首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
考虑土-结构相互作用的高层建筑抗震分析   总被引:17,自引:0,他引:17  
本文采用通用有限元程序ANSYS,针对上海地区一例土-箱基-高层建筑结构进行了三维有限元分析,计算中土体的本构模型采用等效线性模型,利用粘一弹性人工边界作为土体的侧向边界,并研究了土体边界位置、土性、基础埋深、基础形式以及上部结构刚度等参数对动力相互作用体系动力特性及地震反应的影响。  相似文献   

2.
深厚软弱地基上桩箱基础高层建筑地震反应特性数值模拟   总被引:4,自引:2,他引:4  
根据土体—结构体系整体分析方法,以某26层桩箱基础框架—剪力墙高层建筑为例,探讨了深厚软弱地基与输入地震动特性对桩箱基础高层建筑地震反应的影响。通过数值模拟,得到以下结论:地震作用下高层建筑的地震反应与建筑物的地基条件与输入的振动特性等因素有关。一般地,SSI效应使上部结构的绝对加速度反应减小,但当输入加速度峰值较低时,建筑物部分楼层的绝对加速度反应有可能增大。在给定的输入地震动作用下,SSI效应使上部结构的楼层相对位移增大,但也可能存在减小的情况。分析结果表明:SSI效应对深厚软弱地基上桩箱基础高层建筑地震反应有很大的影响,在此类建筑的抗震分析中考虑SSI效应的影响是必要的。  相似文献   

3.
目前在高耸混凝土烟囱结构抗震设计和抗震性能评估中,由于缺乏合适的计算模型,一般采用刚性地基假定而忽略土-结构相互作用效应,或者采用传统的集中参数模型而忽略土的非线性特性。针对此不足,本文选用240 m高的钢筋混凝土烟囱作为研究对象,采用OpenSees程序,基于非线性文克尔地基梁模型和基于柔度法的分布塑性梁柱单元,建立了土体-基础-上部结构共同工作的整体非线性有限元分析模型,详细介绍了非线性文克尔地基梁模型主要参数的确定方法;研究了地基土非线性对高耸烟囱结构地震反应的影响,给出了考虑土-结构相互作用效应后结构周期、上部结构的内力和变形分布的变化规律。分析结果表明:考虑土-结构相互作用后,结构的自振特性、内力及节点位移都发生了不同程度的改变;考虑土体非线性特性的土-结构相互作用模型,峰值截面弯矩、剪力及截面曲率延性系数与不考虑土-结构相互作用时的结果之比分别介于0.921~1.219、0.732~1.29和0.822~1.536;而不考虑土体非线性特性的土-结构相互作用模型,峰值截面弯矩、剪力及截面曲率延性系数与不考虑土-结构相互作用时的结果之比分别介于0.838~1.578、0.92~1.76和0.656~2.831。不考虑土体非线性特性的土-结构相互作用模型的峰值截面弯矩、剪力及截面曲率延性系数的取值总体上较大,高估了烟囱结构在地震荷载作用下的内力需求。  相似文献   

4.
为了考察桩-土接触效应对结构地震反应的影响,利用有限元软件ABAQUS建立了土-桩-框架二维有限元模型,分别采用损伤塑性模型和动力粘塑性记忆型嵌套面模型模拟混凝土和土体,利用rebar单元模拟混凝土内的钢筋,取得了较好的计算效果.计算分析中采用19条不同频谱的地震波记录,考虑了地震动强度、桩径、摩擦系数等因素,以层间位移角和桩顶最大位移为主要评价指标,揭示相互作用体系的动力响应特性.分析认为,计算结果对桩、土摩擦系数的取值不敏感;不考虑土-桩接触时,近场土体的动力反应与实际情况存在一定的误差,且上部结构和桩基的动力反应会被低估,应该考虑桩-土动力接触效应;地震动强度增加时,随着结构进入塑性状态,低估程度减小;桩径增加时,低估程度没有显著变化,虽然桩基和上部结构的反应都有所减小.  相似文献   

5.
桩-土-上部结构体系的动力相互作用是一个复杂的过程,尤其是在倾斜液化侧向扩展流动(侧扩流)场地中,由于地震过程中场地产生地面永久大变形,桩土间有可能产生错动滑移与开裂等非线性反应,因此桩-土相互作用模拟至关重要。为了探究桩-土非线性接触对倾斜液化场地-群桩基础-上部结构体系动力响应的影响,本文基于OpenSees分别建立了考虑桩-土相互作用弹簧和桩土结点之间直接绑定的有限元数值模型。结果表明:考虑桩-土相互作用Pyliq弹簧时,土体加速度幅值略微降低,桩基对土体的约束明显变弱,土体残余位移增大。同时,具有Pyliq弹簧的模型能较好地模拟桩的曲率响应,而采用桩土结点直接绑定的模型高估了桩顶曲率,进而无法准确估计桩基抗弯最不利位置。桩-土相互作用弹簧对上部结构动力响应的影响较小。  相似文献   

6.
结构的动力特性直接影响到动力荷载的作用效应。动力特性分析中,土体的影响不可忽视。与地震荷载不同,动风荷载自结构向土体传播,土体的惯性力可以忽略。无质量地基法可以满足针对风荷载的土-结构动力分析的要求。本文首先推导土-结构动力相互作用的运动方程,在此基础上,以剪力墙箱型基础结构为基本分析对象,确定有限地基域的范围,分析土-结构整体动力特性。认为:足够的基础埋深,可以有效控制建筑物的摆动;为控制建筑物的动力特性,可以采取措施适当使地基土增加一定的刚度;如何在上部结构的质量和刚度之间建立对应关系以控制土-结构系统的动力特性,有待进一步研究。  相似文献   

7.
为了分析软土地基-筏基础核电厂房结构地震反应规律和特征,利用地震模拟振动台开展了软土地基-筏基础-核电厂房动力相互作用问题的试验研究。分别进行了表面水平土体模型和表面凹陷土体模型的运动相互作用试验、地基土-筏基础-核电厂房振动台相互作用试验、核电厂房直接固定在振动台面上的刚性基底振动台试验。试验采用圆形叠层剪切模型箱,地基土模型为某工程场地的均匀粉质粘土,其剪切波速为213 m/s;核电厂房简化为3层框架剪力墙结构模型。试验输入波形为美国核电规范常用的RG1.60反应谱合成得到的人工地震动时程。振动台试验结果对比分析表明:土-结构体系中系统的振动周期和阻尼明显大于刚性基底下结构的振动周期和阻尼;相同地震作用下在土-结构动力相互作用体系中结构加速度明显小于刚性基底下的结构加速度反应;而位移明显大于刚性基底下结构的位移。本文的研究成果可为软土地基建立核岛厂房的适应研究提供参考。  相似文献   

8.
张卫东 《地震研究》2008,31(2):186-192
对广州地区一例地基-基础-隔震板柱结构动力相互作用体系进行了计算分析.通过与常规设计方法及非隔震体系的比较,研究了该体系地震反应的变化规律,并分析了阻尼比、地基土特性、基础刚度、基础型式、基础埋深、土体深度、上部结构刚度和地震波等因素对相互作用体系动力特性及地震反应的影响.  相似文献   

9.
采用ANSYS有限元软件建立土-桩-上海中心大厦相互作用简化模型.其中,桩土区采用等效模型,近域土体定为塑性区,用DP模型模拟;外围的土域定为弹性区,用超单元来模拟.对考虑土,桩-结构相互作用的整体结构和以刚性地基为假定的上部结构分别进行地震反应分析,并完成了比较.最后,在整体结构中提取上部结构与下部结构处的加速度反应与原地震波叠加,形成修正地震波,为输入修正地震波能考虑相互作用因素来分析相同结构的精细模型地震反应提供了条件.  相似文献   

10.
本文在全面考虑上部结构、基础及下部土体实际情况和受力特性的基础上,开发了一种平面框剪土-结构相互作用的简化分析模型。在这个模型中,利用矩阵位移法的概念,同时考虑框架和剪力墙(筒体)的协同工作原理,将上部结构简化成平面的框架-剪力墙(筒体)结构,这一模型可以很好地模拟常用高层建筑体系的弯曲特性和弯剪特性。地基土采用一块在计算平面内高度为H,宽度为B,而在出平面方向厚度为t的土体作为分析模型,并对MSC.Marc进行了二次开发,将多层土E-B本构关系模型作为子程序嵌入其中,使用E-B本构关系模型来考虑它的非线性特性,利用粘-弹性人工边界作为地基土的边界条件。用接触迭代算法考虑了桩、箱-土之间的相互作用。最后,采用本文的方法对某高层框剪建筑进行了分析,并与不考虑土-结构相互作用的地震反应分析结果进行了对比。通过算例,本文初步探讨了在土-结构相互作用模型中,考虑和不考虑桩-土间相互作用对结构地震反应的影响,并得到了一些结论,证明了本文方法的适用性。  相似文献   

11.
This paper studies the combined effects of earthquake-triggered landslides and ground shaking on foundation−structure systems founded near slope crests. Plane-strain nonlinear finite element dynamic analyses are performed. The soil constitutive model is calibrated against published data to simulate the (post-peak) softening behavior of soil during a seismic event and under the action of gravitational forces. The plastic shear zones and the yield accelerations obtained from our dynamic analyses are shown to be consistent with the slip surfaces and the seismic coefficients obtained by classical pseudostatic limiting equilibrium and limit analysis methods. The foundation and frame columns and beams are modeled as flexural beam elements, while the possibility of sliding and detachment (separation) between the foundation and the underlying soil is considered through the use of special frictional gap elements. The effects of foundation type (isolated footings versus a rigid raft) on the position of the sliding surface, on the foundation total and differential displacements, and on the distress of the foundation slab and superstructure columns, are explored parametrically. It is shown that a frame structure founded on a properly designed raft could survive the combined effects of slope failure and ground shaking, even if the latter is the result of a strong base excitation amplified by the soil layer and slope topography.  相似文献   

12.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

13.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

14.
The anti-slide support structure is widely used in the anti-seismic reinforcement of bridge foundations, but related experimental research was processing slowly. Based on the prototype of the Jiuzhaigou bridge at the Chengdu-Lanzhou Railway, a 3-D simulation model was established on the basis of the shaking table model test, and the rationality of the dynamic analysis model was verified by indicators such as the bending moment of the bridge piles, peak soil pressure, and PGA amplification factors. The results show that the inertia force of the bridge pier has an important influence on the deformation of the pile foundation. The bending moment and shearing force are larger in lateral bridge piles, and the maximum value is near the pile top. The PGA amplification factor is stronger in the back of the rear anti-slide piles and so is it in front of the bridge pier, and the soil is prone to slip and damage. The bedrock is rigid and the dynamic response is maintained at a low level. The anti-slide piles in the rear row play a major role in the anti-seismic reinforcement design, and the anti-slide piles in the front row can be used as an auxiliary support structure.  相似文献   

15.
Experimental research into the seismic performance of buildings with passive oil dampers has so far been restricted to large-scale testing of frames erected on laboratory shaking tables that ignore the foundation soil below. This simplification of the problem falls short of replicating dynamic soil-structure interaction that would occur in the field. This paper presents the first experimental attempt at utilising high gravity dynamic centrifuge testing to replicate the response of a damped building at a reduced model scale. The paper compares the dynamic response of two similar two-degree-of-freedom model sway frames, one control (bare) frame and one frame equipped with miniature oil dampers, both structures founded on shallow raft foundations in dry dense sand. The miniature oil dampers successfully mitigate floor accelerations, drifts, and storey shear forces in the damped frame with minor modification to the frame stiffness. For strong, near resonance motions, global rocking of the undamped frame associated with physical uplifting of the foundation from the soil surface and subsequent yielding of sand beneath has led to floor acceleration levels, which are comparable to those obtained in the damped building fitted with miniature oil dampers. Assessment of the instrumentation installed on the miniature oil dampers reveals a viscoelastic damper behaviour with a dependency on stroke magnitude and on velocity.  相似文献   

16.
Though rocking shallow foundations could be designed to possess many desirable characteristics such as energy dissipation, isolation, and self-centering, current seismic design codes often avoid nonlinear behavior of soil and energy dissipation beneath foundations. This paper compares the effectiveness of energy dissipation in foundation soil (during rocking) with the effectiveness of structural energy dissipation devices during seismic loading. Numerical simulations were carried out to systematically study the seismic energy dissipation in structural elements and passive controlled energy dissipation devices inserted into the structure. The numerical model was validated using shaking table experimental results on model frame structures with and without energy dissipation devices. The energy dissipation in the structure, drift ratio, and the force and displacement demands on the structure are compared with energy dissipation characteristics of rocking shallow foundations as observed in centrifuge experiments, where shallow foundations were allowed to rock on dry sandy soil stratum during dynamic loading. For the structures with energy dissipating devices, about 70–90% of the seismic input energy is dissipated by energy dissipating devices, while foundation rocking dissipates about 30–90% of the total seismic input energy in foundation soil (depending on the static factor of safety). Results indicate that, if properly designed (with reliable capacity and tolerable settlements), adverse effects of foundation rocking can be minimized, while taking advantage of the favorable features of foundation rocking and hence they can be used as efficient and economical seismic energy dissipation mechanisms in buildings and bridges.  相似文献   

17.
采用动力文克尔地基模型模拟均质粘弹性土层,推导出了均质土中单桩动阻抗;引用桩-桩动力相互作用因子,得到了刚性承台下群桩的动阻抗;而且建立了柔性承台与桩基础的竖向振动模型,该模型考虑了筏板自身的变形,并导出了其共同作用的运动方程。最后对柔性承台与刚性承台的计算结果作了对比分析。  相似文献   

18.
复杂地基条件下桩-土-核岛结构相互作用模型研究   总被引:1,自引:1,他引:0       下载免费PDF全文
尹训强  滕浩钧  王桂萱 《地震工程学报》2019,41(6):1581-1586,1606
合理有效地模拟桩-土-结构动力相互作用是软土地基条件下核岛厂房结构抗震适应性分析及地基处理的关键环节。以某拟建核岛厂房实际工程为研究背景,结合SuperFLUSH软件平台,以Goodman单元模拟桩与桩周土间的接触效应,采用等价线性法描述近场软土地基非线性特性,并在模型底部和侧面引入黏性边界模拟半无限地基辐射阻尼效应,从而建立土质地基条件下桩-土-核岛结构相互作用分析模型。进而,通过对原状地基和嵌岩桩处理地基条件下核岛厂房的楼层反应谱、结构节点相对位移(绝对值)的对比分析,探讨考虑桩-土间接触效应的嵌岩桩基对核岛厂房结构的影响规律。研究成果可为实际工程中类似土质地基条件下核岛厂房结构的地基处理提供参考。  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号