首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A case is described in which complex auroral forms varied slightly at Lovozero Observatory over the course of more than an hour in the morning hours during the auroral recovery phase. Pc3 and Pc5 auroral and geomagnetic pulsations were observed during the event. The phenomenon is compared with recurrent pulsating auroras, which are described in the literature.  相似文献   

2.
An algorithm is developed for automated detection of the short-period Pc1 geomagnetic pulsations (frequency band f = 0.2–3 Hz) from the continuous time series of digital recording during 1998–2014 at the midlatitude Borok station. A digital catalog with the indication of time intervals of the presence and main morphological characteristics of Pc1 pulsations is created. Based on this catalog, the annual, seasonal, and diurnal dynamics of the midlatitude Pc1 pulsation activity is studied for 1998–2014. It is shown that the annual variation of the Pc1 occurrence has a maximum in 2005, i.e., at the end of the solar cycle decay phase, just as in the previous cycles. It is found that the minimum of the cases of Pc1 occurrence is observed in 2009, i.e., not at the maximum, just was the case in the previous cycles, but during the deep minimum of solar activity, which testifies to the untypical conditions in the magnetosphere during the unusually long minimum of the 23rd cycle. The seasonal variation of the Pc1 occurrence has a summer minimum when the series of Pc1 pulsations occur almost thrice as rarely as in winter. Besides, there are relatively small maxima at equinox. The diurnal behavior of Pc1 pulsations has the maxima in the morning and midnight sectors of the magnetosphere. By the superposed epoch analysis technique it is established that the maximal number of the cases of occurrence of Pc1 pulsations at the Borok observatory is observed on the fourth day after the global geomagnetic disturbances. The statistical distributions of pulsations amplitude and duration are obtained.  相似文献   

3.
Photometric measurements of pulsating auroras have been carried out in the Pi3 range of geomagnetic pulsations with periods of 2–10 min with the use of auroral all-sky camera films obtained at the Lovozero Observatory. The new all-sky camera developed at the Polar Geophysical Institute uses the CCD matrix. This makes it possible to obtain simultaneous images in red, green, and blue spectral ranges and thus to investigate temporal luminosity variations in these spectral regions. The hardness of penetrating auroral electrons with a time resolution of a few seconds is qualitatively estimated. It is found that the energy of the electrons that cause auroras in the Pi3 pulsation range is not constant over the pulsation period. It is maximal at the lowest luminosity and minimal at its peaks. Luminosity pulsations are compared with geomagnetic pulsations, and it is established that large differences between luminosity variations in different parts of the sky explain the incomplete correspondence between the records of auroral and geomagnetic pulsations.  相似文献   

4.
The features of daytime high-latitude geomagnetic variations and geomagnetic pulsations in the Рс5 range during the recent, large, two-stage magnetic storm of September 7–8, 2017 are studied. The discussed disturbances were observed at the recovery phase of the first stage of the storm after the interplanetary magnetic field (IMF) turned northward. It is shown that the large sign-alternating variations in Ву and Bz components of the IMF caused intense geomagnetic disturbances up to 300–400 nT with a quasi-period of ~20 min in the daytime sector of polar latitudes, probably in the region of the daytime polar cusp. These disturbances may have reflected quasi-period motions of the daytime magnetopause and may have resulted from nonlinear transformation of the variations in the interplanaterary magnetic field in the magnetosheath or in the magnetospheric entry layers. The appearance of high-latitude long-period variations was accompanied by the excitation of bursts (wave packets) of geomagnetic Pc5 pulsations. The onset of Pc5 pulsation bursts often coincided with a sudden northward turn of the IMF. It was discovered for the first time that the development of a “daytime polar substorm,” i.e., a negative magnetic bay in the daytime sector of polar latitudes, led to a sudden termination of the generation of geomagnetic Pc5 pulsations over the entire latitude range in which these oscillations were recorded before the appearance of the daytime bay.  相似文献   

5.
Special methods for processing TV images have been used to study the characteristics of nighttime auroras based on the observations at high-latitude observatories on Spitsbergen. Weak subvisual auroras (SVAs), originating 3°–4° north of brighter auroras in the auroral oval, have been detected in the interval 1900-0400 MLT. The average lifetime of SVAs is approximately 7 min, and the average velocity of the equatorward shift is ~0.6 km/s. SVAs were observed during relatively quiet periods, when the IMF B z component is mainly positive. However, SVAs are not polar-cap auroras since they are oriented from east to west rather than toward the Sun. The optical observations indicate that the SVA intensity is 0.2–0.5 and 0.1–0.3 kR in the 630 and 557.7 nm emissions, respectively. The average ratio of the emission intensities (I 5577/I 6300) is about 0.5. According to the direct satellite observations, the SVA electron spectrum has a maximum at 0.4–1.0 keV. In this case the energy flux of precipitating electrons is approximately an order of magnitude as low as such a flux in brighter auroral arcs in the auroral oval.  相似文献   

6.
The level of wave geomagnetic activity in the morning and daytime sectors of auroral latitudes during strong magnetic storms with Dst min varying from ?100 to ?150 nT in 1995–2002 have been studied using a new ULF index of wave activity proposed in [Kozyreva et al., 2007]. It has been detected that daytime Pc5 pulsations (2–6 mHz) are most intense during the main phase of a magnetic storm rather than during the recovery phase as was considered previously. It has been indicated that morning geomagnetic pulsations during the substorm recovery phase mainly contribute to daytime wave activity. The appearance of individual intervals with the southward IMF B z component during the magnetic storm recovery phase results in increases in the ULF index values.  相似文献   

7.
This study considers the possibility of using the new methods of time-frequency transforms, such as chirplet and warblet transforms, to analyze the digital observational data of geomagnetic pulsations of Pc5 type. For this purpose, necessary algorithms of calculation and appropriate software were developed. The chirplet transform method (CT) is used to analyze signals with a linear frequency modulation. A chirplet variation, the so-called warblet transform, is used to analyze signals with a nonlinear frequency modulation. Since, in studying geomagnetic pulsations, it is difficult to make assumptions on the character of the behavior of the instantaneous frequency of the signal, the special generalized warblet transform (GWT) was used for the analysis. The GWT has a high spatiotemporal resolution and was developed to analyze oscillations both with a periodic and nonperiodic change of the instantaneous frequency. The software developed for GWT calculation was used to study daytime geomagnetic Pc5 pulsations with durations of several hours that were detected via the network of ground-based magnetometers of the Scandinavian IMAGE profile during the magnetic storm of May 29–30, 2003. For the first time, temporal variations of the instantaneous frequency of geomagnetic pulsations are determined and their possible use in studying the fine spatial structure of Pc5 waves is shown.  相似文献   

8.
The spatial dynamics of geomagnetic variations and pulsations, auroras, and riometer absorption during the development of the main phase of the extremely strong magnetic storm of November 7–8, 2004, has been studied. It has been indicated that intense disturbances were observed in the early morning sector of auroral latitudes rather than in the nighttime sector, as usually takes place during magnetic storms. The unusual spatial dynamics was revealed at the beginning of the storm main phase. A rapid poleward expansion of disturbances from geomagnetic latitudes of 65°–66° to 74°–75° and the development of the so-called polar cap substorm with a negative bay amplitude of up to 2500 nT, accompanied by precipitation of energetic electrons (riometer absorption) and generation of Pi2–Pi3 pulsations, were observed when IMF B z was about ?45 nT. The geomagnetic activity maximum subsequently sharply shifted equatorward to 60°–61°. The spatial dynamics of the westward electrojet, Pi2–Pi3 geomagnetic pulsations, and riometer absorption was similar, which can indicate that the source of these phenomena is common.  相似文献   

9.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

10.
Data from the meridian scanning photometers of the NORSTAR network and all-sky cameras of the THEMIS network were used for a detailed study of the response of night auroras to the sharp decrease of the solar wind dynamic pressure on September 28, 2009. The decrease in dynamic pressure was accompanied by a corresponding depression of the magnetic field in the SYM-H index and the origin of a negative sudden impulse (SI) with a duration of 5–8 min and amplitude of 150–200 nT in the horizontal component of the magnetic field at stations of the night sector of the auroral zone. The magnetic impulse was preceded by a long calm magnetic period, although the IMF Bz-component was negative for ~1.5 hour before the SI . The commencement of the SI , which was determined by variations in the magnetic field at ~0650 UT, was accompanied by a sharp increase in the intensity of discrete forms of polar auroras in the midnight sector of the auroral zone and their fast propagation to the pole. Approximately 6–8 min after the SI , the auroral intensity in the emissions, which were excited by the fluxes of precipitated electrons and protons, quickly began to decrease in the night sector. Analysis of the optical observations showed the two-stage character of the response of the night auroras to the SI in the considered event: first, fast movement of the discrete aurora forms to the pole with a significant increase in their intensity, and a further fast decrease in auroral intensity with a delay of ~6–8 min relative to the SI . The possible reasons for such aurora behavior are discussed.  相似文献   

11.
The problem of estimating the time derivatives of the horizontal components of the geomagnetic field and forecasting the probability of the occurrence of perturbations that exceed a given threshold level (the over-threshold perturbations) arises in the applications concerned with the geomagnetically induced currents (GICs). In this work, we consider the temporal and spatial structure of the Pi3 pulsations with quasi-periods of 102 to 103 s during which the auroral and subauroral stations of the IMAGE network record over-threshold values in the derivatives of the meridional (along the longitudinal circle) BX component and latitudinal (along the latitudinal circle) BY component. The extreme |dBX/dt| values mainly develop against the background of the Pi3 pulsations with a complex frequency content, whereas the extreme |dBY/dt| values appear when the buildup (decay) phases of the bay-like disturbance associated with the evolution of a substorm coincide with the respective phases of the field of pulsations. The conditions under which the derivatives |dBX/dt| and |dBY/dt| reach their over-threshold values are studied for subauroral latitudes by the technique of superposed epoch analysis. The extreme values of the derivatives most frequently occur during the main phase of moderate magnetic storms or beyond the storm—during high substorm activity under the conditions of a negative vertical component of the interplanetary magnetic field. The probability of the occurrence of over-threshold values increases at high amplitudes of the Pi3 pulsations and depends on their spectral content. The problem of analyzing and forecasting the over-threshold |dBY/dt| perturbations is complicated by the fact that the scale of the perturbations is small along the lines of latitude and large along the meridians. This can result in GIC excitation in the North–South oriented electric power lines by the geomagnetic perturbations localized within a narrow band in longitude which can be missed during the measurements.  相似文献   

12.
A thorough investigation of short-period oscillations in the Earth’s magnetic field as a fundamental natural process of the magnetospheric plasma began in Russia after V.A. Troitskaya established two oscillatory regimes in the geomagnetic field, namely, the regimes of continuous (Pc) and irregular pulsations (Pi). For studying these pulsations, 19 stations recording the telluric currents were installed during the International Geophysical Year (IGY, 1957–1959) on Troitskaya’s initiative. One of these stations was the Borok station. Subsequently, Borok has become the basic site for investigating geomagnetic pulsations and the main center for studying the short-period pulsations (SPPs) in the Earth’s magnetic field. This is the Borok scientific station where the key fundamental regularities of different types of geomagnetic pulsations were established. Troitskaya led and actively participated these works. Troitskaya organized and conducted the first complex geomagnetic observations in the world at the conjugate points Sogra (Arkhangelsk region, Russia) and Kerguelen (Indian Ocean). These studies were initially tested at the Borok observatory, where it was established that the wave packets of Pc1 geomagnetic pulsations are alternately observed in the northern and southern hemispheres in contrast to the other pulsation types which simultaneously occur in both hemispheres. The studies carried out at Borok promoted the establishment of a new direction in geophysics—diagnostics of the state of the magnetosphere based on the ground observations of geomagnetic pulsations. The analysis of simultaneous observations of the geomagnetic pulsations at polar latitudes of the Arctic and Antarctic was also for the first time conducted at the Borok observatory. This analysis revealed the main characteristics of wave phenomena at the geomagnetic poles and in the vicinity of the projection of the dayside polar cusp. Thus, for the first time in the world, Troitskaya and her Borok colleagues established the key patterns of the oscillatory regimes in the geomagnetic field of the Earth. This laid the basis for the further experimental and theoretical investigations which have shown that SPPs play a leading role in the dynamics of the magnetospheric plasma. In this paper we also list of 60 of Troitskaya’s main publications.  相似文献   

13.
A rare case, when non-thermal profiles of the [OI] 557.7 nm line with the dissociative components shifted relative to an ordinary Doppler kernel appear in auroras, is considered. Based on an analysis of these profiles, it has been indicated that the dissociative component is shifted because the electric field is present during the recombination of O 2 + ion with background electrons in the ionospheric F region. The electric field component along the line of sight of the Fabry-Pérot interferometer (24 mV m?1) has been estimated using the Doppler shift of the dissociative component of the 557.7 nm profile emission as an example.  相似文献   

14.
In this work, the results of comparative analysis of morphological regularities of right-polarized (R type) and left-polarized (L type) isolated bursts of ipcl pulsations (irregular pulsations continuous long period) with an anomalously large amplitude in the region of the daytime polar cusp, as well as conditions of their excitation, are presented. It has been found that R and L bursts are similar in the maximum amplitude level, wave packet duration, spectral composition, magnitude of ellipticity, diurnal variation shape, and other characteristics. At the same time, bursts of the R and L type are excited at different degrees of plasma turbulence in the generation region, at different IMF orientations in the plane of ecliptic, as well as in the plane perpendicular to it, and at different dynamics of the parameter β (characterizing the ratio of the thermal pressure to the magnetic pressure) and Alfvén Mach number Ma. It is supposed that the generation of isolated bursts of the R and L types can be related to the amplification of the plasma turbulence level due to the development of wind instability at the front boundary of the magnetosphere, and features of their polarization can be interpreted in the scope of the model of nonlinear propagation of Alfvén waves.  相似文献   

15.
Nonlinear properties of the Pc1 geomagnetic pulsations with anomalous (magnetosonic) dynamic spectrum are studied. The nonlinear properties of the waves are reflected in the emergence of ponderomotive force proportional to the squared amplitude of the waves. Just as in the case of the Alfven waves, at small values of parameter ν0 = ω/ωci0 < 0.4 (ratio of the carrier frequency to proton gyrofrequency in the equatorial plane), the ponderomotive force leads to the modification of the background plasma through increasing its density towards the equator. At ν0 > 0.4, plasma is expelled from the equator towards the higher latitudes. The dependence of the nonlinear modification of background plasma for the different parameters of the magnetosphere is studied.  相似文献   

16.
Variations in the frequency of occurrence of riometer absorption, minimum frequency of reflection of the ionospheric F layer, minimum height, and height of maximum electron density of the ionospheric F layer near the solar minimum have been studied. Application of the superposed epoch technique has detected the Moon phase effect on these ionospheric parameters. This effect was: three events per day in the occurrence of riometer absorption, 0.056 MHz in the minimum frequency of reflection of the F layer, and 2.6 and 6.7 km, in the change of the minimum height of reflection and height of reflection from the region with maximum electron density of the ionospheric F layer, respectively. The lunar tide action changes the ionospheric conductivity and, thus, influences the current systems of the magnetosphere. Through changes of magnetospheric currents, the Moon phase effect is exhibited in the Ap and Dst indices and is 4.3 and 4.25 nT, respectively.  相似文献   

17.
A local approximation method based on piecewise sinusoidal models has been proposed in order to study the frequency and amplitude characteristics of geomagnetic pulsations registered at a network of magnetic observatories. It has been established that synchronous variations in the geomagnetic pulsation frequency in the specified frequency band can be studied with the use of calculations performed according to this method. The method was used to analyze the spectral–time structure of Pc3 geomagnetic pulsations registered at the network of equatorial observatories. Local approximation variants have been formed for single-channel and multichannel cases of estimating the geomagnetic pulsation frequency and amplitude, which made it possible to decrease estimation errors via filtering with moving weighted averaging.  相似文献   

18.
Analysis of the annual variation of the E-layer critical frequency median foE in the nighttime (22?02 LT) auroral zone by the data of several stations of the Northern Hemisphere has shown the median maximum in winter and minimum in summer, even though the summer contribution of solar radiation to foE is greater. Thus, a new phenomenon was discovered—an foE median winter anomaly in the nighttime auroral zone. Its amplitude (ratio of winter to summer foE figures) can reach 10–15%; however, this anomaly was weakly expressed and statistically insignificant at particular stations located in the auroral zone. The winter anomaly is more distinct for foE avr, the median of the E-layer critical frequency foE caused by the auroral source of atmospheric ionization, i.e., excluding the solar radiation contribution to foE. For foE avr, the amplitude of the winter anomaly can reach 15–20%. Based on the qualitative analysis, it has been found that foE winter anomaly is stipulated by the winter/summer asymmetry of energy flow of accelerated electrons, which induce discrete aurorae in the nighttime auroral zone.  相似文献   

19.
The sensitive method for detecting and measuring the velocity of a weak luminosity wave, traveling from bottom to top along an arc or isolated auroral beams, has been developed. This wave is caused by dispersion of precipitating electrons over velocities and by a differential atmospheric penetration of different-energy electrons, and the wave velocity gives information about the location of the electron acceleration region in the magnetosphere. The method was tested using different model signals and was used to study pulsating auroras and auroral breakup. A luminosity wave has been detected in pulsating auroras, and it has been estimated that the injection region is located at a distance of 5–6 R e . The application of the method to intensification of auroras during breakup indicated that such a wave is absent; i.e., breakup electrons being accelerated near the ionosphere at altitudes of 2000–8000 km. It has been assumed that the regions of anomalous resistance, generated in the ionosphere by field-aligned currents during the breakup phase, cause intense local field-aligned electric fields. These fields accelerate thermal electrons and form the auroral breakup pattern.  相似文献   

20.
Long-period geomagnetic pulsations during the SSC of July 14, 2012, are studied. The prenoon longitudinal sector (09:20–11:30) MLT, from the boundaries of which pulsations propagate azimuthally onto the dawn and dusk sides with an opposite polarization direction and increased amplitude, has been distinguished. The position of this sector relative to noon (a shift to the dawn side) depends on the front azimuthal inclination. It has been found that the polarization direction reverses in going from low (<30°) to middle/subauroral (≥50°) latitudes on the entire dayside. The geomagnetic pulsations mainly fluctuate near the f1 = 2.9 and f2 = 4.4 mHz frequencies. Fluctuations with frequency f1, which coincide with the fluctuation frequency of the IMF х component, predominate at the polar cap latitudes (the open field line region) in the form of rapidly attenuating impulses and at low latitudes with a much smaller amplitude. Fluctuations with frequency f2 are globally registered at all latitudes in the dayside sector below the magnetopause projection as a train of several fluctuations. It is assumed that fluctuations with frequency f1 penetrate from the solar wind, and fluctuations with frequency f2 are radial magnetopause oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号