首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
ABSTRACT

Low streamflow conditions can have adverse consequences for society and river ecology. The variability and drivers of streamflow drought indicators within the USA were investigated using observed streamflow records from 603 gauges across the USA. The analysis was based on two main approaches: (i) low-flow magnitude indicators, and (ii) streamflow deficit indicators. First, we examined how streamflow drought indicators vary spatially across the USA. Second, we used a data-driven clustering method to identify spatial clusters for each indicator. Finally, we assessed the association with regional climate drivers. The results show that the spatial variability of low-flow magnitude indicators is significantly different from the deficit indicators. Further, our clustering approach identifies regions of spatial homogeneity, which can be linked to the extreme regional climate drivers and land–atmosphere interactions. The influence of regional climate on streamflow drought indicators varies more between clusters than between indicators.  相似文献   

2.
River basins in south‐western USA are some of the most extensively studied arid land fluvial systems in the world. Since the early 1960s their hydro‐climatic histories have been reconstructed from the analysis of alluvial cut‐and‐fill cycles, while from the late 1970s there have been investigations of slackwater deposits and palaeostage indicators for large floods in stable‐boundary bedrock reaches. However, no studies have regionally integrated Holocene fluvial histories from these two different types of fluvial environments. The current study combines the alluvial archive with flood records from bedrock reaches to generate a probability‐based 12,000 year record of flooding in south‐western USA. Using more than 700 14C‐dated fluvial units, the analysis produces a high resolution (centennial) flood record. Seven episodes of increased flooding occurred at 11,250–10,400, 8800–8350, 8230–7600, 6700–5700, 5600–4820, 4550–3320 and 2000–0 cal. BP. Bedrock reaches are found to record more frequent floods during the middle to late Holocene, while in alluvial rivers more flood units are dated to the early and middle Holocene. These differences are primarily the result of selective preservation with alluvial reaches tending to erode during periods characterised by very large floods. Episodes of major Holocene flooding recorded in slackwater deposits within bedrock systems correspond with periods of increased precipitation in the region and lower temperatures. In contrast, within alluvial rivers above‐average flooding probabilities, as well as regionally extensive channel entrenchment episodes, match with reduced annual precipitation and lower temperatures. The results of this study clearly demonstrate the value of the Holocene fluvial archive for reconstructing regional, short‐term hydro‐climatic change in south‐western USA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The relation of the fluxes of relativistic electrons in geostationary orbit during magnetic storms to the state of the magnetosphere and variations in the solar wind parameters is studied based on the GOES satellite data (1996–2000). It has been established that, in ~52–65% of all storms, the fluxes of electrons with energies higher than 0.6 and 2 MeV during the storm recovery phase are more than twice as high as the electron fluxes before a storm. It has been indicated that the probability of such cases is closely related to the prestorm level of fluxes and to a decrease in fluxes during the storm main phase. It has been found that the solar wind velocity on the day of the storm main phase and the geomagnetic activity indices at the beginning of the storm recovery phase are also among the best indicators of occurrence of storms with increased fluxes at the storm recovery phase.  相似文献   

4.
The objective of this study was to develop a novel risk analysis approach to assess ozone exposure as a risk factor for respiratory health. Based on the human exposure experiment, the study first constructed the relationship between lung function decrement and respiratory symptoms scores (ranged 0–1 corresponding to absent to severe symptoms). This study used a toxicodynamic model to estimate different levels of ozone exposure concentration-associated lung function decrement measured as percent forced expiratory volume in 1 s (%FEV1). The relationships between 8-h ozone exposure and %FEV1 decrement were also constructed with a concentration–response model. The recorded time series of environmental monitoring of ozone concentrations in Taiwan were used to analyze the statistical indicators which may have predictability in ozone-induced airway function disorders. A statistical indicator-based probabilistic risk assessment framework was used to predict and assess the ozone-associated respiratory symptoms scores. The results showed that ozone-associated lung function decrement can be detected by using information from statistical indicators. The coefficient of variation and skewness were the common indicators which were highly correlated with %FEV1 decrement in the next 7 days. The model predictability can be further improved by a composite statistical indicator. There was a 50 % risk probability that mean and maximum respiratory symptoms scores would fall within the moderate region, 0.33–0.67, with estimates of 0.36 (95 % confidence interval 0.27–0.45) and 0.50 (0.41–0.59), respectively. We conclude that statistical indicators related to variability and skewness can provide a powerful tool for detecting ozone-induced health effects from empirical data in specific populations.  相似文献   

5.
Pond‐cypress (Taxodium ascendens Brong.) is a dominant canopy species in depressional wetlands of the south‐eastern Coastal Plain. Unsustainable withdrawals from the karst Floridan aquifer system have caused premature decline and death of pond‐cypress trees, presumably owing to altered hydroperiods (which alter the flow of water and nutrients in trees). There has been no scientifically based means to determine sustainable yield from this regional aquifer system or to detect early stages of physical/ecological damage associated with groundwater mining and aquifer storage and recovery (ASR, which also can alter natural hydroperiods). In this study, the relationship between visual symptoms (indicators) of stress or premature decline, and spectral reflectance was evaluated using dried, milled branch tips collected from natural stands of mature pond‐cypress. Depressional systems evaluated represented four of the six aquifer system subregions where subsurface perturbations from groundwater mining: (i) were presumed not to be occurring (reference wetlands); (ii) may be occurring but are not documented; and (iii) have been confirmed. Sampled trees were assigned to one of three stress classes (1, no/minimal; 2, moderate; 3, severe) based on the visual indicators. Partial least squares–linear discriminant analysis of second derivative spectral transformations in the visible/shortwave near‐infrared (NIR) region (400–1100 nm) and the NIR region (1100–2500 nm) was used to evaluate the samples in assigned classes. Class 1 samples were discriminated from combined class 2 and 3 samples in the NIR region with 100% and 97% accuracy for consecutive winter sample periods (before bud‐break). The percentage of correctly classified samples in this spectral region was lower (85%) for summer samples (full leaf‐out). Second‐derivative models for the NIR region developed from the winter data sets predicted assigned classes for alternate winter's samples with an accuracy of 97% and 100%. High correlation between spectral reflectance of dried, milled branch tips collected from mature pond‐cypress in winter and visual indicators of premature decline suggests in situ pond‐cypress are hydroecological indicators of anthropogenic subsurface hydroperiod perturbations. This approach provides objective means for early detection of unsustainable aquifer yield and adverse impacts from ASR activities in the south‐eastern Coastal Plain. Used in conjunction with hydrological monitoring and modelling, the hydroecological indicators should provide the means with which sustainable yield in the south‐eastern Coastal Plain can be achieved and maintained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In the northern Loess Plateau that has been severely affected by wind–water erosion, shifts from arable land to forest or grasslands have been promoted since 1998, using both native and introduced vegetation. However, there is little knowledge of the ecological consequences and effectiveness of the vegetation restoration in the region. Therefore, relationships between watershed‐scale soil physical properties and plant recovery processes were analyzed. The results show that soil physical properties such as bulk density, hydraulic conductivity, mean weight diameter, and the stability of >1 mm macro‐aggregates have been significantly ameliorated in the 0–20 cm soil layer under secondary natural grasslands. In contrast, re‐vegetation with introduced species such as Caragana korshinskii or Medicago sativa had adversely affected the soil physical properties, probably due to the deterioration of soil water conditions and lower organic matter inputs resulting from severe erosion. Reductions in bulk density and increases in saturated hydraulic conductivity could be used as indicators of soil structure amelioration since they are closely related to most other measured properties. Practical considerations for future re‐vegetation projects are suggested, particularly that native species with lower water consumption rates than the introduced species should be used to avoid further soil degradation.  相似文献   

7.
Watershed models that combine hydrology and water quality are being widely used in integrated watershed management for the determination of best water management practices. In this study, the hydrology of the Lower Porsuk Stream Watershed in Turkey has been modelled with the Soil and Water Assessment Tool to determine optimal water management strategies. The calibration and the validation process have been accomplished using data from two monitoring stations. The model has been run for the 1978–2009 period, and while the 1998–2004 period has been used for calibration, the validation has spanned the whole period. The SWATCup calibration and uncertainty program has been used for this purpose. No significant differences have been detected among different iteration numbers in the calibration period. The monthly Nash–Sutcliffe and R2 performance indicators for the upstream Esenkara station have been 0.74 and 0.88, respectively, for the calibration period, and 0.87 and 0.87, respectively, for the validation period. The Kiranharmani station, which is located close to the watershed outlet, has shown values of 0.59 and 0.72, respectively, for the calibration period, and 0.44 and 0.56, respectively, for the validation period. There are uncertainties in the abstracted irrigation and groundwater quantities that have reflected in the results in the Kiranharmani station, which is more affected as it lies downstream of the irrigation areas. The effects of different irrigation practices on the flow regime have been also investigated. A scenario has been implemented in which drip irrigation wholly replaces conventional furrow and sprinkler irrigation. The scenario has shown increases in stream flows by 87% for the whole year. The adoption of more efficient irrigation practices thus results in reducing the water stress induced by irrigation demands. With this study, a modelling framework has been founded to aid water management applications in the Lower Porsuk Stream Watershed by generating scenarios for best management practices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The coastal zone is subject to many and varied changes resulting from human activities and natural processes. Existing or emerging agreements and legislation acknowledge the relevance of indicators for monitoring these. In the UK, following a series of recent workshops, potential indicators of nearshore disturbance have been identified and grouped into three broad indices: 'Coastline Morphological Change', 'Resource Use Change' and 'Environmental Quality and its Perception'. The present study developed these indicators further and tested their use by applying them to 18 sections in the Humber Estuary, Eastern England. The results obtained reflect the current knowledge of the state of the Humber environment and show the potential of integrative indicators but indicate that further studies are required to assess the relative importance of the indicators and their value in reflecting the ability of the ecosystems to sustain natural habitats and populations at a good conservation status.  相似文献   

9.
A method has been developed for the analysis of D/H ratios of non-exchangeable hydrogen in plant cellulose. Plant samples are nitrated at low temperature and pure cellulose nitrate is extracted by acetone dissolution. Tests of this nitrated product have demonstrated that the nitration-extraction procedure eliminates the OH hydrogen and does not alter the D/H ratio of the cellulose carbon-bound hydrogen. Significant differences exist between δD values of plant total hydrogen and δD values of cellulose nitrate hydrogen. This difference is due to the effect of chemical heterogeneity of the δD value of plant material. Plant-extracted cellulose nitrate D/H ratios are systematically related to the D/H ratios of the associated environmental water. The overall relationship is linear with slope of one and intercept of ?22%. Five aquatic plants which grew at 16–17°C are related isotopically to the water by a linear curve with a slope of 1 and intercept of ?36%. Three plants which grew at 28–29°C have an intercept of ?11%. The general dependence of plant cellulose non-exchangeable hydrogen D/H ratios on the D/H ratios of the associated environmental water suggests that variations of the extracted cellulose nitrate δD values of plants can be used as indicators of climatic change.  相似文献   

10.
Simulation models have been widely adopted in fisheries for management strategy evaluation (MSE). However, in catchment management of water quality, MSE is hampered by the complexity of both decision space and the hydrological process models. Empirical models based on monitoring data provide a feasible alternative to process models; they run much faster and, by conditioning on data, they can simulate realistic responses to management actions. Using 10 years of water quality indicators from Queensland, Australia, we built an empirical model suitable for rapid MSE that reproduces the water quality variables' mean and covariance structure, adjusts the expected indicators through local management effects, and propagates effects downstream by capturing inter-site regression relationships. Empirical models enable managers to search the space of possible strategies using rapid assessment. They provide not only realistic responses in water quality indicators but also variability in those indicators, allowing managers to assess strategies in an uncertain world.  相似文献   

11.
The extent of natural attenuation is an important consideration in determining the most appropriate corrective action at sites where ground water quality has been impacted by releases of petroleum hydrocarbons or other chemicals. The objective of this study was to develop a practical approach that would evaluate natural attenuation based on easily obtained field data and field tested indicators of natural attenuation. The primary indicators that can he used to evaluate natural attenuation include plume characteristics and dissolved oxygen levels in ground water. Case studies of actual field sites show that plumes migrate more slowly than expected, reach a steady state, and decrease in extent and concentration when natural attenuation is occurring. Background dissolved oxygen levels greater than 1 to 2 mg/L and an inverse correlation between dissolved oxygen and contaminant levels have been identified through laboratory and field studies as key indicators of aerobic biodegradation. an important attenuation mechanism. Secondary indicators such as geochemical data, and more intensive methods such as contaminant mass balances, laboratory microcosm studies, and detailed ground water modeling can demonstrate natural attenuation as well. The recommended approach for evaluating natural attenuation is to design site assessment activities so that required data such as dissolved oxygen levels and historical plume flow path concentrations are obtained. With the necessary data, the primary indicators should be applied to evaluate natural attenuation. II the initial evaluation suggests that natural attenuation is a viable corrective action alternative, then a monitoring plan should be implemented to verify the extent of natural attenuation.  相似文献   

12.
上海近50年气温变化与城市化发展的关系   总被引:11,自引:1,他引:10       下载免费PDF全文
根据上海地区2个气象站近50年的年均气温数据,采用回归分析、滑动平均和Mann\|Kendall检验法研究上海地区气温的年代际变化与跃变,城郊温差的年际变化;采用趋势拟合与相关分析,研究城郊温差与城市人口、GDP、能源消耗量、建成区面积和住宅竣工面积等各项城市发展指标的关系.结果表明:(1)近50年来,上海地区年均气温缓慢上升,20世纪90年代后城郊温差呈锯齿状上升趋势,若以徐家汇代表城区,奉贤代表郊区,则近50年来,城郊温差增温率为0.23℃/10a.(2)1989~1990年为上海城区气温的跃变年份,而郊区的气温跃变出现在20世纪90年代中期.(3)各项城市发展指标均与上海城郊温差有着显著的相关性,表明它们与上海城市热岛的发展关系密切,其中,住宅建设是上海城市热岛最主要的驱动因素,城市人口和经济发展也具有重要影响.  相似文献   

13.
In the current research,the impact of the COVID-19 lockdown period on sediment quality of the MericErgene River Basin was evaluated by determining the potentially toxic elements(PTEs) in sediment samples collected from 25 sampling points in the basin.Also some important ecological indicators including potential ecological risk index(PERI),contamination factor(CF),pollution load index(PLI),biological risk index(BRI),and geo-accumulation index(Igeo) and some important statistical indica...  相似文献   

14.
The Hulunbuir dune field (HLB) is situated near the northern limit of the East Asian summer monsoon (EASM), and vulnerable to climate change. The aeolian sand–paleosol sequences of this region are crucial for understanding the past landform processes in response to climate change, but not yet understood well due to chronological controversies. Here, we presented 20 optically stimulated luminescence (OSL) ages from five aeolian sand–paleosol profiles in the HLB, and reconstructed the aeolian landform processes since 18 ka. The findings of this study suggested that the HLB was probably dominated by mobile dunes before 18 ka, as 10 out of 11 aeolian samples were dated to 18–12 ka. Two strong sandy paleosol layers were found and dated to ∼9 ka and 5–0.5 ka, indicating that strong in situ pedogenic process on the accumulative sand could occur during the Holocene. The OSL ages of samples near the top of three profiles were >9.5 ka, indicating two possible surface processes. First, the land surface was stable since 9.5 ka after stabilization, with no accumulation or erosion. Alternatively, the surface could have been erosive with the eroded sediments feeding downwind active dunes. The latter explanation is consistent with the current local landforms, which has widespread blowout pits, indicators of strong wind erosion. We emphasized that the OSL age of a sand layer sample in fossil dunes implied the onset of mobile dune stabilization, not the age of dune activity, as previously stated.  相似文献   

15.
牛山湖浮游生物群落DNA指纹结构与理化因子的关系   总被引:2,自引:0,他引:2  
对牛山湖5个站点的浮游生物群落DNA多态性进行了RAPD指纹和PCR-DGGE指纹分析,并探讨了其与理化因子的关系.结果如下:1)从40条随机引物中筛选出9条引物,共获得93条谱带,多态率为58%;各站点所得谱带平均为67条,其中I站最少,为61条,V站最多,为74条;2)PCR-DGGE指纹图谱共含102条谱带,其中原核生物56条,真核生物46条,谱带总数以Ⅲ站、Ⅳ站和V站较多,Ⅰ站和Ⅱ站较少;3)Ⅱ站的总磷、叶绿素、化学耗氧量、硬度及电导率最高;各站点间溶氧和pH差异较小.相似性聚类分析表明,浮游生物群落DNA指纹将5个站点划分为两支,Ⅰ站和Ⅱ站聚为一支,Ⅲ站、Ⅳ站和V站聚为另一支,理化因子将Ⅰ站、Ⅲ站、Ⅳ站和V站聚为一支,Ⅱ站单独聚为一支.研究表明牛山湖浮游生物群落DNA指纹结构与理化因子具有一定的相关性,并且与环境主要限制因子总磷的含量是密切相关的.因此,浮游生物群落级水平DNA分析能简便、准确、迅速地反映水质状况,这方面资料的积累可以为建立一种基于分子生物学简便而灵敏的水环境评价体系提供科学依据.  相似文献   

16.
This paper examines groundwater hydrochemical characteristics during mixing between thermal and non-thermal groundwater in low-to-medium temperature geothermal fields. A case study is made of Daying and Qicun geothermal fields in the Xinzhou basin of Shanxi province, China. The two geothermal fields have similar flow patterns, with recharge sourced from precipitation in mountain areas heated through a deep cycle, before flowing into overlying Quaternary porous aquifers via fractures. Hydrochemical features of 60 ground- and surface water samples were examined in the context of hydrogeologic information. The average temperatures of the deep geothermal reservoirs are estimated to be 125 °C in Daying field, and 159 °C in Qicun field, based on Na–K–Mg geothermometry, while slightly lower estimates are obtained using silica geothermometers. Hydrochemical features of thermal water are distinct from cold water. Thermal groundwater is mainly Cl·SO4–Na type, with high TDS, while non-thermal groundwater is mostly HCO3–Ca·Mg and HCO3–Ca type in the Daying and Qicun regions, respectively. Hydrogeochemical processes are characterized by analyzing ion ratios in various waters. Higher contents of some minor elements in thermal waters, such as F, Si, B and Sr, are probably derived from extended water–rock interaction, and these elements can be regarded as indicators of flow paths and residence times. Mixing ratios between cold and thermal waters were estimated with Cl, Na, and B concentrations, using a mass balance approach. Mixing between ascending thermal waters and overlying cold waters is extensive. The proportion of water in the Quaternary aquifer derived from a deep thermal source is lower in Daying geothermal field than in Qicun field (5.3–7.3% vs. 6.3–49.3%). Mixing between thermal and non-thermal groundwater has been accelerated by groundwater exploitation practices and is enhanced near faults. Shallow groundwater composition has also been affected by irrigation with low-temperature thermal water.  相似文献   

17.
18.
At present, Bangladesh has a flood forecasting lead time of only 3 days or so. There is demand for a forecasting lead time of a month to a season. The primary objectives of this paper are to study the variability and predictability of seasonal flooding in Bangladesh, as revealed by large‐scale predictors of the climate across the watersheds. To explore the source of predictability, accessible Bangladesh hydrological indicators are related to large‐scale oceanic variability and to large‐scale atmospheric circulation patterns predicted by general circulation models (GCMs). Correlation analyses between the flood‐affected area (FAA) for July–September and tropical sea‐surface temperature (SST) indicate connections to tropical Pacific and Indian Ocean SSTs, at a short lead time of a month or so. These are related to El Niño–southern oscillation (ENSO). Correlations between the SSTs of the preceding October–December and the July–September FAA are weaker but notable. Forecasts of the FAA using the leading principal components (PCs) of SST were made, which provided good skill with a lead time of a month or so. The streamflows and rainfall observed in Bangladesh have been added to these prediction models. Finally, the SST PCs were replaced with PCs of GCM prediction fields (precipitation). The prediction models at short lead time that were constructed for FAA were of generally similar levels of skill to that for SST. This is encouraging, as it suggests that linkages with SST can be successfully recovered in a physical model of the climate system in Bangladesh. This study concludes that seasonal flood prediction in Bangladesh is possible from the unusually warm or cold SST in parts of the tropics. This predictability can be enhanced with the information achievable from monitoring the downstream streamflows (which are generated mainly from upstream rainfall conditions) in advance of the flooding season. Finally, this study recommends formalizing a regional cooperation among the countries in the principal co‐basin areas of the Ganges–Brahmaputra–Meghna to achieve this goal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Nazarova  L. B.  Semenov  V. F.  Sabirov  R. M.  Efimov  I. Yu. 《Water Resources》2004,31(3):316-322
Present-day quantitative and qualitative characteristics of the Cheboksary Reservoir have been investigated, and data on the biological diversity of benthic organisms have been compared to those of hydrobiological studies carried out in the region prior to the reservoir construction. The reservoir bottom communities include 75 species and forms of benthos. The reservoir water quality has been evaluated using different methods, including the determination of the degree of morphological structure abnormalities in chironomid larvae, regarded as sublethal indicators of bottom sediment pollution with toxic substances.  相似文献   

20.
Climate extremes in South Western Siberia: past and future   总被引:1,自引:1,他引:0  
In this study, the temporal and spatial trends of ten climate extreme indices were computed based on observed daily precipitation and on daily maximum and minimum temperatures at 26 weather stations in South Western Siberia during the period 1969–2011 and, based on projected daily maximum and minimum temperatures, during 2021–2050. The Mann–Kendall test was employed to analyze the temporal trend and a combination of multiple linear regressions and semivariogram functions were used to evaluate the regional spatial trends and the local spatial variability of climate extremes, respectively. The results show that the temperature-based climate extremes increase at a 0.05 significance level while none of the precipitation-based climate extremes did. Spatially, dominant gradients are observed along latitude: The northern taiga vegetation zone experiences a colder and wetter climate while the southern forest steppe zone is drier and hotter. Over time, a tendency towards homogenization of the regional climate is observed through a decrease of the spatial variability for most climate extreme indices. In the future, the most intense changes are anticipated for the bio-climate indicators “growing season length” and “growing degree days” in the north, while the warming indicators, “warm day” and “warm night” are expected to be high to the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号