首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
西羌塘第三纪钠质基性火山岩的地球化学特征及成因探讨   总被引:10,自引:0,他引:10  
西羌塘地区火山岩在时、空及地球化学性质上存在规律性变化:即从第三纪早期的富钠熔岩(始新世) 向中期的中性钾质熔岩(晚中新世)到最晚期的酸性次火山岩(上新世以后), 同时有Sr, Pb同位素的递增和Nd同位素递减的趋势. 富钠质基性火山岩出现的重要性表示了高原隆起前岩石圈的深部变化和源区的差异, 反映了岩石圈深部地质过程的不同特征. 隆起前的富钠熔岩为陆下软流圈原始地幔部分熔融, 可能与板内地幔柱的活动有关.  相似文献   

2.
山东临朐山旺及其邻区广泛出露中新世基性火山岩, 并保存完整的火山机构, 与之同时代的玛珥湖位于这些基性火山岩的环绕之中. 玛珥湖内保存了完整的沉积序列, 湖相沉积物中赋存有丰富的、种类繁多的、保存异常完好的动植物化石. 研究表明, 本区玄武质火山岩属于裂隙式和受断裂控制的中心式火山活动的产物. 在对研究区火山岩及其玛珥湖沉积物内呈稀散状态的火山灰系统取样的基础上, 利用电子探针分析方法, 重点开展了山旺中新世玄武质火山喷出气体成分和含量的实验室定量测试研究. 测试结果表明: 山旺地区中新世玄武质火山喷出的S, Cl, F 和H2O含量分别为0.18~0.24, 0.03~0.05, 0.03~0.05和0.4~0.6 wt%(质量分数); 与世界上其他地区的火山活动相比, 山旺中新世火山喷出气体S的含量较高. 山旺中新世火山喷出气体(包括S, Cl和F)对当时周围地区的环境变化造成了严重影响, 火山喷发除喷出大量氟化物气体导致周围地区动物死于氟中毒外, 还喷出了以S和Cl及其化合物为主要成分的火山气体造成当时火山盆地内温度急剧下降、形成酸雨, 甚至破坏大气臭氧层. 山旺中新世火山活动的综合环境效应能够引起周围地区生物非正常死亡或集群死亡级别的环境变化, 可以导致山旺火山盆地内生物大批死亡. 山旺玛珥湖沉积物内保存异常完好的动植物化石多数赋存在富含火山灰的页岩中, 并且其上覆的页岩中火山灰含量也较高. 这些证据支持火山活动导致了本区生物非正常死亡或集群死亡, 并被其后火山喷出的火山灰快速覆盖和埋葬, 形成保存完好的山旺古生物化石.  相似文献   

3.
本研究使用中国数字地震台网(CDSN)(2009—2016)走时数据开展青藏高原地壳地震波速度三维层析成像研究,获得分辨率达到1°×1°×20 km的青藏高原地壳S波三维速度结构和泊松比分布.结果表明,分布在可可西里和羌塘北部的高钾质和钾质火山岩带,其上地壳到下地壳都存在S波波速扰动负异常和高泊松比.说明第三纪青藏高原隆升过程中,由于大陆碰撞使三叠纪的东昆仑缝合带重新破裂,造成大量壳幔混合熔融物质上涌和火山喷发,进而揭示了青藏高原北部新生代火山岩的存在与青藏高原的形成和隆升密切相关;青藏高原新生代裂谷位于中下地壳S波速度扰动负异常带的两侧,裂谷带之下的中下地壳泊松比减小到0.22以下.裂谷带之下中下地壳的S波速异常分布和泊松比值可以推断青藏高原新生代裂谷深达中地壳底部,这个推论与密度扰动三维成像的相关结论一致.青藏高原S波速度和泊松比在下地壳至壳幔边界随深度产生急剧变化,说明地壳内部发生了大规模的层间拆离和水平剪切;青藏高原东构造结之下泊松比高达0.29~0.33,S波速度扰动为负异常,推断东构造结下方地壳主要由坚硬的蛇纹石化橄榄岩组成;青藏高原中下地壳S波速负异常区范围大面积扩大,地壳底部几乎被S波速低值区全部覆盖.下地壳S波异常分布特点可能反映下地壳管道流的影响.  相似文献   

4.
藏北羌塘地区新生代火山作用与岩石圈构造演化   总被引:16,自引:1,他引:16  
迟效国  李才  金巍 《中国科学D辑》2005,35(5):399-410
自印度大陆与欧亚大陆碰撞以来, 藏北羌塘地块依次发育有碱性玄武岩系列、高钾钙碱性系列、钾玄岩系列和过碱性钾质-超钾质系列火山活动. 研究表明岩浆源区经历了由早期尖晶 石橄榄岩地幔向晚期石榴石橄榄岩富集地幔(EM2)的转变. 高钾钙碱性系列和钾玄岩系列安粗质岩石具有高Mg#值和极高的Cr, Ni, Co丰度, 指示岩浆可能来自于拉萨地块大陆岩石圈的俯冲作用. 藏北过碱性超钾质系列的La/Rb, Zr/Rb, K/La, K/Nb, Rb/Nb和Pb/La值小于岛弧火山岩, 大于和类似于洋岛玄武岩, 指示岩浆源区具有软流圈流体交代古俯冲地幔楔的属性. 而藏南超钾质火山岩和藏东超钾质煌斑岩的上述元素比值类似于和大于岛弧火山岩, 暗示源区地幔存在俯冲陆壳释放的流(熔)体的交代作用. 上述成因标志支持印度大陆岩石圈俯冲到高原中部, 欧亚岩石圈地幔向南俯冲到羌塘之下的结论. 文中进一步提出陆内俯冲与藏北、藏东区域大型走滑构造的脉动滑移效应导致高原腹地软流圈脉动上涌, 岩石圈脉动减薄产生钾质-超钾质岩浆脉动旋回的成因机制.  相似文献   

5.
青藏高原P波速度层析成像与岩石圈结构   总被引:1,自引:0,他引:1       下载免费PDF全文
利用中国西部地震台网的数据,通过体波层析成像反演了青藏高原及邻域的三维P波速度结构.根据地壳和上地幔的速度变化和构造特征,重点讨论了下地壳流动、地幔上涌、岩石圈减薄以及与藏北新生代火山岩和藏南裂谷系的关系等问题.分析表明,青藏高原中、下地壳平均速度偏低,低速区主要分布在拉萨和羌塘块体内部,随着深度的增加逐渐扩大到松潘—甘孜块体.上述低速区之间多被高速带分隔,暗示地壳中、下部的韧性变形被限制在特定的区域,不太适于产生贯穿整个青藏高原的大规模横向流动.此外,地幔上涌也并非普遍发生于整个青藏高原,而是集中在羌塘、松潘—甘孜以及喜马拉雅东构造结附近,导致上述区域的岩石圈地幔较薄,并且伴生火山活动和岩浆作用.此外,由于印度大陆岩石圈在向北俯冲,板片下沉过程中引起地幔上涌,热流物质有可能上升进入地壳,这一作用对藏北新生代火山岩和藏南裂谷系的形成以及中、下地壳的韧性变形产生了明显的影响.  相似文献   

6.
北羌塘新第三纪高钾钙碱系列火山岩主要岩石类型为安山岩、英安岩和流纹岩类, 属典型的壳源岩浆系列, 是加厚的陆壳基底脱水熔融的产物. 岩石具轻稀土富集和无负Eu异常的特殊地球化学特征, 表明其源区物质组成相当于榴辉岩相, 从而揭示了羌塘地区在新第三纪板块碰撞这一特定的构造背景下, 陆壳已经被加厚并形成了一个榴辉岩质的下地壳类型.  相似文献   

7.
夏萍  徐义刚 《中国科学D辑》2004,34(12):1118-1128
通过对滇西新生代两类富钾火山岩地球化学特征的对比, 发现该地区存在两个不同的地幔域, 对应于产地的大地构造属性. 位于扬子板块西缘的洱海高钾火山岩(42~24 Ma)富集LILE, 亏损HFSE, TiO2含量低(<1%)、具有高的初始87Sr/86Sr值(0.7064~0.7094)和负的εNd值(&#8722;3.84~&#8722;4.64), 与世界上典型的与俯冲作用有关的富钾火山岩相似, 其源区是受古特提斯域俯冲流体交代的亏损型尖晶石相方辉橄榄岩. 位于华南板块的马关富钾火山岩(<16 Ma)具有OIB型微量元素特征, TiO2含量高(>2%)、具有低的初始87Sr/86Sr值(0.7041~0.7060)和正的εNd值(5.46~7.03), 与板内高钾火山岩类似, 其源区是受源自软流圈小体积硅酸岩熔体交代的饱满型石榴子石相二辉橄榄岩. 认为不能用统一的构造模型来解释两类富钾火山岩的时空展布. 洱海地区的岩浆活动与加厚岩石圈的对流减薄有关, 而马关地区的火山活动受控于南海张裂过程.  相似文献   

8.
长白山火山的历史与演化   总被引:3,自引:0,他引:3  
长白山火山跨越中朝两国,在我国境内包括天池火山、望天鹅火山、图们江火山和龙岗火山,火山活动从上新世持续到近代,是我国最大的第四纪火山分布区。长白山火山的母岩浆是钾质粗面玄武岩,将长白山火山岩区称钾质粗面玄武岩省,岩浆结晶分异作用和混合作用主导了岩浆演化过程。天池火山之下地壳岩浆房和地幔岩浆房具双动式喷发特点,一方面来自地幔的钾质粗厨玄武岩浆直接喷出地表;另一方面钾质粗面玄武岩浆持续补给地壳岩浆房,发生岩浆分离结晶作用和混合作用,导致双峰式火山岩分布特征和触发千年大喷发。西太平洋板块俯冲-东北亚大陆弧后引张是长白山火山活动的动力学机制。  相似文献   

9.
藏北羌塘木苟日王新生代火山岩主要岩石类型为玄武岩和安山玄武岩,地球化学研究表明该套岩石表现出低SiO2(51~54%),高Mg、Cr和Ni等幔源岩浆的特征;岩石轻稀土中度富集,具弱负铕异常,发育Nb、Ta、Ti等高场强元素的负异常.其低的Sm/Yb值(Sm/Yb = 3.07 ~ 4.35)表明它们应来源于软流圈地幔尖晶石二辉橄榄岩的局部熔融.岩石87Sr/86Sr = 0.705339 ~ 0.705667, 208Pb/204Pb = 38.8192 ~ 38.8937, 207Pb/204Pb = 15.6093 ~ 15.6245,206Pb/204Pb = 18.6246 ~ 18.6383,而143Nd/144Nd = 0.512604 ~ 0.512639,εNd 值近于0(+0.02~ -0.66),与典型的地幔端元BSE(地球总成分点)十分类似.岩石Δ8/4Pb=66.82~74.53,△7/4Pb=9.88~11.42,ΔSr>50,具典型的DUPAL异常,这些地球化学特征表明木苟日王高钾钙碱性基性火山岩可能源于受俯冲流体交代的亲冈瓦纳软流圈地幔的部分熔融.结合该区新生代高钾钙碱性中酸性火山岩地球化学和地球物理资料,文中进一步提出,由于拉萨地块的北向俯冲作用,俯冲流体交代软流圈地幔诱发其部分熔融形成以木苟日王火山岩为代表的高钾钙碱性基性岩浆,这些基性岩浆对羌塘地块岩石圈的底侵作用对于羌塘地块新生代埃达克质高钾钙碱性中  相似文献   

10.
青藏高原西北缘地球动力学初探   总被引:8,自引:0,他引:8       下载免费PDF全文
郑剑东 《地震地质》1996,18(2):119-127
从新构造单元划分、活动断层、活动褶皱、地壳升降运动、地震活动及新生代火山活动等方面论述了该地区的新构造及现代构造运动特征,最后讨论了该区和青藏高原形成的地球动力学问题。认为青藏高原在其形成过程中既有印度板块的向北俯冲和碰撞作用,又有塔里木块体的向南楔入,既有高原物质向外扩展作用,又有周边拗陷向高原内部渗透作用,所以青藏高原的岩石圈是处于一个四面受压,上出下入的动力学状态  相似文献   

11.
Seismicity in the Jingpohu volcanic area was investigated based on the seismic data recorded by the mobile seismic network consisting of 14 stations equipped with 24-bit broad-band 3- component seismographs around Crater Forest, Results show that there appears certain seismicity in Jingpohu and its adjacent areas with a low activity level and most of the recorded earthquakes are the volcanic-tectonic ones, The results of location indicate a dominant focal depth of 10km - 30kin, most of the earthquakes are smaller than ML2,0, and are concentrated in the area of " Crater Forest" and on the Dunhua-Mishan fault which runs through the volcanic area. At station No. 2, which has better observation conditions, two types of events, likely associated to volcanism, were recorded; their waveform characteristics are somewhat similar to that of the long-period volcanic event and the volcanic tremor, but with different feature of frequencies.  相似文献   

12.
对五大连池火山区内主要露头泉点氦同位素进行了测定,根据检测结果对该区火山活动性进行了研究和探讨,并提出了对该火山区幔源气体运移和释放机制的认识。  相似文献   

13.
五大连池火山构造地震空间分布及其构造含义   总被引:3,自引:0,他引:3  
在对五大连池地震台1983年以来观测到的五大连池火山区的地震记录复核的基础上,测定了火山构造地震的空间分布状态。研究结果表明该地区地震活动均为壳内地震。受火山构造环境影响,地震活动存在着外围边缘强,震源深度分布深;内部弱,震源深度分布浅的差异。火山区内部地震深度分布优势在5km—8km,有3个地震分布密集区,震中分布呈明显的沿火山构造断层成带分布特性。在地震条带交汇处,震源深度起伏变化大,是火山构造活动强烈部位  相似文献   

14.
阿尔山火山区地壳上地幔电性结构初探   总被引:18,自引:7,他引:11       下载免费PDF全文
在阿尔山活火山区一条北北西向测线上进行了7个大地电磁测深点的观测。2-D解释结果表明,研究区内新、老两条火山带可能存在通往深部的岩浆通道。其中,新发现的活火山带地下在10~12km还保持着较高的热状态,很可能富含流体,在30~50km处可能是地幔向上的供热通道;而老火山带30km以上可能存在一个正在冷却的岩浆通道,两条火山条带的深部可能是同源的。  相似文献   

15.
Starting from the 1980's of last century, China has launched the national plan of constructing nuclear power plants along the coastline region in eastern China. Currently, in some of these candidate sites, nuclear facilities have been installed and are in operation, but some other nuclear power plants are still under construction or in site evaluation. In 2012 the Atomic Energy Commission issued the specific guide for volcanic hazards in site evaluation for nuclear installations(IAEA Safety Standards Series No. SSG-21), which was prepared under the IAEA's program for safety standards. It supplements and provides recommendations for meeting the requirements for nuclear installations established in the safety requirements publication on site evaluation for nuclear installations in relation to volcanic hazards. To satisfy the safety standards for volcanic hazard, we follow the IAEA SSG-21 guidelines and develop a simple and practical diffusion program in order to evaluate the potential volcanic hazard caused by tephra fallout from the explosive eruptions. In this practice, we carried out a case study of the active volcanoes in north Hainan Province so as to conduct the probabilistic analysis of the potential volcanic hazard in the surrounding region. The Quaternary volcanism in north Hainan Island, so-called Qiongbei volcanic field is characterized by multi periodic activity, in which the most recent eruption is dated at about 4 000a BP. According to IAEA SSG-21, a capable volcano is one for which both 1)a future eruption or related volcanic event is credible; and 2)such an event has the potential to produce phenomena that may affect a site. Therefore, the Qiongbei volcanic field is capable of producing hazardous phenomena that may reach the potential nuclear power plants around. The input parameters for the simulation of tephra fallout from the future eruption of the Qiongbei volcanic field, such as the size, density and shape of the tephra, the bulk volume and column height, the diffusion parameter P(z), wind direction and intensity, were obtained by field investigation and laboratory analysis. We carried out more than 10000 tephra fallout simulations using a statistical dataset of wind profiles which are obtained from China Meteorological Data Sharing Service System(CMDSSS). Tephra fallout hazard probability maps were constructed for tephra thickness threshold of 1cm. Our results show that the tephra produced by the future large-scale explosive eruption from the Qiongbei volcanic field can affect the area in a range about 250km away from the eruption center. In summary, the current key technical parameters related to volcanic activity and potential hazards in IAEA/SSG-21 guidelines, such as 10Ma volcanic life cycle and 1×10-7 volcanic disaster screening probability threshold, etc. are based on the volcanic activity characteristics in the volcanic island arc system. In consideration of the relatively low level of volcanic activity compared with volcanic island arc system due to the different tectonic background of volcanism in mainland China, the time scale of volcanic disaster assessment in IAEA SSG-21 guideline is relatively high for volcanoes in mainland China. We suggest that the study of "conceptual model" of volcanic activity should be strengthened in future work to prove that there is no credible potential for future eruptions, so that these volcanoes should be screened out at early stage instead of further evaluation by probabilistic model.  相似文献   

16.
The northeastern Hainan Province is one of the areas subjected to the strongest, most frequent and longest-lasting volcanic activities in China since the Cenozoic era. Under the influence of magma and fault activities, northeastern Hainan Island has experienced many moderate and strong earthquakes in history. The Qiongshan M7.5 earthquake occurred in this region in 1605. The deformation measurement and InSAR data found a subsidence area in the south of the Qiongshan M7.5 earthquake. Small earthquakes frequently occur in this area. It has been inferred by some studies on this subsidence area, namely the Puqianwan-Fengjiawan seismic belt, that the subsidence and frequent seismic activity are related to the development of deep magma systems. Magnetotelluric methods are very sensitive to subsurface fluid, different temperature conditions, and resistivity property of the medium in the molten state. With the development of magnetotelluric three-dimensional inversion technique, using dense array magnetotelluric data in three-dimensional inversion can image the medium resistivity occurrence state and position in the volcanic area. To study the deep structure of the magma system and its relationship with seismic activity, we conducted MT observations on two profiles that cross Leihuling and Ma'anling volcanoes. Phase tensor decomposition was used to analyze the electrical structure. This paper investigates the two MT profiles using three-dimensional electromagnetic imaging technology and obtains the electrical structure of the two profiles. The result reveals the media properties and high conductivity bodies' occurrence range beneath the volcanic area in the northeastern Hainan. There are obvious differences in the electrical structure of the northeastern Hainan. The resistivity values are high in the east and low in the west. In addition, there are two high conductivity bodies in the northeast of Hainan. The high conductivity body C1 inclines to the west and locates beneath the Chengmai County area in the northwestern Hainan Island(west of the Leihuling-Ma'anling volcanoes). Its resistivity value is less than several Ωm. This low resistive body is 40km long in WE direction and 30km wide in SN direction. Its burial depth is about 2km near the HNL1 profile and 6km near the NHNL1 profile. Its bottom reaches the depth of about 25~30km, which may be close to or through the Moho surface depth of 25~26km in this area. It is speculated that the magma eruption of Leihuling-Ma'anling volcanoes did not migrate vertically from its deep part to the surface. The high conductivity body C2 locates beneath Longquan. The buried depth of C2 tends to be shallower from north to south, but there is no exposed surface in the study area, nor is it connected with the shallow low-resistivity layer. It is speculated that the C2 may be a magmatic sac trapped in the crust, but may have nothing to do with the eruption of Ma'anling-Leihuling volcanoes. The recent volcanic magma in this area comes from the lower crust and upper mantle of the ocean area to the west of Hainan Island. As magma enters the upper and middle crust, it continues to move shallowly and eastward. In this process, it should be blocked by the high resistance structure on the east side of the Changliu-Xiangou Fault and then erupt around this fault, thus forming numerous craters in this area. After the repeated eruption, deep magma channels gradually closed and volcanic activity weakened. The magma in the mid-upper crust cooled consolidated gradually, but the speed was uneven in different areas, resulting in the channels having closed down gradually in some places, and some are in the process of closing. Our results show an uneven rise and fall depth of the low resistivity body in the middle and lower crust. There is no high conductivity body in the deep part of the Puqianwan-Fengjiawan seismic belt and the subsidence area in the northeastern Hainan, which rules out the possibility that the small earthquakes are related to deep magma systems.  相似文献   

17.
The Aershan volcanic group has been active since the Pleistocene to the modern and has potential to erupt, so it is of great significance to strengthen the study on the Aershan volcano group and evaluate its activity. The magmatism is characterized by low resistivity in electrical properties. The electrical structure obtained by magnetotelluric sounding can be used to study the magmatic occurrence and volcanic activity. It is an effective method to detect the deep structure of volcanic area. Based on the magnetotelluric sounding data of the Aershan volcanic group, the two-dimensional nonlinear conjugate gradient inversion is obtained after the normalization of the data and the two-dimensional electrical structure of the Aershan volcanic group is obtained. It is found that there is a large-scale "arch-bridge" low-resistivity anomaly (resistivity less than 320Ω·m) and there are obvious high-conductivity anomalies (resistivity less than 40Ω·m) respectively on the west of the town of Ershi and the east of Chaihe town, the former is relatively small in sizes, buried at the depth of 40~60km, and the size of the latter is larger, buried at the depth of 60~90km, or even deeper. Combined with geological and geochemical data, it is inferred that the "arch bridge" anomaly is the channel of the basaltic magma transport from the epithermal basins on its both sides. The two high-conductivity anomalies it contains are probably the uncondensed or gathering magma chamber, so the Aershan magma system consists of "arch bridge" channel and asthenosphere-derived basaltic magma, the volcanic group has a unified magmatic system. Further analysis shows that the melting percentage of the "arch bridge" channel material is not less than 0.5%, and the lithosphere structure tends to be stable. The melting degree of the two magma chambers it contains is 2.5%~11.5%, and the grain boundary may all be wetted by the melt, rock flow intensity is relatively low, lithosphere structural stability is poor. In addition, the regional seismic distribution and the formation of hot springs also have a certain correlation to the Aershan volcanic group magma system. There are indications that the Aershan volcano group is in dormancy, rather than an extinct volcano, there is the possibility of eruption, so it should be closely monitored.  相似文献   

18.
长白山天池火山区及邻近地区壳幔结构探测研究   总被引:10,自引:2,他引:10       下载免费PDF全文
对长白-敦化深地震测深剖面资料利用二维射线追踪程序包进行走时拟合及地震图计算,得到了长白山天池火山区及邻近地区地壳上地幔速度结构和深部构造. 结果表明,以C2界面为标志,研究区地壳可分为上部地壳和下部地壳. 上部地壳厚1-23km,P波速度为6.00-6.25km/s;下部地壳厚12-17km,它是由一个较均匀的速度层和一个厚6-km的壳幔过渡层构成. 地壳厚度由敦化一带31-33km向东南逐渐增厚,至天池火山区最深达3km. 在天池火山区地壳存在低速体,其速度较周围介质低约为0.15km/s. 利用地震剖面探测、地震CT和大地电磁测深等结果显示,在天池火山区地壳内存在低速、低密度及低阻异常体,该异常体可能表明壳内岩浆囊的存在.  相似文献   

19.
The South Aegean active volcanic arc lies along the 150-km seismic isodepth of a Benioffzone and consists in andesitic, dacitic and rhyolitic volcanoes of an orogenic calc-alkaline type. In the eastern part of the arc there are two main volcanic sites in the Nisyros and Kos islands. High shallow and intermediate depth seismic activity occurs in this volcanic area. Seismological data concerning the 1911–1980 period have been used to investigate seismic properties in that area. Two, distinct regions with different seismotectonic features have been defined. The internal region (Nisyros active volcano and its proximity) is characterized by a shallow, thin seismogenetic layer with abnormally highb-value, locally concentrated stresses, low seismicity and highly heterogeneous structure. These features are probably due to a magmatic body intruded in shallow depths within the crust. The possibility of magma formation in the upper surface of the descending slab or within the upper mantle wedge overlying this slab in the Nisyros-Kos area is herein discussed. On the contrary, the remaining (external) region, including the non-active volcanic island of Kos, is characterized by normal for tectonic shocksb-value, thick seismogenetic layer and high seismicity. It seems that in this region there is not a magmatic intrusion at least in shallow depths within the crust.  相似文献   

20.
The Gobi-Tien Shan volcanic area (in Southern Mongolia) is part of the South Khangai volcanic region (SKVR). The formation of its lava fields was related to three stages of volcanic activity: the Late Cretaceous (88–71 Myr), Paleocene-Early Eocene (62–47 Myr), and Early Oligocene (37–30 Myr). Volcanic occurrences of different age are represented by trachybasalt, trachyandesitobasalt, basanite, and melanephelinite with similar geochemical characteristics, which are also close to the geochemical characteristics of OIB basalt. The isotope composition (Sr, Nd) of the rocks indicates that the magma sources were formed as a result of mixing of a moderately depleted PREMA mantle and an EM-I mantle enriched in neodymium.The patterns of migration of volcanic centers of different ages over the area of interest have been studied. The earliest (Late Cretaceous) volcanic occurrences were concentrated mainly in the south of the area, the Paleocene-Early Eocene eruptions took place at the center of the area, and the Early Oligocene volcanism occurred in the northern area. The observed migration of the volcanic activity centers is related to lithospheric plate motions relative to a localized source of hot mantle (the South Khangai mantle hot spot), which controlled volcanic activity within SKVR. In the lithospheric structure of this region, local asthenospheric high, reaching a depth of ~50 km, correspond to this hot spot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号