首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
近四年全球海水质量变化及其时空特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
本文利用卫星重力、卫星测高和海洋温盐数据反演计算全球海水质量变化,并分析其时空变化特征.卫星重力数据利用2003年1月~2006年12月的GRACE月时变重力场球谐系数,同时考虑替换一阶项和C20项,并进行了相关误差滤波、高斯滤波和陆地水文信号泄漏改正,计算得到海洋等效水高变化;利用相同时间跨度的卫星测高数据和海洋温度、盐度水文观测数据,计算全球海平面变化和比容海平面变化,反演得到海水质量变化.反演的两种海水质量变化的年际变化特征一致性较好.三种数据得到的长期趋势变化,与1993~2003年的结果相比,可以看出,海水质量变化加速,并已成为全球海平面上升的主要因素.  相似文献   

2.
利用GRACE重力卫星反演陆地地球物理变化信息时,通常需要对位系数进行截断和空间平均滤波等处理,这将导致监测信息较实际值"缩减"一定的比例,从而造成反演结果可信度降低.针对此,本文提出了一种附加GPS时序约束的GRACE反演陆地水文信息修正法.利用2003-2015年RL05_GRACE月重力场数据,选取前60阶采用扇形滤波与去相关滤波组合法,获得了加州区域由于陆地水储量及地表荷载变化引起的垂向形变时间序列,并利用同时间段多个GPS测站资料获得了同尺度U方向形变时间序列,采用时频分析技术对比分析了两类垂向形变时间序列的振幅与季节性特征,获取了GRACE位系数处理中存在的"缩减系数",基于此修正并精化了GRACE反演水文变化信息,该信息能有效反映出研究区域较真实的陆地水文变化信息.  相似文献   

3.
利用GRACE空间重力测量监测长江流域水储量的季节性变化   总被引:13,自引:0,他引:13  
2002年3月成功发射的美德合作重力卫星计划GRACE(Gravity Recovery And Climate Experiment)已经开始提供阶次数达到120、时间分辨率为约1个月的地球重力场模型时变序列. GRACE的星座由两颗相距约220 km, 高度保持300~500 km, 而倾角保持约90°的近极轨卫星组成. 由于采用星载GPS和非保守力加速度计等高精度定轨技术以及高精度的星-星跟踪数据反演地球重力场, 在几百公里和更大空间尺度上, GRACE重力场的精度大大超过此前的卫星重力观测. 根据GRACE时变重力场反演的地球系统质量重新分布对固体地球物理、海洋物理、气候学以及大地测量等应用有重要的意义. 在长期时间尺度上, GRACE的结果可用于研究北极冰的变化, 并进而研究极冰融化对全球气候变化, 特别是对海平面长期变化的影响. 在季节性时间尺度上, 利用GRACE重力场的精度足以揭示平均小于1 cm的地表水变化或小于1 mbar的海底压强变化. 除了巨大的社会和经济效益外, 这些变化对了解地球系统的物质循环(主要是水循环)和能量循环有非常重要的意义. 利用2002年4月至2003年12月之间共15个月的GRACE时变重力场揭示了全球水储量的明显季节性变化, 并重点分析了中国长江流域水储量的变化. 结果表明长江流域水储量周年变化幅度可达到3.4 cm等效水高, 其最大值出现在春季和初秋. 根据GRACE时变重力场反演的水储量变化与两个目前最好的全球水文模型的符合相当好, 其差别小于1 cm等效水高. 研究表明现代空间重力测量技术在监测一些大流域的水储量变化(如长江流域)、全球水循环和气候变化上有巨大的应用潜力.  相似文献   

4.
GRACE重力卫星自2002年3月发射至今,已进行了十多年的连续观测,由此获得的重力场变化数据被广泛地应用于研究地表河流及地下水储量变化、南极和格林兰岛冰盖厚度以及全球海平面变化等.本文从GRACE重力卫星数据的处理方法入手,对其数据特点、限制条件和水文模型计算方法等问题进行了系统总结,并针对近年来利用GRACE卫星数据开展的相关研究,从估算全球水储量的变化、区域水储量变化、地下水变化以及陆地河流流域的水储量变化等方面对相关研究和应用进行了简要评述.最后,对使用GRACE卫星数据反演陆地水储量的验证方法和存在的问题进行讨论.本文对于全面了解近年来应用GRACE卫星数据研究陆地水储量变化方面的相关进展具有参考意义.  相似文献   

5.
本文利用CSR发布的GRACE RL06时变重力场模型,结合两种水文模式、卫星测高、降雨和蒸散等多源数据,从多个角度综合系统地分析维多利亚湖流域2003-01—2017-06的陆地水储量变化.比较了正向建模方法和单一尺度因子对泄漏误差的改正效果,经对比采用正向建模方法在此流域效果更好.基于多源数据得出以下三点与此前研究不同的结论:(1)GRACE RL06版本数据探测到流域内的水储量在2003-01—2017-06呈增加趋势,球谐位系数和Mascon产品得到的变化速率分别为14.9 mm·a^-1和16.7 mm·a^-1,观测误差小于RL05版本的结果,RL05版本低估了流域水储量的变化速率;(2)2013-01—2016-02期间GRACE和测高探测到湖泊水量增长,而水文模式探测到流域内水储量减少,推测这一现象由大坝蓄水造成;(3)受El Nino事件影响,2016-03—2017-06流域降雨减少,流域水储量减少,GRACE球谐位系数和Mascon探测到的变化速率分别为-100.3 mm·a^-1和-129.7 mm·a^-1.本文结果表明卫星观测数据可为在缺乏直接观测数据的情况下分析人类活动和自然变化对区域水储量的影响提供一种可行的途径,这也为研究我国湖泊流域水储量变化提供参考.  相似文献   

6.
利用SWARM卫星高低跟踪探测格陵兰岛时变重力信号   总被引:1,自引:0,他引:1       下载免费PDF全文
王正涛  超能芳 《地球物理学报》2014,57(10):3117-3128
GRACE重力卫星任务即将结束,后续GRACE Follow-On卫星计划于2017年发射,在此期间,迫切需要一个新的卫星计划继续对全球时变重力场进行连续监测,以保证时变重力场信息时间序列的连贯性.SWARM计划包括三颗轨道高为300~500 km的近极轨卫星星座,类似于三颗CHAMP卫星,具有接替时变重力场探测的潜力.本文首先分析SWARM(模拟)、CHAMP、GRACE反演至60阶时变重力场球谐系数的误差特性及不同高斯平滑半径对高频误差的抑制效果,然后分别利用SWARM、CHAMP、GRACE的时变重力场模型恢复全球质量变化,结果表明,SWARM模拟观测数据的高频误差低于CHAMP观测数据,探测时变重力场的整体精度优于CHAMP,略低于GRACE探测精度;其次,对比2003年1月—2009年12月期间CHAMP(hl-SST)和GRACE(ll-SST)时变重力场模型反演格陵兰岛冰盖质量变化趋势,结果显示,CHAMP数据得到格陵兰岛冰盖质量变化趋势为-50.2±2.0 Gt/a,GRACE所得结果为-41.2±1.6 Gt/a,两者相差21.8%;最后,对比2000年1月—2004年12月间SWARM模拟数据和"真实"模型数据反演的格陵兰岛冰盖质量变化趋势,结果表明,两者相差19.2%.本文研究表明,利用SWARM hl-SST数据探测时变重力场可以达到20%相对精度水平,有潜力用于填补GRACE和GRACE Follow-On期间探测地球时变重力场的空白.  相似文献   

7.
高精度GRACE卫星时变重力场反演一直是卫星重力测量中的难题.为了恢复高精度的时变地球重力场模型,本文联合GRACE卫星的星载GPS和KBR星间测速观测数据,在对GRACE卫星进行精密定轨的同时,解算出60阶月平均地球重力场模型.通过对GRACE卫星的定轨精度、星载GPS相位和KBR星间测速数据的拟合残差以及时变地球重力场模型解算精度等分析,表明:(1)与美国宇航局喷气推进实验室(JPL)发布的约化动力学精密轨道相比,本文确定GRACE卫星轨道三维位置误差小于5 cm.(2)星载GPS相位数据拟合残差为5~8 mm,KBR星间测速数据拟合残差为0.18~0.30μm·s~(-1).(3)解算的月平均重力场模型与美国德克萨斯大学空间研究中心(CSR)、德国地学研究中心(GFZ)和JPL发布的RL05模型精度接近,时变信号在全球范围内具有很好的空间分布一致性.通过计算亚马逊流域和长江流域的水储量变化,本文与上述三个机构的计算结果无明显差异,且相关系数均达0.9以上.可见,本文建立的卫星轨道与重力场同解算法具有反演高精度GRACE时变重力场能力,为我国卫星重力场反演提供了重要的技术支持.  相似文献   

8.
基于GRACE时变重力场的三峡水库补给水系水储量变化   总被引:13,自引:2,他引:13       下载免费PDF全文
利用22个月的GRACE时变重力场,反演了三峡水库补给水系的水储量变化,并按月给出了数值结果.与水文学同化模型(CPC)的两组比较说明基于GRACE重力的反演结果是合理的.当高斯平均半径为1000 km时,该区总水储量变化的峰谷差为14 cm,其年变化振幅为58 cm,相位为-408天,与CPC模型合成重力数据的反演结果进行比较,其总水储量变化均方差为13 cm,年变化振幅相差01 cm,相位相差10天.为进一步检验GRACE能否监测该区真实水储量变化,还将其反演结果与CPC模型的真实平均结果进行比较,结果发现总体均方差为21 cm,年变化振幅相差17 cm,相位相差93天.因此,第一种比较过高地估计了GRACE监测该区水储量变化的能力,第二种比较则较真实地反映了实际情况,尽管反演结果与水文学的结果差别较大,但仍然显示GRACE能监测该区每月的水储量变化.  相似文献   

9.
地球重力场季节和年际变化主要来源于地球表层大气、海洋和陆地各系统间水的质量交换,由GRACE重力卫星探测地球重力场变化所反映陆地水储量的改变主要来自降雨、土壤蒸发蒸腾、河流输运以及向地下深层的渗透等过程.本研究利用陆面过程模式CLM3.5以及基于本征正交分解的集合四维变分同化方法PODEn4DVar,构建能够同化GRACE卫星重力场的陆面水文同化系统LDAS.G,实现对地球重力场所反映的大尺度陆地水储量变化在时间及垂直方向各分量的分解,并对垂直方向的水文变量进行同化,从而更好地估计陆面水循环要素变化并实现其监测.利用LDAS.G同化系统进行理想试验以及针对中国区域所进行的同化试验表明该同化系统能够改善对陆面水文要素变化的模拟,对大尺度陆面水文循环监测研究具有重要意义.  相似文献   

10.
用GRACE卫星跟踪数据反演地球重力场   总被引:24,自引:17,他引:24       下载免费PDF全文
利用141天GRACE卫星观测资料,包括K波段、星载加速度和卫星轨道数据,反演了80阶地球重力场模型IGGGRACE01S,该模型在半波长为500km的空间分辨率上,确定大地水准面的精度约为0012m,中长波(<80阶)精度优于重力卫星发射以前研制的重力场模型. 与EIGEN_GRACE02S、EIGEN_CHAMP03S和EGM96模型的位系数相比,该模型系数最接近于EIGEN_GRACE02S,与另两个模型差异较大. 比较几种模型确定的全球重力异常和大地水准面起伏,结果发现IGGGRACE01S与EIGEN_GRACE02S模型的计算结果比较接近,与EGM96模型结果差异较大,差别较大地区主要在南极等地区. 对于中国大陆,比较IGGGRACE01S模型(前72阶)计算的重力异常和NIMA重力异常数据(25°×25°网格),两者之间的标准偏差为48mGal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号