首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
—Geodetic measurements of crustal deformation over large areas deforming at slow rates (<5 mm/yr over more than 1000 km), such as the Western Mediterranean and Western Europe, are still a challenge because (1) these rates are close to the current resolution of the geodetic techniques, (2) inaccuracies in the reference frame implementation may be on the same order as the tectonic velocities. We present a new velocity field for Western Europe and the Western Mediterranean derived from a rigorous combination of (1) a selection of sites from the ITRF2000 solution, (2) a subset of sites from the European Permanent GPS Network solution, (3) a solution of the French national geodetic permanent GPS network (RGP), and (4) a solution of a permanent GPS network in the western Alps (REGAL). The resulting velocity field describes horizontal crustal motion at 64 sites in Western Europe with an accuracy on the order of 1 mm/yr or better. Its analysis shows that Central Europe behaves rigidly at a 0.4 mm/yr level and can therefore be used to define a stable Europe reference frame. In that reference frame, we find that most of Europe, including areas west of the Rhine graben, the Iberian peninsula, the Ligurian basin and the Corsica-Sardinian block behaves rigidly at a 0.5 mm/yr level. In a second step, we map recently published geodetic results in the reference frame previously defined. Geodetic data confirm a counterclockwise rotation of the Adriatic microplate with respect to stable Europe, that appears to control the strain pattern along its boundaries. Active deformation in the Alps, Apennines, and Dinarides is probably driven by the independent motion of the Adriatic plate rather than by the Africa-Eurasia convergence. The analysis of a global GPS solution and recently published new estimates for the African plate kinematics indicate that the Africa-Eurasia plate motion may be significantly different from the NUVEL1A values. In particular, geodetic solutions show that the convergence rate between Africa and stable Europe may be 30–60% slower than the NUVEL1A prediction and rotated 10–30° counterclockwise in the Mediterranean.  相似文献   

2.
Continuous GPS Array and Present-day Crustal Deformation of Japan   总被引:1,自引:0,他引:1  
—A GPS array with about 1,000 permanent stations is under operation in Japan. The GPS array revealed coseismic deformations associated with large earthquakes and ongoing secular deformation in the Japanese islands. Based on daily coordinate data of the GPS stations, strain rate distribution is estimated. Most regions with a large strain rate are related to plate boundaries and active volcanoes. In addition, the Niigata-Kobe Tectonic Zone (NKTZ) is recognized as a region of large strain rate along the Japan Sea coast and in the northern Chubu and Kinki districts. This newly found tectonic zone may be related to a hypothetical boundary between the Eurasian (or Amurian) and the Okhotsk (or North America) plates. Precise observation of crustal deformation provides important boundary conditions on numerical modeling of earthquakes and other crustal activities. Appropriate computation methods of continuous deformation field are directly applicable to data assimilation for such numerical simulations.  相似文献   

3.
The geotectonic position of the Pyrenees mountain massif in the Alpine–Indonesian mobile belt is considered. The geological data testify to the formation of the structure of the Pyrenees in the setting of a subhorizontal compression perpendicular to the ridge. The commonly accepted interpretation considers this compression in the context of plate tectonic notions related to the collision between the Iberian and Eurasian lithospheric plates resulting from the convergence of the Eurasian and African plates. However, this interpretation is challenged by the the geodetic and seismological measurements. The GPS measurements suggest a certain cross-strike spreading rather than shortening of the Earth’s crust; the focal mechanisms of the earthquakes indicate the predominance of a subhorizontal extension perpendicular to the strike of the Pyrenees mountain range. The processes of the gravitational collapse of the mountain chain during the isostatic upwelling of the orogenic crust are considered as the most probable cause of this spreading by a number of the authors.  相似文献   

4.
Maps of the main structures and the degree of geothermal studies of the Azores-Gibraltar and Iceland regions are constructed. Computer modeling of the coefficient of velocity of thermal subsidence into the asthenosphere of the Azores segment of the Mid-Atlantic Ridge is performed. According to the results of modeling, this velocity exceeds the mean velocity of thermal subsidence of the mid-ocean ridges of the world ocean by a factor of ∼ 1.5. The high velocity of subsidence of the Azores segment of the ridge is caused by the influence of the hot substance of the plume on the process of subsidence. The distributions of the heat flow in the Horseshoe basin, Alboran Sea, and southern part of the Iberian Peninsula are analyzed. A zone of increased heat flow and seismicity, extending from the Madeira-Torre Ridge through the Horseshoe basin, and farther to the east through the southern parts of Spain and France, is identified for the first time. The identified geothermal zone marks the northern branch of the diffuse boundary between the Eurasian and African plates. In the region of the Alpine chain, this zone joins the southern boundary between the Eurasian and African plates, which runs along the northern part of Africa and the Apennine Peninsula. The European and African plate boundaries outline the identified Western-Mediterranean plate, which mainly consists of the oceanic and thinned continental lithospheres of the Algerian-Provence and Tyrrhenian basins.  相似文献   

5.
The works on geodetic monitoring of the contemporary crustal motions (CCMs) in the region of the Kamchatka Peninsula and Komandor Islands for the 40-year history of instrumental observations are reviewed. The examples of CCM recording by the classical geodetic methods and, since 1996, by the Global Positioning System (GPS) are presented. The deployment of the regional network for GNSS observations by the Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences (KAMNET) made it possible to study the geodynamical processes at the junction of three major plates (Eurasian, North American, and Pacific) and smaller plates (Okhotsk and Bering). The interpretation of the examples of recorded CCMs is presented. The prospects of further development in the field of studying the geodynamics of the Koryak-Kamchatka region are outlined.  相似文献   

6.
近十多年来藏南地区GPS网的多期观测结果为研究其构造变形提供了精确数据。本文将该区划分为冈底斯、西喜马拉雅、中喜马拉雅、拉萨4个块体,建立了各块体的弹性运动模型。以藏北高原的旋转框架为参考基准,得到藏南地区的水平形变场和应变场,分析形变场和应变场的空间变化,发现藏南地区存在强烈的S-N向挤压缩短变形,同时也有明显的E-W向伸展变形。南北边界之间的平均缩短速率16.9±2.5mm/a,大约吸收了印度与欧亚汇聚速率的42.4%。在雅鲁藏布江缝合线与班公错—嘉黎断裂之间,从80°E到90°E,地壳E—W向的伸展速率16.3±2.4mm/a。因此,藏南地区现今构造变形是以挤压缩短为主,S-N向挤压缩短与E—W伸展共存的复合变形模式。印度板块向欧亚板块的俯冲推挤是该区域变形的主要驱动力,重力作用对其变形也有重要贡献。  相似文献   

7.
The region of the Aegean Sea and the surrounding areas in the Eastern Mediterranean lies on the boundary zone between the Eurasian and the African plates. It is a zone of widespread extensive deformation and, therefore, reveals a high level of seismicity.Three-dimensional velocity structure, beneath the crust and upper mantle of the region between 33.0°N–43.0°N and 18.0°E–30.6°E, is determined.The data used are arrival times ofP-waves from 166 earthquakes, recorded at 62 seismological stations. In total, 3973 residual data are inverted.The resultant structure reveals a remarkable contrast of velocity. In the top crustal layer, low velocities are dominant in Western Turkey and on the Greek mainland, while a high velocity zone is dominant in the Ionian Sea and in the southern Aegean Sea.In the upper mantle, high velocity zones dominate along the Hellenic arc, corresponding to the subducting African plate and in the northern part of the region, corresponding to the subducting African plate and in the northern part of the region, corresponding to the margin of Eurasian plate.A low velocity zone is dominant in the Aegean Sea region, where large-scale extension and volcanic activity are predominant, associated with the subduction of the African plate.  相似文献   

8.
At present, the concept of plate tectonics is predominant in the Earth sciences. However, there are also other, less popular ideas concerning the geodynamics of the Earth’s crust/lithosphere. The highly accurate modern geodetic measurements such as GPS, SLR, and VLBI provide a new framework for assessing different standpoints. The results of global-scale geodetic measurements are in close agreement with the global plate tectonic reconstructions. However, the same measurements of regional networks in the Mediterranean part of the Alpine-Indonesian Mobile Belt yield results that disagree with the plate’s tectonic reconstructions for this region. These measurements show that the belt’s width in many areas of Eurasian and African lithospheric plates’ convergence is not decreasing at present, as follows from the plate reconstructions, but increasing. At the same time, the segments of the belt under consideration are in a state of stress characterized by near-horizontal compression oriented across the strike of the belt. This contradiction can only be explained if it is assumed that the formation of the tectonic structure of the mobile belt is related to the active growth of the volume of the bedded rocks of the belt, i.e., of the plate’s convergence zone. This growth is apparently due to the additional mineral material gained by the ascending mantle fluid flows. This implies that local, autonomous dynamic processes are required in addition to the lithospheric plate’s interactions to account for the tectonic deformations observed in the mobile belt.  相似文献   

9.
用全球定位系统(GPS)监测青藏高原地壳形变   总被引:7,自引:5,他引:7       下载免费PDF全文
王琪  游新兆 《地震地质》1996,18(2):97-103
通过对拉萨、日喀则地区两条基线的观测结果分析,得到了拉萨地块近南北向地壳形变率为(7.0±2.3)mm/a及近东西向(7.4±2.3)mm/a的形变速率,与震源机制解的结论十分接近。同时监测到相对于拉萨南北向7.3cm和东西向4.1cm的震后形变位移,显示出GPS在地震监测及与地震相关的地壳形变研究的广阔前景  相似文献   

10.
Detailed estimates of seismotectonic strain (STS) characteristics are obtained for the upper crust from focal mechanisms of numerous earthquakes (M ≥ 1) in the northern and axial parts of the Tajik Depression (the Garm area, Tajikistan). It is shown that, in the majority of cases, a close interrelation exists between tectonic structures and the STS type. Changes in the STS characteristics in various areas of the depression admit a reasonable geological interpretation. Based on geological, seismological, and geodetic data, a unified scheme of deformation of layered rocks of the Tajik Depression is presented. The main factor controlling the deformation process is the extrusion of the rocks in the axial part of the depression in the NNW and SSE directions (with the formation of imbricate thrusts) and in the WSW direction. The latter case is characterized by left-lateral motions in fault zones in the south of the depression (including the Darvaz fault) and by right-lateral motions in northern zones (the Peter the First Range) located from seismological data. In our opinion, such expulsion is caused mainly by an increase of the volume of layered rocks in the Tajik Depression, apparently due to deep fluids penetrating into these rocks and supplying additional mineral material. However, it is also possible that the region is influenced, to an extent, by the general subhorizontal N-S compression associated with the convergence of the Indian and Eurasian lithospheric plates in accordance with the concept of plate tectonics.  相似文献   

11.
东亚地震活动的时空分布及其与区域应力场的关系   总被引:2,自引:0,他引:2       下载免费PDF全文
徐纪人  赵志新 《地震学报》1991,13(3):287-294
来自板块之间相对运动的构造力可以传递到大陆地壳,从而形成了大陆内部的地震应力场.在某一地区,包括小地震在内的地震活动性的分布可以反映该地区的应力场的变化.根据这一观点,本文根据大量的震源机制解的结果以及最近500年的地震活动资料,详细地研究了东亚地区内几个地区的区域应力场的特征.其结果表明,来自太平洋板块相对欧亚板块的俯冲所形成的构造力,控制了从华北地区到南北地震带北段的应力场.本文根据小震的地震活动变化的特征,讨论了日本一部分地区由地震活动性的变化所反映的区域应力场的变化.中国西部以及印度-澳大利亚和欧亚大陆板块边界地区,最近大约100年地震活动性的同步变化表明,来自印度-澳大利亚板块和欧亚板块碰撞所产生的构造力,传递到了中国西部.印度-澳大利亚板块和欧亚大陆板块边界,以及中国西部的地震活动,现在依然处在地震活动高潮期.   相似文献   

12.
We analyze observations from eight GPS campaigns carried out between 1997 and 2005 on a network of 13 sites in the Suez–Sinai area, where separation between the African and the Arabian plates takes place. This is the key area to understand if and in which way Sinai behaves like a sub-plate of the African plate and the role played by seismic and geodetic (long-term) deformation release.Our analysis shows that, on average, the Suez–Sinai area motion, in terms of ITRF00 velocities, matches the African plate motion defined by the NNR-NUVEL-1A model.The horizontal principal strain rate axes estimated separately in the Gulf of Suez area and in the northern Sinai vary from compression across the Gulf (−2.2 ± 1.2) × 10−8 year−1 to NE extension (1.0 ± 1.5) × 10−8 year−1 in the North, showing the presence of two distinct domains, so that in our opinion Sinai cannot be considered simply a unique rigid block.The analysis of GPS baseline length variations shows short-term deformations across the Gulf of Suez, reaching up a maximum value of more than 1 cm in 8 years.Since current geodynamical models do not predict significant tectonic deformation in this area, we work under the hypothesis that a contribute may be expected by post-seismic relaxation effects. Under this hypothesis, we compare the baselines length variations with the post-seismic relaxation field associated with five major local earthquakes occurred in the area, testing two different viscoelastic models. Our results show that the detected short-term deformations are better modeled for viscosity values of 1018 Pa s in the lower crust and 1020 Pa s in the asthenosphere. However, since the modeled post-seismic effect results modest and a certain amount of the detected deformation is not accounted for, we think that an improved modeling should take into account the lateral heterogeneities of crust and upper mantle structures.  相似文献   

13.
GPS geodetic measurements were conducted around the Askja central volcano located at the divergent plate boundary in north Iceland in 1987, 1990, 1992 and 1993. The accuracy of the 1987 and 1990 measurements is in the range of 10 mm for horizontal components; the accuracy of the 1992 and 1993 measurements is about 4 mm in the horizontal plane. Regional deformation in the Askja region is dominated by extension. Points located outside a 30–45 km wide plate boundary deformation zone indicate a displacement of 2.4±0.5 cm/a in the direction N 99°E±12° of the Eurasian plate relative to the North American plate in the period 1987–1990. Within the plate boundary deformation zone extensional strain accumulates at a rate of 0.8 strain/a. Displacement of control points next to Askja (>7 km from the caldera center) in the periods 1990–1993 and 1992–1993 show deflation and contraction towards the caldera. These results are in accordance with the results obtained by other geodetic methods in the area, which indicate that the deflation at Askja occurs in response to a pressure decrease at about 2.8 km depth, located close to the center of the main Askja caldera. A Mogi point source was fixed at this location and the GPS data used to solve for the source strength. A central subsidence of 11±2.5 cm in the period 1990–1993 is indicated, and 5.5±1.5 cm in the period 1992–1993. The maximum tensional strain rate, according to the point source model, occurs at a horizontal distance of 2.5–6 km from the source, at the same location as the main caldera boundary. Discrepancies between the observed displacements and predicted displacements from the Mogi model near the Askja caldera can be attributed to the regional eastwest extension that occurs at Askja.  相似文献   

14.
中国大陆地壳应力场与构造运动区域特征研究   总被引:41,自引:16,他引:25       下载免费PDF全文
系统研究了1918~2006年间中国大陆及其周缘发生的3115个M4.6以上中、强地震的震源机制解,得到中国大陆地壳区域应力场的压应力轴和张应力轴空间分布的统计结果.探讨了大陆应力场的结构,以及周围板块运动对中国大陆应力场影响作用范围及其界线.结果表明,中国东部的华北地区受到太平洋板块向欧亚板块俯冲挤压的同时,又受到从贝加尔湖经过大华北直至琉球海沟的广阔范围内存在的方位为170°引张应力场的控制.华北地区大地震的震源机制解反映出,该区地震发生为NEE向挤压应力和NNW向张应力的共同作用结果.印度洋板块向欧亚板块的碰撞挤压运动所产生的强烈的挤压应力,控制了喜马拉雅、青藏高原、乃至延伸到天山及其以北的广大地区.在青藏高原周缘地区和中国西部的大范围内,压应力P轴水平分量位于20°~40°,形成了近北东方向的挤压应力场,大量逆断层型强震集中发生在青藏高原的南、北和西部周缘地区以及天山等地区. 本文结果表明,正断层型地震集中发生在青藏高原中部高海拔的地区.证明了青藏高原周缘区域发生南北向强烈挤压短缩的同时,中部高海拔地区存在着明显的近东西向的扩张运动.根据本文最新结果,得到了华北、华南块体之间地壳区域应力场的控制边界线,发现该分界线与大地构造、岩石圈板块构造图等有较大差异,特别是在大别及其以东地区, 该分界线向东南偏转,在沿海的温州附近转向东,最终穿过东海直至琉球海沟.台湾纵谷断层是菲律宾海板块与欧亚板块之间碰撞挤压边界,来自北西西向运动的菲律宾海板块构造应力控制了从台湾纵谷、华南块体,直到中国南北地震带南段东部地域的应力场. 地震震源机制结果还表明,南北地震带南段西侧其P轴大约为NNE方向,与青藏高原的P轴方位一致.南北地震带南段东侧其P轴大约为NWW方向,与华南块体的P轴方位一致.因此,将中〖JP2〗国大陆分成东、西两部分的南北地震带南段是印度洋板块与菲律宾海板块在中国大陆内部影响控制范围的分界线.  相似文献   

15.
Tectonic forces from the relative movements between plates are transmitted into the continental crust, and then they create the earthquake generating stress field there. The space-time distribution of the seismic activity including the small earthquakes in a region reflects the variation of the stress field in the region. According to this idea, the characteristics of the stress fields in the various regions of East Asia have been analyzed in detail in this paper based on a lot of solutions of focal mechanisms and data of seismic activity during the last 500 years. The results indicate that the tectonic forces from the subduction of the Pacific Ocean plate underneath the Eurasian plate control the stress field in the region from North China to the northern part of the North-South Seismic Belt. The variation of the regional stress field shown by the variation of seismic activity in some regions of Japan has also been discussed based on characteristics of variation of the seimicity of small earthquakes. Synchronous variations of seismicity in the past 100 years or so in West China and in the boundary region between the Indo-Australian and Eurasian plates implicate that there is the transmission of tectonic forces into West China through the collision between the Indo-Australian and Eurasian plates. The active seismic activity in the boundary region between the Indo-Australian and the Eurasian plates and in West China is continuing consistently. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 287–294, 1991.  相似文献   

16.
The North Anatolian Fault Zone (NAFZ), which marks the boundary between Anatolia and the Eurasian plate, is one of the world's most seismically active structures. Although the eastern part of NAFZ has high seismic hazard, there is a lack of geodetic information about the present tectonics of this region. Even though many scientists would like to study this area, geographical and logistical problems make performing scientific research difficult. In order to investigate contemporary neotectonic deformation on the eastern NAFZ and in its neighborhood, a relatively dense Global Positioning System (GPS) monitoring network was established in 2003. Geodetic observations were performed in three GPS campaigns in an area of 350 km × 200 km with 12-month intervals. In addition, 14 new GPS stations were measured far from the deforming area. Since this region includes the intersection of the NAFZ and the East Anatolian Fault Zone (EAFZ), deformation is complex and estimating seismic hazard is difficult. One important segment is the Yedisu segment and it has not broken since the 1784 earthquake. After the 1992 Erzincan and 2003 Pulumur earthquakes, the Coulomb stress loading on the Yedisu segment of the NAFZ has increased significantly, emphasizing the need to monitor this region. We computed the horizontal velocity field with respect to Eurasia and strain rates field as well. GPS-derived velocities relative to Eurasia are in the range of 16–24 mm/year, which are consistent with the regional tectonics. The principal strain rates were derived from the velocity field. Results show that strain is accumulating between the NAFZ and EAFZ along small secondary fault branches such as the Ovacik Fault (OF).  相似文献   

17.
Current crustal movement in Chinese mainland   总被引:2,自引:0,他引:2  
The quantification of tectonic deformation in the Eastern and Central Asia is of great significance for the study on global plate motion and lithospheric dynamics. In the past four years, the velocity field of horizontal crustal movement for the Chinese mainland has been established for the first time thanks to the intensified GPS measure-ments and its improved accuracy. The velocity field derived from GPS measurements delineates the patterns of tectonic deformation in the Chinese mainland in the unprecedented detail, and thus reveals the new features of the ongoing tectonic process resulted from the collision of Indian plate to Eurasian plate. Meanwhile, the surface offset induced by two strong earthquakes occurred in Chinese mainland was sampled precisely using InSAR technique.  相似文献   

18.
The Pannonian Basin, which includes Hungary, tectonically belongs to the Eurasian Plate and is considered to be relatively quiet. Detailed geological studies revealed four main tectonic units in this area—the Tisza, Pelso, Austro-Alpine and Vepor units. All of these can be genetically related to tectonic processes in the Mediterranean and Alpine-Adria region.In 1989 the Satellite Geodetic Observatory (SGO) in cooperation with several institutions has initiated the establishment of a geodynamic global positioning system (GPS) Reference Network (HGRN) for three-dimensional deformation studies in Hungary. The HGRN consists of 13 primary sites which were selected according to geological and geophysical considerations and satisfied international standards for tectonic studies with the GPS technique. Particular care was devoted to the point marks concerning mechanical stability and the repeatability of antenna set-ups at the HGRN sites, therefore a point mark and a mechanical adapter to mount the GPS antenna had been developed at the SGO for this purpose. This point mark has been used at all HGRN sites. A GPS Datum Point was also established for Hungary in 1990 at the Satellite Geodetic Observatory; here quasi continuous observations are foreseen. The Penc station has been accepted as a fiducial station of the International GPS Geodynamic Service (IGS).The zero epoch measurements were completed in fall 1991 and monitoring is planned every second year at least for the next 10 years.Preliminary processing of the data has been carried out in the SGO, Penc and at the Lustbühel Observatory at Graz, using the TRIMVEC PLUS and BERNESE V3.2 programs respectively  相似文献   

19.
Seismicity constraints on stress regimes along Sinai subplate boundaries   总被引:1,自引:0,他引:1  
The relative movement between African, Arabian and Eurasian plates has significantly controlled the tectonic process of Sinai subplate region, although its kinematics and precise boundaries are still doubtful. The respective subplate bounded on both sides by the Aqaba-Dead Sea transform fault to the east and the Gulf of Suez, the only defined part, to the west. Seismicity parameters, moment magnitude relation and fault plane solutions were combined to determine the active tectonics along the aforementioned boundaries. Seven shallow seismogenic zones were defined by the heterogeneity in stress field orientations. Along the eastern boundary, the average fault plane solution obtained from the moment tensor summation (MTS) reveals a sinistral strike-slip faulting mechanism. The corresponding seismic strain rate tensor showed that the present tectonic stress producing earthquakes along the boundary is dominated by both NW-SE compression and NE-SW dilatation. Towards the north, the average focal mechanism showed a normal faulting mechanism of N185°E compression and an N94°E extension in the Carmel Fairi seismic zone. On the other hand, the active crustal deformation along the western boundary (Gulf of Suez region) showed a prevailing tensional stress regime of NE to ENE orientations; producing an average fault plane solution of normal faulting mechanism. The seismic strain rate tensor reveals a dominant stress regime of N58°E extension and N145°E compression in consistence with the general tectonic nature in northeastern Africa. Finally, the extensional to strike-slip stress regimes obtained in the present study emphasize that the deformation accommodated along the Sinai subplate boundaries are in consistence with the kinematics models along the plate boundaries representing the northern extremity part of the Red Sea region.  相似文献   

20.
The boundary between the Alboran Sea and Betic Cordillera is a good example of a fold related mountain front in the Internal Zone of an alpine mountain range. Since the late Miocene, NNW-SSE convergence between the Eurasian and African plates has produced shortening and related orthogonal extension. To improve the characterisation of the geometry of the deep structure in the region and to establish the recent tectonic evolution of the mountain front, well logs and newly acquired geophysical data (multichannel reflection seismic and gravimetric surveys) have been interpreted and integrated with available surface data. The most marked tectonic structure corresponds to large antiforms and synforms of ENE-WSW trend which are related to mountain ranges and basins, respectively. The fold belt continues toward the northern continental shelf of the Alboran Sea. The fold vergence is generally northwards and its amplitude decreases progressively towards SSE, until disappearring in a sharp boundary where the reflectors are undeformed. The deep geometry suggests that fold growth started during upper Tortonian times and continued its activity up to Pliocene or even Quaternary times. The NNW-SSE compression produces crustal thickening and a regional and progressive southwards emersion. The location of main present-day deformation fronts in the Internal Zones contrasts with classical models where the deformation progresses towards the frontal part of External Zones of cordilleras. In addition, this fold-related deformation mountain front has features different from fault related fronts, as it does not show a sharp boundary, and folds that determine rectilinear mountain boundaries decrease progressively in amplitude or in wavelength up to undeformed areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号