnPT and Cu on marine organisms, however, have not been fully investigated. This study examined the toxicities of ZnPT alone and in combination with Cu to the diatom Thalassiosira pseudonana, polychaete larvae Hydroides elegans and amphipod Elasmopus rapax. Importantly, ZnPT and Cu resulted in a strong synergistic effect with isobologram interaction parameter lambda>1 for all test species. The combined toxicity of ZnPT and Cu was successfully modelled using the non-parametric response surface and its contour. Such synergistic effects may be partly due to the formation of copper pyrithione. It is, therefore, inadequate to assess the ecological risk of ZnPT to marine organisms solely based on the toxicity data generated from the biocide alone. To better protect precious marine resources, it is advocated to develop appropriate water quality criteria for ZnPT with the consideration of its compelling synergistic effects with Cu at environmentally realistic concentrations.  相似文献   

14.
Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditions closer to the natural environment, including transport and dilution effects. To achieve this goal, Fisheries and Oceans Canada and the US Environmental Protection Agency (EPA) designed and constructed a wave tank system to study chemical dispersant effectiveness under controlled mixing energy conditions (regular non-breaking, spilling breaking, and plunging breaking waves). Quantification of oil dispersant effectiveness was based on observed changes in dispersed oil concentrations and oil-droplet size distribution. The study results quantitatively demonstrated that total dispersed oil concentration and breakup kinetics of oil droplets in the water column were strongly dependent on the presence of chemical dispersants and the influence of breaking waves. These data on the effectiveness of dispersants as a function of sea state will have significant implications in the drafting of future operational guidelines for dispersant use at sea.  相似文献   

15.
《Marine pollution bulletin》2014,85(1-2):391-400
A comparative study of 23 PAH congeners in sediment of the Caspian Sea coast and Anzali Wetland was conducted in 2010. Surface sediment was analyzed using chromatography and mass spectrometry. Total PAH concentrations ranged between 212 and 9009 ng g1 dw. Spatial distribution maps revealed that PAH levels were higher in the coastal areas of the Caspian Sea where oil related activities have been common since 1800’s. Diagnostic ratios analysis indicated that PAHs largely originated from petrogenic processes. PAH toxicity level was assessed using sediment quality guidelines and toxic equivalent concentrations to determine toxic effects on marine organism. Based on these investigations, in our study areas, the probability of toxicity for benthic organisms is “low to medium”. The toxic equivalent concentrations of carcinogenic PAHs varied between 11 and 231 ng TEQ/g; higher total toxic equivalent concentrations values were found in the coastal areas of the Caspian Sea.  相似文献   

16.
A novel toxicity method to determine sublethal and lethal effects of manmade contaminants on the bioluminescence output from marine dinoflagellates has been developed and tested over the course of 16 years. The toxicity system, QwikLite™, was developed for the sole purpose of evaluating the potential toxicity of various materials used in bay sediments, storm water discharges, industrial discharges from Naval facilities, and antifoulant paints. Bioluminescence inhibition was observed in the following dinoflagellates: Lingulodinium polyedrum (formerly known as Gonyaulax polyedra), Ceratocorys horrida, Pyrocystis noctiluca, Pyrocystis lunula, Pyrocystis fusiformis, and Pyrophacus steinii. Cultured cells were exposed to various concentrations of contaminants from hours through 10 days. Further application with bioluminescent dinoflagellates in a variety of toxicity testing schemes have shown that these species can be used as a screening assay organism in lieu of the more costly, labor intensive bioassays presently in use.  相似文献   

17.
We used photosynthetic activity (measured as chlorophyll a fluorescence) and photosynthetic pigment concentrations to assess the effect of pulsed exposures of aged crude oil (Champion Crude), dispersant (VDC) and an oil+dispersant mixture on the seagrass Zostera capricorni Aschers in laboratory and field experiments, using custom-made chambers. Samples were exposed for 10 h to 0.25% and 0.1% concentrations of aged crude oil and dispersant as well as mixtures of 0.25% oil+0.05% dispersant and 0.1% oil+0.02% dispersant. During this time and for the subsequent four day recovery period, the maximum and effective quantum yields of photosystem II (Fv/Fm and DeltaF/Fm' respectively) were measured. In the laboratory experiments, both values declined in response to oil exposure and remained low during the recovery period. Dispersant exposure caused a decline in both values during the recovery period, while the mixture of aged crude oil+dispersant had little impact on both quantum yields. In situ samples were less sensitive than laboratory samples, showing no photosynthetic impact due to dispersant and oil+dispersant mixture. Despite an initial decline in DeltaF/Fm', in situ oil-exposed samples recovered by the end of the experiment. Chlorophyll pigment analysis showed only limited ongoing impact in both laboratory and field situations. This study suggests that laboratory experiments may overestimate the ongoing impact of petrochemicals on seagrass whilst the dispersant VDC can reduce the impact of oil on seagrass photosynthesis.  相似文献   

18.
The effect of the water soluble oil dispersant Corexit 9527 was tested on larvae from several species of sea urchins and marine fishes. Severe effects in fertilization and development were registered often resulting in pathological larvae and rapid cytolysis. The combination of Corexit 9527 with oil was found to be even more dangerous to the embryo than Corexit or oil alone.  相似文献   

19.
The state of the water area in the Bays of Koz’mina and Lake Vtoroe (Nakhodka Gulf is evaluated. The data given include water temperature and salinity, biochemical oxygen demand, pH, alkalinity, chlorophyll a, organic matter, biogenic elements, oil products, detergents, polycyclic aromatic hydrocarbons, phenols, and organochlorine pesticides in water and bottom sediments. Pollutants may enter the system of bights from both onshore sources and the open part of the bay. The water and bottom sediments in this part of the bay show higher values of BOD5 and the concentrations of oil products, polycyclic aromatic hydrocarbons, phenols, and organochlorine pesticides. The anthropogenic load on the water body is shown to increase because of the new industrial construction on its shore.  相似文献   

20.
The aim of the work was to establish methodology for realistic laboratory-based test exposures of organisms to oil dispersions, specifically designed to generate parameterized toxicity data. Such data are needed to improve the value of numerical models used to predict fate and effects of oil spills and different oil spill responses. A method for continuous and predictable in-line production of oil dispersions with defined size distribution of different oil qualities was successfully established. The system enables simultaneous comparison between the effects of different concentrations of dispersion and their corresponding equilibrium water soluble fractions. Thus, net effects of the oil droplet fraction may be estimated. The method provides data for comparing the toxicity of oil dispersions generated both mechanically and with the use of chemical dispersions, incorporating the toxicity of both dissolved oil and droplets of oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号