首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
大气边界层研究进展   总被引:1,自引:0,他引:1  
大气边界层对云和对流的发展、演变有重要作用.本文回顾了在大气边界层高度计算方法,边界层的时空分布特征、结构和发展机理,以及边界层参数化方案等方面的主要研究进展.大气边界层高度计算方法主要分为基于大气廓线观测数据计算和基于模式参数化方案计算两大类;大气边界层高度频率分布形态具有明显的日变化特征,并且稳定、中性和对流边界层高度的频率分布呈现出不同的Gamma分布特征;地面湿度状况对边界层发展影响明显,对于不同的下垫面热力性质和地形状况,大气边界层高度呈现出明显的空间差异,青藏高原边界层高度明显高于一般平原地区;在强烈的地面加热驱动下,对流边界层与残余层通过正反馈机制循环增长可以形成4000 m以上的超高大气边界层;研制大气边界层、浅对流以及云物理方案的统一参数化框架是未来数值预报模式的发展趋势.  相似文献   

2.
3.
Boundary layers occurring in the magnetosphere can support a wide spectrumof plasma waves spanning a frequency range of a few mHz to tens of kHz andbeyond. This review describes the main characteristics of the broadband plasma waves observed in the Earth's low-latitude magnetopause boundary layer (LLBL), in the polar cap boundary layer (PCBL), and the possible generation mechanisms. The broadband waves at the low-latitude boundary layer are sufficiently intense to cause the diffusion of the magnetosheath plasma across the closed magnetospheric field lines at a rate rapid enough to populate and maintain the boundary layer itself. The rapid pitch angle scattering of energetic particles via cyclotron resonant interactionswith the waves can provide sufficient precipitation energy flux to the ionosphere to create the dayside aurora. In general, the broadband plasma waves may play an important part in the processes of local heating/acceleration of the boundary layer plasma.  相似文献   

4.
Abstract

The separation of sidewall boundary layers in a rotating annulus of homogeneous fluid is studied experimentally. The flow is driven by a differentially rotating lid, and a very small uniform slope of the bottom causes a weak mountain vortex pair to form in the interior, away from the sidewalls. A necessary condition for aerodynamic separation of the sidewall boundary layers is derived and compared with the experimental results. The laboratory flow separates for parameters that are just slightly more inviscid than those required by the necessary condition for the existence of adverse pressure gradients at the wall. As the bottom friction is decreased further, the flow becomes unsteady and chaotic. The most interesting aspect of this problem is that chaotic interior behavior, associated with the separated boundary layer, is observed for parameter values for which the interior topographically forced flow is, by itself, essentially linear.  相似文献   

5.
The interaction between two important mechanisms which causes streaming has been investigated by numerical simulations of the seabed boundary layer beneath both sinusoidal waves and Stokes second order waves, as well as horizontally uniform bottom boundary layers with asymmetric forcing. These two mechanisms are streaming caused by turbulence asymmetry in successive wave half-cycles (beneath asymmetric forcing), and streaming caused by the presence of a vertical wave velocity within the seabed boundary layer as earlier explained by Longuet-Higgins. The effect of wave asymmetry, wave length to water depth ratio, and bottom roughness have been investigated for realistic physical situations. The streaming induced sediment dynamics near the ocean bottom has been investigated; both the resulting suspended load and bedload are presented. Finally, the mass transport (wave-averaged Lagrangian velocity) has been studied for a range of wave conditions. The streaming velocities beneath sinusoidal waves (Longuet-Higgins streaming) is always in the direction of wave propagation, while the streaming velocities in horizontally uniform boundary layers with asymmetric forcing are always negative. Thus the effect of asymmetry in second order Stokes waves is either to reduce the streaming velocity in the direction of wave propagation, or, for long waves relative to the water depth, to induce a streaming velocity against the direction of wave propagation. It appears that the Longuet-Higgins streaming decreases as the wave length increases for a given water depth, and the effect of wave asymmetry can dominate, leading to a steady streaming against the wave propagation. Furthermore, the asymmetry of second order Stokes waves reduces the mass transport (wave-averaged Lagrangian velocity) as compared with sinusoidal waves. The boundary layer streaming leads to a wave-averaged transport of suspended sediments and bedload in the direction of wave propagation.  相似文献   

6.
7.
In this study, we examine the development of topography on a thin dense layer at the base of the lower mantle. The effect of the convecting mantle above is represented as a traction acting on the upper surface of the layer. Topography on the layer boundaries is predicted by a balance of dynamic flow stress and external traction. The nature of boundary topography depends on the magnitude of the driving tractions and the density variation within the layer. If we assume that the layer density is greatest beneath areas of mantle downwelling and decreases to a minimum beneath areas of mantle upwelling (the layer is thermally coupled to the convection in the overlying mantle) then its upper boundary develops a cusp-like peak beneath the upwelling mantle. The height of this peak is potentially much greater than the layer thickness. If, however, the layers are effectively coupled by viscous shear then internal density gradients of the opposite sign may be established. In this case, we observe solutions where the layer is completely swept away beneath areas of mantle downwelling leaving steep-sided ‘islands’ of dense material. This mechanism therefore provides a possible explanation for steep-sided anomalously slow regions at the base of the mantle observed by seismic methods (e.g. beneath south Africa) or for discrete ultralow velocity zones detected at the core-mantle boundary beneath locations of surface hotspots. The magnitude of the upper boundary driving tractions compared to the density gradient within the layer is the key parameter that determines the nature of flow in, and consequently boundary topography of, the layer. The deflection of the core-mantle boundary is small compared with that of the top of the dense layer, but a change in sign of the ratio of these deflections is observed as the magnitude of the driving tractions changes relative to the magnitude of the internal density gradient. We compare seismic measurements of core-mantle boundary topography and D′′ topography with the predictions of this model in an attempt to constrain model parameters, but no clear correlation seems to exist between D′′ thickness and CMB topography.  相似文献   

8.
鄂尔多斯块体定边—大罗山段大地电磁结果表明,鄂尔多斯块体内部电性结构简单,成层性好,上地幔第一高导层顶面埋深基本在109km左右,相当平坦,块体内部不存在壳内高导层。而靠近大罗山处,上地幔第一高导层向上隆起,隆起最高处距地表92km,此处测点壳内有电性分层,但由于断裂带的切割使测点之间的壳内分层不易连接,形成不连续层。分析认为该处为深大断裂带,是鄂尔多斯块体的西部边界  相似文献   

9.
大气边界层湍流的动力非平稳性的验证   总被引:7,自引:1,他引:6       下载免费PDF全文
首次用验证时间序列中是否存在动力非平稳性的一种简单图示方法——space time index法来分析大气边界层湍流的动力平稳性特征.本文以取自淮河流域和威斯康星森林下垫面条件下的三维高精度风速和温度、湿度湍流脉动资料对大气边界层湍流的平稳性特征进行了分析.结果表明space time index方法能有效地检验大气边界层湍流信号中是否存在动力平稳性.另外,均匀下垫面条件(水稻田)及复杂下垫面条件(森林)下的大气边界层湍流信号中几乎都存在动力非平稳性,大气湍流动力学非平稳性可能是边界层湍流信号相当普遍具有的一种特性.大气边界层湍流中的间歇性和相干结构使得其非平稳性图形的特征不同于一般时间序列非平稳性图形的“V”型特征;森林下垫面条件下的湍流信号比相对均匀下垫面(水稻田)下的湍流信号更有组织性,相干结构更强.  相似文献   

10.
Surface ozone (O3) and vertical O3 distribution in the planetary boundary layer (PBL) at the Ming Tombs (40°17′15″N, 116°12′51″E), Beijing during September 7―12, 2001 were measured by ground based measurements and an in-situ tethersonde system. The results indicated that O3 concentration measured at surface level agreed well with that measured by tethersonde system in daytime when active thermal mixing was dominated. Ozone showed the lowest concentration before the sunrise and then gradually increased in the morning and reached the maximum in the afternoon 14:00―17:00 (lst). After sunset, O3 gradually decreased and resulted in low value below 200―300 m due to surface loss processes and chemical destruction in stable boundary layer characterized by temperature inversions. High O3 was observed whenever there was pollutants transport from the metropolitan areas of Beijing. Our analysis suggested the complex terrain of the Ming Tombs region caused pollutants transported from Beijing to accumulate in the PBL, and resulted in severe O3 pollution, with a maximum over 160×10-9, when the synoptic conditions was favorable for photochemical O3 production.  相似文献   

11.
Recently, an effective and powerful approach for simulating seismic wave propagation in elastic media with an irregular free surface was proposed. However, in previous studies, researchers used the periodic condition and/or sponge boundary condition to attenuate artificial reflections at boundaries of a computational domain. As demonstrated in many literatures, either the periodic condition or sponge boundary condition is simple but much less effective than the well‐known perfectly matched layer boundary condition. In view of this, we intend to introduce a perfectly matched layer to simulate seismic wavefields in unbounded models with an irregular free surface. We first incorporate a perfectly matched layer into wave equations formulated in a frequency domain in Cartesian coordinates. We then transform them back into a time domain through inverse Fourier transformation. Afterwards, we use a boundary‐conforming grid and map a rectangular grid onto a curved one, which allows us to transform the equations and free surface boundary conditions from Cartesian coordinates to curvilinear coordinates. As numerical examples show, if free surface boundary conditions are imposed at the top border of a model, then it should also be incorporated into the perfectly matched layer imposed at the top‐left and top‐ right corners of a 2D model where the free surface boundary conditions and perfectly matched layer encounter; otherwise, reflections will occur at the intersections of the free surface and the perfectly matched layer, which is confirmed in this paper. So, by replacing normal second derivatives in wave equations in curvilinear coordinates with free surface boundary conditions, we successfully implement the free surface boundary conditions into the perfectly matched layer at the top‐left and top‐right corners of a 2D model at the surface. A number of numerical examples show that the perfectly matched layer constructed in this study is effective in simulating wave propagation in unbounded media and the algorithm for implementation of the perfectly matched layer and free surface boundary conditions is stable for long‐time wavefield simulation on models with an irregular free surface.  相似文献   

12.
A high-resolution three-dimensional model of the Clyde Sea and the adjacent North Channel of the Irish Sea is used to compute the major diurnal and semidiurnal tides in the region, the associated energy fluxes and thickness of the bottom boundary layer. Initially, the accuracy of the model is assessed by performing a detailed comparison of computed tidal elevations and currents in the region, against an extensive database that exists for the M2, S2, N2, K1 and O1 tides. Subsequently, the model is used to compute the tidal energy flux vectors in the region. These show that the major energy flux is confined to the North Channel region, with little energy flux into the Clyde Sea. Comparison with the observed energy flux in the North Channel shows that its across-channel distribution and its magnitude are particularly sensitive to the phase difference between elevation and current. Consequently, small changes in the computed values of these parameters due to slight changes of the order of the uncertainty in the open-boundary values to the model, can significantly influence the computed energy flux. The thickness of the bottom boundary layer in the region is computed using a number of formulations. Depending upon the definition adopted, the empirical coefficient C used to determine its thickness varies over the range 0.1 to 0.3, in good agreement with values found in the literature. In the North Channel, the boundary layer thickness occupies the whole water depth, and hence tidal turbulence produced at the sea bed keeps the region well mixed. In the Clyde Sea, the boundary layer thickness is a small fraction of the depth, and hence the region stratifies.Responsible Editor: Phil Dyke  相似文献   

13.
It has been suggested that there exists a stably stratified electrically conducting layer at the top of the Earth's outer fluid core and that lateral temperature gradients in the lower mantle is capable of a driving thermal-wind-type flow near the core–mantle boundary. We investigate how such a flow in a stable layer could influence the geomagnetic field and the geodynamo using a very simple two-dimensional kinematic dynamo model in Cartesian geometry. The dynamo has four layers representing the inner core, convecting lower outer core, stable upper core, and insulating mantle. An α2 dynamo operates in the convecting outer core and a horizontal shear flow is imposed in the stable layer. Exact dynamo solutions are obtained for a range of parameters, including different conductivities for the stable layer and inner core. This allows us to connect our solutions with known, simpler solutions of a single-layer α2 dynamo, and thereby assess the effects of the extra layers. We confirm earlier results that a stable, static layer can enhance dynamo action. We find that shear flows produce dynamo wave solutions with a different spatial structure from the steady α2 dynamos solutions. The stable layer controls the behavior of the dynamo system through the interface conditions, providing a new means whereby lateral variations on the boundary can influence the geomagnetic field.  相似文献   

14.
An inclined lidar with vertical resolution of 0.4 m was used for detailed boundary layer studies and to link observations at Zeppelin Mountain (474 m) and Ny-Ålesund, Svalbard. We report on the observation of aerosol layers directly above the Kongsfjord. On 29 April 2007, a layer of enhanced backscatter was observed in the lowest 25 m above the open water surface. The low depolarization ratio indicated spherical particles. In the afternoon, this layer disappeared. The ultrafine particle concentration at Zeppelin and Corbel station (close to the Kongsfjord) was low. On 1 May 2007, a drying process in the boundary layer was observed. In the morning, the atmosphere up to Zeppelin Mountain showed enhanced values of the backscatter coefficient. Around noon, the top of the highly reflecting boundary layer decreased from 350 to 250 m. The top of the boundary layer observed by lidar was confirmed by radiosonde data.  相似文献   

15.
16.
本文将边界层模型用于吸力桩(筒型基础)这种特殊的桩体,对位于渤海湾锦州地区的JZ9—3筒型基础系缆平台冰力作用下的土压力进行了计算分析,并将计算结果与实测数据进行了对比。结果表明计算值基本上反映了基础土-筒相互作用的应力状态,边界层模型可以有效地分析吸力桩-土相互作用问题。  相似文献   

17.
In the realm of the numerical simulation, finite difference method and finite element method are more intuitive and effective than other simulation methods. In the process of simulating seismic wave propagation, the finite differences method is widely used because of its high computational efficiency and the advantage of the algorithm is more efficient. With the demand of precision, more and more researchers have proposed more effective methods of finite differences, such as the high-order staggered-grid finite differences method, which can restore the actual process of wave propagation on the premise of ensuring accuracy and improving the efficiency of operation. In the past numerical simulation of seismic wave field, different models of isotropic medium are mostly used, but it is difficult to reflect the true layer situation. With the research demand of natural seismology and seismic exploration, the research on anisotropic media is more and more extensive. Transversely isotropic(TI)media can well simulate the seismic wave propagation in the formation medium, such as gas-bearing sandstone, mudstone, shale et al., the character of TI media is reflected by introducing the Thomsen parameters to reflect its weak anisotropy of vertical direction by using Thomson parameter. Therefore, studying the process of seismic wave propagation in TI media can restore the true information of the formation to the greatest extent, and provide a more reliable simulation basis for the numerical simulation of seismic wave propagation. In the geodynamic simulation and the numerical simulation of the seismic wave field, under the limited influence of the calculation area, if no boundary conditions are added, a strong artificial boundary reflection will be generated, which greatly reduces the validity of the simulation. In order to minimize the influence of model boundaries on the reflection of seismic waves, it is often necessary to introduce absorbing boundary conditions. At present, there are three types of absorption boundary conditions: one-way wave absorption boundary, attenuation absorption boundary, and perfectly matched layer(PML)absorption boundary. In terms of numerical simulation of seismic waves, the boundary absorption effect of PML is stronger than the first two, which is currently the most commonly used method, and it also represents the cutting-edge development direction of absorption boundary technology. The perfectly matched layer absorbing boundary is effectively applied to eliminating the reflective waves from model boundaries, but for transversely isotropic medium, the effect of the absorbing is not very well. For this reason, the elastic dynamic wave equations in transversely isotropic media are derived, and we describe a second-order accurate time, tenth-order accurate space, formulation of the Madariaga-Virieux staggered-grid finite difference methods with the perfectly matched layer(PML)are given. In addition, we have established vertical transversely isotropic(VTI)media and arbitrary inclined tilted transversely isotropic(TTI)media models, using a uniform half-space velocity model and a two-layer velocity model, respectively. By combining the actual geoscience background, we set the corresponding parameters and simulation conditions in order to make our model more research-oriented. When setting model parameters, different PML thickness, incident angle, source frequency and velocity layer models were transformed to verify the inhibition of boundary reflection effect by PML absorption boundary layer. The implementations of this simulation show that the formula is correct and for the transversely isotropic(TI)media of any angular symmetry axis, when the thickness of the PML layer reaches a certain value, the seismic wave reflection effect generated by the artificial boundary can be well suppressed, and the absorption effect of PML is not subject to changes in incident angle and wave frequency. Therefore, the results of our study indicate that our research method can be used to simulate the propagation process of seismic waves in the transversely isotropic(TI)media without being affected by the reflected waves at the model boundary to restore the actual formation information and more valuable geological research.  相似文献   

18.
Traditional Boussinesq or kinematic simulations of interflow (i.e., lateral subsurface flow) assume no leakage through the impeding layer and require a no-flow boundary condition at the ridge top. However, recent analyses of many interflow-producing landscapes indicate that leaky impeding layers are common, that most interflow percolates well before reaching the toe slope, and therefore, the downslope contributing length is shorter than the hillslope length. In watersheds characterised by perched interflow over a low conductivity layer through permeable topsoil, interflow with percolation may be modelled with a kinematic wave model using a mobile upslope boundary condition defining the hillslope portion contributing interflow to valleys. Here, we developed and applied a dynamic interflow model to simulate interflow using a downslope travel distance concept such that only the active contributing length is modelled at any time. The model defines a variable active area based on the depth of the perched layer, the topographic slope and the ratio of the hydraulic conductivity of topsoil to that of the impeding layer. It incorporates a two-layer soil moisture accounting water balance analysis, a pedo-transfer function, and percolation and evaporation routines to predict interflow rates in continuous and event-based scenarios. We tested the modelling concept on two sets of data (2-year dataset of rainfall observations for the continuous simulation and a multi-day irrigation experiment for the event simulation) from a 121-m-long open interflow collection trench on an experimental hillslope at the Savannah River Site, South Carolina. The continuous model simulation partially represented the observed interflow hydrograph and perched water depth in the experimental hillslope with correlation coefficients of 0.85 and 0.35, respectively. Model performance improved significantly at event-scale analysis. The modelling approach realistically represents interflow dynamics in hillslopes with leaky impeding layers and can be integrated into catchment-scale hydrology models for more detailed hillslope process modelling.  相似文献   

19.
云覆盖对流边界层顶部湍流结构参数的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
应用飞机探测资料分析研究云覆盖对流边界层顶部温度和湿度湍流结构,在考虑对流边界层顶部夹卷过程的基础上得到计算温度和湿度结构参数的公式。应用实际观测资料分析了云覆盖对流边界层顶部的湍流特征.资料分析表明,云外晴空区温度和湿度结构函数值明显高于云内的值.云顶边界清晰,通过界面温度和湿度具有明显的跃变特征.应用观测资料检验了温度和湿度结构参数计算公式,计算结果与观测结果符合较好.  相似文献   

20.
MYJ和YSU方案对WRF边界层气象要素模拟的影响   总被引:20,自引:5,他引:15       下载免费PDF全文
研究新一代中尺度气象模式WRF中两种大气边界层方案(MYJ,YSU)对沈阳冬季大气边界层结构模拟的影响,重点分析温度层结、低层风场、边界层高度等对污染物扩散有重要影响的气象要素.和观测数据的比对表明WRF基本能够模拟出温度风速的日变化特征,但模拟风速偏大.YSU方案由于模拟的边界层顶卷挟和边界层内混合作用较强,夜间接地逆温强度低于MYJ方案,逆温维持时间比MYJ方案短4小时,同时模拟边界层高度也高于MYJ方案,有利于污染物垂直扩散.边界层高度的3种计算方法中,湍流动能方法计算的边界层高度最高,Richardson数方法次之,位温方法得到的高度最低.Richardson数方法对临界值的选取较敏感.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号