首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
新生代以来,印度板块和欧亚板块发生碰撞形成了喜马拉雅造山带和青藏高原,印度板片在喜马拉雅东构造结处缅甸弧俯冲带进入深部地幔.开展缅甸弧俯冲带下方地幔间断面的研究有助于认识印度大陆岩石圈的碰撞-俯冲过程及其对上地幔结构的影响.本文选用了发生于缅甸弧地区的3个中源地震事件,获取了欧洲和美国阿拉斯加地区多个密集地震台网/台阵...  相似文献   

2.
2008汶川Ms8.0地震发生的深层过程和动力学响应   总被引:48,自引:17,他引:31       下载免费PDF全文
汶川Ms8.0强烈地震发生在一条现今并不活动的龙门山构造带上,造成了以汶川、映秀为中心及其周边地域的严重破坏和人员的重大伤亡.然而强烈震发生前却未见有可能的确切征兆或浅表层异常活动,即浅层过程与地震发生的深层过程并不匹配.为此对这次强烈地震"孕育"、发生和发展的深层过程进行了分析和探讨,初步研究表明:①在印度洋板块与欧亚板块陆—陆碰撞、挤压作用下,喜马拉雅造山带东构造结向NNE方向顶挤、楔入青藏高原东北缘,迫使高原深部物质向东流展,在受到以龙门山为西北边界的四川盆地阻隔下,一部分物质则转而向东南侧向运移;②龙门山地带在地形上差达3500±500m左右,而地壳厚度在龙门山西北部为60±5km左右,四川盆地为40±2km左右,而龙门山地带与其东、西两侧相比则为地壳厚度变化幅度达15~20km的突变地域,即为应力作用的耦合地带;③中、下地壳和地幔盖层物质以地壳低速层、低阻层(深20~25km)为第一滑移面,以上地幔软流层顶面为第二滑移面,且在四川盆地深部"刚性"物质阻隔下,深部壳、幔物质以高角度在龙门山构造带和四川盆地的耦合地带向上运移(或称逆冲),且在龙门山地表三条断裂构成的断裂系向下延伸到20km左右深处汇聚,二者强烈碰撞、挤压、震源介质破裂;在物质与能量的强烈交换下,应力得到释放,故形成了这次Ms8.0强烈地震.为此从深部初步揭示了这次强烈地震"孕育"、发生和发展的深层动力过程.  相似文献   

3.
2008汶川Ms8.0地震发生的深层过程和动力学响应   总被引:1,自引:0,他引:1       下载免费PDF全文
汶川Ms8.0强烈地震发生在一条现今并不活动的龙门山构造带上,造成了以汶川、映秀为中心及其周边地域的严重破坏和人员的重大伤亡.然而强烈震发生前却未见有可能的确切征兆或浅表层异常活动,即浅层过程与地震发生的深层过程并不匹配.为此对这次强烈地震“孕育”、发生和发展的深层过程进行了分析和探讨,初步研究表明:①在印度洋板块与欧亚板块陆—陆碰撞、挤压作用下,喜马拉雅造山带东构造结向NNE方向顶挤、楔入青藏高原东北缘,迫使高原深部物质向东流展,在受到以龙门山为西北边界的四川盆地阻隔下,一部分物质则转而向东南侧向运移;②龙门山地带在地形上差达3500±500 m左右,而地壳厚度在龙门山西北部为60±5 km左右,四川盆地为40±2 km左右,而龙门山地带与其东、西两侧相比则为地壳厚度变化幅度达15~20 km的突变地域,即为应力作用的耦合地带;③中、下地壳和地幔盖层物质以地壳低速层、低阻层(深20~25 km)为第一滑移面,以上地幔软流层顶面为第二滑移面,且在四川盆地深部“刚性”物质阻 隔下,深部壳、幔物质以高角度在龙门山构造带和四川盆地的耦合地带向上运移(或称逆冲),且在龙门山地表三条断裂构成的断裂系向下延伸到20 km左右深处汇聚,二者强烈碰撞、挤压、震源介质破裂;在物质与能量的强烈交换下,应力得到释放,故形成了这次Ms.0强烈地震.为此从深部初步揭示了这次强烈地震“孕育”、发生和发展的深层动力过程.  相似文献   

4.
地壳俯冲和大陆碰撞是板块构造理论的核心,而认识大陆碰撞造山带的形成和演化,是发展板块构造理论的关键.根据俯冲地壳的性质,业已认识到不同类型的板块俯冲带.根据碰撞块体的性质及其衍生岩石的成分,已经认识到大陆碰撞形成了两种类型的造山带.弧陆碰撞造山带既含有古老地壳物质,也含有新生地壳物质,它们在碰撞后阶段的再造就能够产生不同地球化学成分的岩浆岩.而对于两个相对古老大陆之间的碰撞所形成的造山带来说,碰撞后岩浆作用只是俯冲带古老地壳的再造.碰撞造山带在岩石圈拉张作用下发生活化再造,不仅再造作用在构造体制上具有继承性,而且再造产物岩浆岩在地球化学成分上也具有继承性.因此,研究碰撞后体制下的造山带再造,认识大陆碰撞造山带深部物理化学差异、俯冲地壳性质与碰撞后岩浆岩之间的成因联系,建立碰撞后阶段大陆构造演化的基本规律,是构建大陆动力学体系、发展板块构造理论的关键.  相似文献   

5.
地壳物质组成、特定地壳结构或地震构造是地震孕育的母体,区域动力作用环境(力源)是地震孕育、发生的必要条件。在活动板块边缘(如印度板块与欧亚板块碰撞带、菲律宾海板块和太平洋板块与欧亚板块碰撞带),地震活动较强,地震密集,在板块内部或不活动板块边  相似文献   

6.
汶川8.0级大地震的孕育和发生的深层过程与动力成因探讨   总被引:1,自引:1,他引:0  
汶川8.0级大地震发生在由3条NE向断裂带组成的龙门山逆冲走滑断裂系上,造成了以汶川、映秀为中心和其周边地域的严重破坏和人员的重大伤亡。然而强烈地震发生前却未见有可能的确切征兆或浅表层异常活动的迹象(相对于短期和临震预测),即浅层过程与地震发生的深层过程并不匹配。那么为什么在龙门山地区突然发生了这次大地震,它具有哪些特征?其成因机制又是什么?为此必须对这次大地震孕育、发生和发展的壳幔速度结构和其深层动力过程进行深入研究和探讨。通过松藩—甘孜,龙门山造山带和四川盆地地域人工源地震深部探测、天然地震层析成像、接收函数与面波频散反演、大地电磁测深和重力场研究,所得初步结果表明:①在印度洋板块与欧亚板块陆-陆板块碰撞、挤压作用下,形成了喜马拉雅造山带和东构造结,该东构造结似一尖楔向NNE方向顶挤并插入青藏高原东北缘,故迫使高原深部物质向东流展,在受到以龙门山为西北边界的四川盆地刚性物质阻隔下,一部分物质则转而向东南侧运移;②龙门山造山带与其西北侧地带地形高差达3500±500m左右,而地壳厚度在龙门山西北部为65±5km左右,四川盆地为40±2km,而龙门山地带与其东、西两侧相比则其地壳厚度变化幅度可达15~20km。这里恰为应力作用的耦合与集中地带;③下地壳和地幔盖层物质以上、中地壳(深20~25km)中的低速层为第一滑移面(并与上地壳解耦),以上地幔软流层顶面为第二滑移面,且在四川盆地深部壳、幔"刚性"物质阻隔下,下地壳和上地幔盖层物质以高角度在龙门山断裂系与四川盆地的耦合地带向上运移(或称逆冲),且在龙门山地表三条断裂构成的断裂系向下收敛到15±5km左右深处汇聚,二者强烈碰撞、挤压、震源介质破裂;即在物质与能量的强烈交换下,高度集中的应力得到急速释放,故形成了这次8.0级大地震;④汶川8.0级大地震的发震断裂是深部15±5km处的汇聚断裂带,且为在15±5km深处、半径为5km左右的柱状震源体积。为此通过该区的壳、幔速度结构变异,初步揭示了这次8.0级大地震孕育、发生和发展的深部介质和构造环境及其深层动力过程。  相似文献   

7.
跨越中、印、缅三国交界的喜马拉雅“东构造结”地区(92°E~97°E,26°N~30°N)有一半以上的面积尚没有重力测点,是重力数据空白区,故无法直接研究其重力场特征与深部地壳结构(构造).本文应用卫星重力异常资料作为近似空间重力异常,经计算给出的布格重力异常,其特征与该地区的地形高程呈很好的镜像相关.据此得到该区不同方位的3个地壳深部结构剖面.重力异常反演求得青藏高原地壳厚度>70 km;喜马拉雅造山带为55 km左右;布拉马普特拉河谷盆地为33~35 km;那加山山脉地区为40~45 km,即呈现出3个不同构造单元的展布.同时求得“东构造结"区由高密度的刚性物质构成,在印度洋板块的碰撞、挤压作用下呈向北运移,并插入青藏高原东缘.基于这样的构造格局和深层动力过程,导致了青藏高原东南缘和东北缘的强烈构造运动,大、小地震的频频发生和矿产资源的聚集.  相似文献   

8.
<正>青藏高原东南缘地区是欧亚板块与印度板块碰撞的强烈变形地带,地质构造复杂,地震活动频繁,是研究青藏高原地壳形变模式和构造演化规律的重要地区。通过青藏高原东南缘地区的壳幔各向异性及深部结构的研究,可以讨论在青藏高原物质东向挤出作用下,青藏高原东南缘的地壳变形模式及其与区域构造应力的关系、块体之间的相互作用、深部的动力学  相似文献   

9.
中国大陆西北造山带及其毗邻盆地的地震层析成像   总被引:41,自引:6,他引:35  
根据新疆、甘肃、青海和吉尔吉斯斯坦地震台网提供的地震数据,利用地震层析成像法重建了中国大陆西北造山带及其毗邻盆地的地壳上地幔三维速度图像.上地壳造山带大都为高速区,盆地和地陷区的低速显然与较厚的松散沉积层有关.地壳中部东、西天山之间存在低速边界,造山带及青藏高原北部的莫霍面深度较大,盆地和坳陷区的莫霍面相对较浅.上地幔软流层在青藏高原、阿尔泰山、祁连山等地较浅,在塔里木盆地和天山一带较深.地幔热物质有可能在板块碰撞中沿构造边界上升到造山带的底部,它们的动力学性质与中国大陆西北造山带的形成演化有着密切的联系。  相似文献   

10.
由于印度洋板块向亚欧板块俯冲使青藏高原不断隆起,其形成不仅导致了亚洲大陆内部强烈的晚新生代构造变形,还对其边缘地区的地貌格局产生重大影响.青藏高原东北缘是青藏高原向北东方向扩展的前缘部位,是印度与欧亚两大板块碰撞作用由近南北方向向北东、东方向转换的重要场所.本文利用2004年和2008年完成的深地震反射剖面资料,采用关键处理技术和参数开展唐克-合作剖面与合作-临夏剖面联线处理,获得总长约400 km的深地震反射剖面,完整揭示了西秦岭造山带及其两侧盆地的地壳结构和构造变形样式.结果显示西秦岭造山带下地壳向若尔盖逆冲推覆的深部构造特征;西秦岭下地壳北倾的强反射及其北侧南倾的强反射特征揭示出扬子与华北两个大陆板块在西秦岭造山带下的汇聚行为.Moho的埋深和起伏形态表明青藏高原东北缘地壳经历了高原隆升后强烈的伸展减薄作用.  相似文献   

11.
青藏高原南缘现今地球动力学研究   总被引:3,自引:1,他引:3       下载免费PDF全文
高名修 《地震地质》1996,18(2):143-155
喜马拉雅构造带于新生代时期经历了两代受力条件截然不同的形变。早期造山挤压形变与造山后的引张形变、青藏高原和高喜马拉雅的大幅度抬升。大致低喜马拉雅范围即青藏高原南缘,现今构造活动与青藏高原和高喜马拉雅块断抬升相辅相成。流行的板块聚合动力学模式,即使早新生代发生过,晚新生代以来已经灯熄。东亚大陆现代形变与地震活动的驱动力不可能源于青藏高原南缘被动挤压,而是取决于与高原隆起相关的深部主动动力学过程  相似文献   

12.
本文搜集了现在已知的关于青藏高原地区的各种地球物理场特征,即:该区的地壳与上地幔构造,地磁场要素的分布,航空磁测的结果,古地磁极移轨迹,重力异常与均衡补偿,地热活动与温泉分布,地震活动以及深地震探测等研究结果,来探讨它与大陆板块构造的关系。 研究的初步结果表明,印度洋板块与欧亚板块交接地带的北界为雅鲁藏布江,南界为恒河平原的北缘。喜马拉雅地带为这两大板块碰撞与挤压的过渡带,其宽度约300公里左右。这一地带的大、小地震绝大部分是浅源地震,只在弧形山系和东西弧顶及其转折部位有中源地震。在这一过渡带内水热活动剧烈,重力也不均衡。 雅鲁藏布江以北到当雄一带,地壳厚度为70-73公里,喜马拉雅地区则为68-45公里左右,并向南翘起。地壳由多层介质组成,在下地壳中存在着低速层。断层面解表现为向南逆冲,主压应力轴基本上为南北向和北东向,且与震源深度相关。现在构造活动与地震活动似均逐渐向南移到主边界大断层一带。 在雅鲁藏布江以北,小震震源深度向南递加,而在恒河平原以北,则向北递加。此外,在上述两个地区均有零星的中源地震发生。因此,喜马拉雅地带的南北两侧有相向“俯冲”之势。在兴都库什地区,中源地震震源面北倾;在帕米尔地带,中源地震震源面南倾。因此,震源面构成了“V”字  相似文献   

13.
云南强震活动的多层次动力源分析   总被引:2,自引:2,他引:2  
对云南地区多层次动力过程作了分析研究,结果表明,若以两大板块之间在边界上的相互作用为最高层次的动力作用,云南地区现代构造运动至少包括三个层次的动力作用过程:(1)印度板块和亚欧板块两大地壳板块在喜马拉雅碰撞带东部弧顶和东翼相互作用产生的边界动力源对云南地区产生的直接影响和间接作用;还有菲律宾海板块对亚欧板块的北西西向的推挤,通过华南地区对云南东部的间接作用,构成了云南地区现代构造运动第一层次动力作用;(2)以康滇菱形断块为主体,包括川青断块、滇西南断块带等板内断块的整体向南南东—南东方向的相对移动产生的动力作用,是第二层次的动力作用;(3)由于板内断块边界断裂运动速率的差异,主要是水平滑动速率差异造成的板内断块内部次级断块移动产生的动力作用,是第三层次的动力作用。对印度板块和亚欧板块两大地壳板块碰撞挤压带东部弧顶和东翼相互作用产生的边界动力源与云南及邻区构造运动、构造应力场分布格局和强震活动关系作了分析研究,认为云南及邻区多层次动力作用过程,是强震活动时空分布的主要原因。  相似文献   

14.
青藏高原第五缝合带的发现与论证   总被引:43,自引:0,他引:43       下载免费PDF全文
1987年以来,中国科学院青藏高原综合科学考察队开展了对喀喇昆仑山和昆仑山的多学科综合性科学考察.本文根据这次考察的大量资料,论证了青藏高原第五缝合带的存在.考察资料表明,在西昆仑山存在一个被称作原特提斯的海洋,这个洋是在劳亚大陆南部基底上破裂、扩张并形成于震旦纪至奥陶纪时期(大约800-450Ma).原特提斯海洋闭合于加里东造山运动,并形成现在所见的库地-苏巴什缝合带的残迹,即青藏高原第五缝合带,从而完善了青藏高原的地质历史和构造演化.  相似文献   

15.
Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and forming the plateau landscape. In company with uplifting and northward extruding of the Tibetan plateau, the contractional tectonic deformations persistently spread outward, building a gigantic basin-range system around the Tibetan plateau. This system is herein termed as the Circum-Tibetan Plateau Basin-Range System, in which the global largest diffuse and the most energetic intra-continental deformations were involved, and populations of inheritance foreland basins or thrust belts were developed along the margins of ancient cratonic plates due to the effects of the cratonic amalgamation, crust differentiation, orogen rejuvenation, and basin subsidence. There are three primary tectonic units in the Circum-Tibet Plateau Basin-Range System, which are the reactivated ancient orogens, the foreland thrust belts, and the miniature cratonic basins. The Circum-Tibetan Plateau Basin-Range System is a gigantic deformation system and particular Himalayan tectonic domain in central-western China and is comparable to the Tibetan Plateau. In this system, northward and eastward developments of thrust deformations exhibit an arc-shaped area along the Kunlun-Altyn-Qilian-Longmenshan mountain belts, and further expand outward to the Altai-Yinshan-Luliangshan-Huayingshan mountain belts during the Late Cenozoic sustained collision of Indo-Asia. Intense intra-continental deformations lead ancient orogens to rejuvenate, young foreland basins to form in-between orogens and cratons, and thrusts to propagate from orogens to cratons in successive order. Driven by the Eurasia-Indian collision and its far field effects, both deformation and basin-range couplings in the arc-shaped area decrease from south to north. When a single basin-range unit is focused on, deformations become younger and younger together with more and more simple structural styles from piedmonts to craton interiors. In the Circum-Tibetan Plateau Basin-Range System, it presents three segmented tectonic deformational patterns: propagating in the west, growth-overthrusting in the middle, and slip-uplifting in the east. For natural gas exploration, two tectonic units, both the Paleozoic cratonic basins and the Cenozoic foreland thrust belts, are important because hydrocarbon in central-western China is preserved mainly in the Paleozoic cratonic paleo-highs and the Meso-Cenozoic foreland thrust belts, together with characteristics of multiphrase hydrocarbon generation but late accumulation and enrichment.  相似文献   

16.
喜玛拉雅“东构造结”地区特异重力场的探讨   总被引:4,自引:6,他引:4       下载免费PDF全文
跨越中、印、缅三国交界的青藏高原东南的喜玛拉雅“东构造结”地区(92°E~97°E,26°N~30°N)一半以上的面积尚没有重力测点,是重力数据空白区,故无法直接研究其重力场特征与深部地壳结构(构造).本文分析了卫星重力异常的特性,提出应用卫星重力异常作为近似空间重力异常,并作布格改正后,得到的布格重力异常具有与该地区地形高程呈镜像相关的特征,可用以研究深部地壳结构.据三条重力剖面计算得到该地区三个地壳深部结构剖面的结果,给出青藏高原地壳厚度>70 km;喜马拉雅造山带为55 km左右;布拉马普特拉河谷盆地为33~35 km;那加山山脉地区为40~45 km,显示出三者为三个不同的构造单元.同时给出布拉马普特拉构造单元为相对高密度的刚性物质构成,随着印度洋板块向北运移,在碰撞、挤压下,插入青藏高原东南缘一带.导致该地带的强烈构造运动,和频发大、小地震.最后提出了几点认识和建议.  相似文献   

17.
By inversion of fault slip data for Quaternary tectonic stress field and the analysis of crustal deformation after late Teriary, we explained the evolution of crustal dynamic about the north and east margin of Qinghai-Xizang (Tibet) plateau since Miocene. From middle or late Miocene to early Pleistocene, the tectonic stress field was featured by a maximum principal compression which was coming from the collision of India Plate perpendicular to the boundary of the plateau, and was basically of reverse faulting type. Since the late period of early Pleistocene, India Plate continued to push northward and the compressional deformation of the plateau interior increased continuously, meanwhile, NW-SE extension appeared on the east side of the plateau. This formed a favorable condition for the interior block of the plateau to slide towards east and southeast, causing the faults surrounding the plateau to change from thrust to strike-slip. The contemporary tectonic stress field was formed from the late period of early Pleistocene and continued to present. The direction of maximum principal compressional stress rotated clockwise with respect to the previous tectonic stress field, the stress field was mainly of strike-slip type.  相似文献   

18.
中国西部三维速度结构及其各向异性   总被引:24,自引:5,他引:24  
本文用覆盖中国的358条勒夫面波路径资料,研究了10.45-113.80s范围内中国西部的三维SH波速度结构.结果表明,各构造单元的SH波速度结构均有明显的差别.作为稳定块体的塔里木盆地,壳内重力分异程度较高,上、中、下地壳厚度差别小,壳内无明显的低速层,地壳平均速度比较小;上地幔低速层埋深大且层中速度大;区内横向变化小.构造活动区如天山、青藏高原,其突出的特征是下地壳厚度大且速度大,上地幔盖层速度值相当高.这与西伯利亚、印支板块的挤压有密切的关系.青藏高原东部及其北、东边缘地区壳内存在低速层,上地幔低速层埋深浅,一些地区存在壳幔过渡层.面波各向异性研究表明,青藏高原、天山及印支板块北缘下存在明显的各向异性,以构造边缘地区及上地幔低速层附近最为突出.印度板块、西伯利亚板块与中国大陆间的碰撞引起强大的水平压力和一定的下插作用,是造成青藏高原隆起、地壳增厚、天山隆起的最根本的因素,同时也促成壳幔中辉石、橄榄石的定向排列和物质运移,因而出现明显的各向异性现象.  相似文献   

19.
Tectonic deformation of Cenozoic strata,youthful tectonontorphology,and high seismicity in the western part of Sichuan and Yunnan(Southwest China)marked intensive tectonism there during the Ceno7oic.It is a good place for studying the continental geodynamics because it is far away from those active plate boundaries surrounding the East Asian continent but near the southeastern margin of the Qinghai-Xizang(Tibet)plateau.The present study discriminated two phases of tectonic deformation with quite different styles in Cenozoic.Early compression deformation,expressed by folds,thrust,and even nappe structure,mainly occurred between the middle and late Eocene.Late extension deformation expressed by block-faulting started at least in the late Pliocene.Nonconformity,absence of strata,nonsuccessive tectonism,and inverse movement of the faults in late stages illustrated that two different deformation phases should be caused by different geodynamic processes.The early compression deformation would be related to Ar  相似文献   

20.
根据地球物理探测资料,基于二维模型,利用黏弹性有限元方法,研究青藏高原西、东剖面的地壳均衡和岩石圈根拖曳的构造应力机制.数值模拟结果表明,青藏高原西部(B B′剖面)的造山水平挤压力主要来源于岩石圈根的向下拖曳,印度板块向北挤压为次要因素,形成“山隆盆降”的地表形态;而青藏高原东部(A A’剖面)岩石圈根向下拖曳还不足以形成硬上地壳中挤压造山的主要力源.对比结果认为,青藏高原的深部层圈结构和应力体系在西、东部存在明显的差异,反映了高原内部造山演化的西、东分异特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号