首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Metal ions bound to particulate matter represent the greatest portion (i.e. > 95%) of the total metal content found in leachate from reactor experiments where solid waste material was anaerobically digested. This seems true even though strong complexing agents are in solution which increase the solubility of Pb and Cu by a factor up to 104… 105 over that theoretically predicted according to the solubility of the corresponding sulfide mineral. A titrimetric characterization of the metal ion binding sites of the particulate matter suggests that the metal binding properties of the particulate matter are mainly due to organic, aminoacid-type compounds (amines. thio groups, carboxylic groups) probably of bacterial origin. The change of the concentration of the binding sites with time, together with the change of the composition of the particulate matter indicates that bacterial flocs are suspended in the leachate during the switch from acidogenic to methanogenic conditions — either due to the detachment of bacterial films from the solid material by the intensive gas production or due to the formation of syntrophic methanogenic bacterial associations or a combination of both. A combination of the two factors, strong affinity of bacterial mass to metal ions on the one hand, and suspending of the bacterial mass in the leachate on the other hand, will therefore imply a great mobilizing potential for trace metals. Consequently, the highest concentrations of particulate bound Cd were found in reactor experiments where sewage sludge contaminated with Cd was added to the waste material. An increase of the concentration of dissolved cadmium over the solubility of cadmium sulfide, however, could not be observed.  相似文献   

2.
Airborne surface-active organic substances can form adsorbed films at air-water and air-solid interfaces in the atmosphere. On the basis of considerable laboratory research, it has been suggested that these films can modify the microphysical processes of clouds and fog. The possible alterations of physical processes include retardation of the rate of growth and evaporation of water drops, passivation of cloud condensation nuclei, modification of drop coalescence efficiency, and the promotion of drop instability. The chemical structure of the film-forming compounds and the physical properties of the adsorbed films determine the degree to which the physical processes are modified. Upon consideration of the actual organic composition of the atmosphere, it was concluded that natural surface films will not greatly influence drop growth and evaporation. In addition, there is no definitive evidence from field experiments that other processes are influenced by natural organic films. The potential for useful weather modification through the intentional introduction of film-forming organic substances into the atmosphere was critically evaluated. Although numerous approaches have been suggested by laboratory studies, only the stabilization of airborne drops against evaporation has been unequivocally demonstrated in field experiments.  相似文献   

3.
Traits have been revealed in the microbial processes of methane formation and organic matter destruction in bottom sediments of technogenic water bodies, in which at the abundance of Corg compounds, including toxic, dissolved oxygen deficiency, and low redox potential, organic matter decay in sediments is mostly anaerobic with the predominance of methanogenesis and sulfate reduction. Data on major microbial processes are used to calculate the total sludge destruction; it is maximal in the sediments of low-toxicity technogenic water bodies; organic matter destruction in them is mostly due to methanogenesis; it is minimal in high-toxicity water bodies, the share of sulfate reduction in them increases, and that of methanogenesis decreases.  相似文献   

4.
The transport and sedimentation of copper in the Glomma estuary, SE Norway during a period of 90% reduction in the industrial input of Cu, was studied from sediment trap material and compared to samples of the bottom sediments. Traps were deployed at four stations for several monthly periods during 1990, 1994 and 1995. Trapped material was analysed for suspended particulate matter (SPM), total organic carbon (TOC) and nitrogen (TN), Cu, and Al. Only about 10% of the Cu from the river is trapped in the estuary. Still there was a moderate but significant reduction in Cu concentration in the trap SPM from 1990 to 1994, reflecting the industrial reductions, but only if excluding summer samples apparently influenced by antifouling Cu from boat paint. Settling matter therefore seems appropriate and sensitive for monitoring changes in the Cu load. The results supported the view that TOC is the main carrier of Cu to the sediments.  相似文献   

5.
Because of the significant reduction of flow velocity relative to the main current there is an accumulation of sediment material in the centre of the groyne fields over time (years to decades) up to a maximum of 1.5 m. Based on the element‐ and compound‐specific depth functions of this fine‐grained material with high organic matter content the sedimentation history of the Elbe River sediments concerning the environmentally relevant nutrients and pollutants can be reconstructed. It could be shown that the fresh sediments are less polluted than the deeper older ones. During the extreme flood of the river Elbe in August 2002 the critical erosion shear stress in the groyne fields was high enough to remobilise a considerable portion of the sediment depot. The hazard to the environment is high due to the fact that a significant part of the remobilised polluted sediments was distributed over the recent floodplain which is normally used as pasture. Thus these groyne field sediments represent a temporary danger for the water quality of the river Elbe. But the hazard of the solids sedimented in the recent floodplain of the river can be viewed as long‐lasting.  相似文献   

6.
The large organic matter flow in tropical coastal areas is recognized as an important process in the global carbon(C)cycle.However,the nature of organic matter flow in semi-enclosed tropical estuaries remains unclear due to the various environmental processes(tidal change,river flow,waves from the sea,and internal circulation)and organic matter sources therein.Thus,sediment organic matter(SOM)sources,and their distribution pattern,are key to understanding ecosystem material flow.Our research in the Batan Bay Estuary,Philippines,a semi-enclosed estuary under large mangrove deforestation,was conducted to determine ecosystem properties through analysis of C and nitrogen stable isotope ratios and environmental factors.First,we determined that mangrove litter,microphytobenthos,and phytoplankton are the main SOM sources in the Batan Bay Estuary.Second,the estuary was classified into three ecological zones(the Bay zone,Back-barrier zone,and River zone).In addition,we estimated SOM source ratios using the Stable Isotope Analysis in R package and determined different organic matter sources in different zone.The high ratios of mangrove litter as SOM indicate that a large amount of terrestrial plant organic matter remains despite the heavy mangrove deforestation that has occurred since the 1980s,and that the Back-barrier zone consists of a different type of ecosystem that promotes accumulation of C from mangrove litter and microphytobenthos.  相似文献   

7.
By the example of an area near the active Karymskii Volcano (on the eastern coast of Kamchatka) it is shown that under conditions of regular supply of pyroclastic material on the diurnal surface, organic soil matter transforms very slowly and mobile trace elements of newly fallen volcanic ashes are the major plant nutrition source. Geochemical specialization of the studied area is characterized by lower concentrations of most trace elements relative to their clarkes for soils and by an excess of trace element contents over the clarkes for living matter in plants. Newly fallen ashes are enriched in mobile trace elements, which in dissolved form pass into adjacent media due to hypergene geochemical processes.  相似文献   

8.
The amino acids β-alanine and γ-aminobutyric acid are known to compose only a very minor proportion of the total amino acid content in living matter. In deep-sea sediments, however, their abundance in high proportions is ubiquitous. The organic material within foraminiferal calcite tests that are recovered from marine sediments has been found to contain no β-alanine and γ-aminobutyric acid. This observation provides a chemical check that can be used to ensure that the tests have been thoroughly cleaned. Such checks are important because the amino acid composition of organic material contained within the test is currently being used to establish schemes for chronology and taxonomy of foraminifera.  相似文献   

9.
Mineralogical and textural characteristics and organic carbon composition of the carbonate concretions from the upper Doushantuo Formation (ca. 551 Ma) in the eastern Yangtze Gorge area reveal their early diagenetic (shallow) growth in organic-rich shale. High organic carbon content (up to 10%) and abundance of framboidal pyrites in the hosting shale suggest an anoxic or euxinic depositional environment. Well-preserved cardhouse clay fabrics in the concretions suggest their formation at 0-3 m burial depth, likely associated with microbial decomposition of organic matter and anaerobic oxidation of methane. Gases through decomposition of organic matter and/or from methanogenesis created bubbles and cavities, and anaerobic methane oxidation at the sulfate reduction zone resulted in carbonate precipitation, filling in bubbles and cavities to form spherical structures of the concretions. Rock pyrolysis analyses show that the carbonate concretions have lower total organic carbon (TOC) content but higher effective carbon than those in the host rocks. This may be caused by enclosed organic matter in pores of the concretions so that organic matter was protected from further modification during deep burial and maintained high hydrocarbon generating potential even in over-matured source rock. As a microbialite sensu latu, concretions have special growth conditions and may provide important information on the microbial activities in depositional and early burial environments.  相似文献   

10.
In recent years, some arguments with regard to the organic mineralization of MVT lead-zinc ore deposit are focused on the thermochemical sulphate reduction in the presence of organic matter. Based on the research into the organic geochemistry and C, O, S isotopes of mineralized host rocks, mineral gas fluid inclusion and solid bitumen from Huayuan (W. Hunan, China) lead-zinc ore deposit formed in the algal limestones of Qingxudong formation, Lower Cambrian, the authors consider that a lot of organic matter occurred and participated in mineralization. The organic matter from different sources participated in the mineralization with two main forms: thermochemical sulphate reduction and thermal degradation which supplied abundant H2S for the precipitation.  相似文献   

11.
In this paper, the obtained results from the experimental studies describe the basic characteristics of wave propagation and ability of possible measures to reduce the impact of soil vibrations on structural response for both active and passive isolation cases. A series of field tests on the foundation vibrations generated by electrodynamic shaker are performed to examine the screening efficiency of open and in-filled trench barriers which are constructed for full-scale measurement. From field measurements of amplitude with and without the barrier, the amplitude reduction ratio is estimated at different points of interest. Wave propagating characteristics and frequency-dependent screening effects of the wave barriers are investigated according to various isolation material stiffnesses. The remarkable outcomes from these experimental studies can be briefly generalized as follows: backfilled trench with softer material than soil is more effective for the passive isolation than the active one. The reduction effects of wave barriers depend on the frequency of vibration source for both passive and active isolation cases. In-situ measurements confirm that vibration screening systems using open or in-filled trench barriers can be applied as a reduction measure for soil vibrations due to a moving load which is considered as stationary wave source in this problem.  相似文献   

12.
The chemical characteristics of bulk (sterile-filtered) and high molecular-weight dissolved organic matter (HMW DOM) were analyzed for freshwater (St. Louis River, Minnesota to Lake Superior) and saline (Elizabeth River, Virginia to Chesapeake Bay) river-to-receiving basin transects. Dissolved organic carbon concentrations and UV–Visible spectroscopy of bulk DOM demonstrated a reduction in organic carbon, colored DOM and aromatic compounds downstream in both transects. The proportion of DOM recoverable via ultrafiltration as HMW material also decreased downstream in both transects, although there was an offset in recoveries between the transects that may be explained by the effects of ionic strength and/or differences in ultrafiltration technique. The analysis of HMW DOM by Fourier transform infrared spectroscopy illustrated similar trends between transects, with a general shift from aromatic/carboxylic compounds nearshore to aliphatic/carbohydrate materials offshore. The parallel changes observed along saline and freshwater transects imply that similar processes play significant roles in the down-gradient alteration of DOM and that ionic strength or pH changes cause second-order effects.  相似文献   

13.
有机质对纳米级磁铁矿热稳定性的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
单畴磁铁矿颗粒是地质样品中最重要的磁性载体,其稳定性一直备受关注.为了认识有机质对纳米级磁铁矿颗粒热稳定性的影响,本文对比研究了趋磁细菌AMB-1合成的单畴磁铁矿分别在全细胞中和经去胞提纯后的纯化磁小体中的热磁性质,以及热处理后样品的磁滞参数和低温磁性的变化.发现仅有磁小体膜包裹的纯化磁小体中单畴磁铁矿热稳定性极强,而全细胞中的单畴磁铁矿加热过程中发生了显著的热变化:磁铁矿在约270℃即开始转化,400℃以前几乎完全被有机质还原为顺磁性物质;同时在400℃以前,有机质的还原作用与有机质热分解引起磁小体链的坍塌,共同导致了样品矫顽力(Bc)、剩磁矫顽力(Bcr)和剩磁比(Mrs/Ms)的减小,以及矫顽力比(Bcr/Bc)的增加. 我们的实验结果清楚地表明,当地质样品中含有较多有机质组分并受热事件影响时,其中的单畴磁铁矿难以得到保存.  相似文献   

14.
To investigate the role of coastal canyons in the transfer of organic matter from the shelf to the slope and basin, we deployed sediment trap/current meter pairs at the head of five canyons in the Gulf of Lions (GoL) between November 2003 and May 2004. Analysis of organic carbon, biogenic silica, Corg isotopic composition, Corg/total nitrogen, chloropigments, and amino acids clearly shows the seasonal influence and effect of extreme meteorological events on the composition of collected particles. The sampling period was divided into three “scenarios”. The first corresponded to a large easterly storm and flood of the Rhone river during stratified water column conditions; the composition of material collected during this event was influenced by increased transfer of riverine and coastal particulate matter, with a lower Corg content. During the second “fall-winter” scenario, northern and northwestern winds blowing over the shelf caused cooling and homogenization of the shelf water column; particles collected at this time reflected the homogeneous source of particulate matter transported through canyons; particles sitting in the vicinity of canyon heads are most likely swept downslope by the general south-westward circulation. Organic tracers indicate a degraded origin for organic matter transported during this period. A third “spring” scenario corresponded to northern winds alternating with eastward windstorms that triggered and/or enhanced the cascading of dense waters accumulated on the bottom of the shelf due to previous cooling. These conditions occurred in conjunction with increased phytoplankton productivity in shelf surface waters. Organic matter advected mainly by dense shelf water cascading was fresher due to the transport of newly produced particles and a variable terrestrial fraction; this fraction depended on the proportion of resuspended material accumulated during previous high discharge periods that was involved in each transport pulse. The tight link shown between meteorological conditions and organic matter transport is important for continental margin geochemical studies as future changes in climatic conditions may lead to dramatic changes in carbon sequestration capability and in the ecosystems of deep margin environments.  相似文献   

15.
A nomogram is developed to show that pH, redox potentials (EhNHE) and measures of dissolved sulfides (H2S + HS + S2−)(total free S2−) can be used to classify organic enrichment impacts in marine sediments. The biogeochemical cycle of sulfur in marine sediments is described to show that changes in macrobenthic infauna community structure associated with high levels of organic matter supply result from stress due to oxygen deficiency (hypoxia and anoxia) and toxic effects of S2−. The changes reflect enhancement of microbial sulfate reduction under conditions of high organic matter sedimentation and the progressive formation of hypoxic–anoxic conditions measured by decreased EhNHE and increased concentrations of S2−. The nomogram provides a basis for classification of the oxic status of marine sediments based on changes in inter-related biological and biogeochemical variables along an organic enrichment gradient.  相似文献   

16.
Investigation on the Pollution Potential of Waterworks Sludges Several contaminated sludges from water treatment plants with known or estimated concentrations of trace elements were investigated for their leaching characteristics and long-term stability using standard and advanced test procedures. Potentially hazardous elements in the sludge are zinc, nickel, and arsenic with concentrations of up to 1.2 g/kg dry matter (mass). Preliminary sorption tests with synthetic sludge components like iron hydroxide, manganese oxide, silicate clay minerals, and chitine powder as a model organic component showed that Cu is associated with the organic phase wheras arsenic is predominantly bound to the iron oxide minerals. The recently suggested pHstat test procedure was used to assess the leaching characteristics of metals at typical pH values. This procedure was compared with the DEV-S4 test, the current standard test in Germany, consisting of a simple lixiviation of the solids with water, without pH control. The pHstat test yields results which are much better to interprete than those obtained by the DEV-S4 procedure. The iron and manganese sludges are well buffered against changes in pH and redox potential so that low pH values and/or reducing conditions can hardly occur. Thus, in deposited material a sudden leaching of heavy metals is unlikely and due to the presence of iron and manganese oxides the pentavalent arsenic is protected against conversion into the highly mobile trivalent form at neutral to low pH. Co-deposition with reducing organic matter and alkaline stabilisation material or waste (like fly ash) could influence the binding properties and should be strictly avoided.  相似文献   

17.
Coastal embayments located downwind of large rivers under an upwelling-favorable wind are prone to develop low-oxygen or hypoxic conditions in their bottom water. One such embayment is Mirs Bay, off the Guangdong coast, which is affected by upwelling and the Pearl River Estuary (PRE) plume during summer. The relative importance of physical and biochemical processes on the interannual variability of hypoxia in Mirs Bay and its adjacent waters was investigated using statistical analyses of monthly hydrographic and water quality monitoring data from 2001 to 2015. The results reveal that the southwesterly wind duration and the PRE river discharge together explain 49% of the interannual variability in the size of the hypoxic area, whereas inclusion of the nutrient concentrations inside Mirs Bay and phytoplankton on the shelf explains 75% of the interannual variability in the size of the hypoxic area. This finding suggests that the interannual variability of hypoxia in Mirs Bay is regulated by coupled physical and biochemical processes. Increase of the hypoxic area under a longer-lasting southwesterly wind is caused by increased stratification, extended bottom water residence time, and onshore transport of a low-oxygen water mass induced by stable upwelling. In contrast, a reduction in the size of the hypoxic area may be attributed to a decrease in the surface water residence time of the particulate organic matter outside Mirs Bay due to increased discharge from the PRE. The results also show that the effects of allochthonous particulate organic matter outside Mirs Bay on bottom hypoxia cannot be neglected.  相似文献   

18.
In this study, samples were taken from three contrasting freshwater sources and amended with salt in order to determine the influence of salinity and dissolved organic matter (DOM) composition on DOM recovery via ultrafiltration and solid phase extraction (SPE) with C18 disks. Salt addition caused variable recovery of DOM when using C18 SPE, and ultraviolet–visible spectroscopic characterization of the extracted material showed spectral responses that varied among sample sources. In contrast, increasing sample salinity from 0 to 30 ppt consistently caused a 15–25% reduction in the amount of high molecular weight DOM isolated by ultrafiltration for both dissolved organic carbon (DOC) and chromophoric DOM (CDOM), regardless of DOM composition. We hypothesize that a change in conformation (such as coiling or disaggregation) of DOM molecules occurs in the presence of salt, allowing them to pass through the ultrafiltration membrane and thereby decreasing the DOM retained by ultrafiltration. These results are important because they demonstrate that changes in salinity can influence DOM recovery in estuaries. Interpretation of DOM characteristics along estuarine gradients needs to account for potential artifacts introduced by sample isolation techniques.  相似文献   

19.
Dissolved organic carbon (DOC) is one of the most abundant fractions of organic matter in aquatic systems and plays an important role in the dynamics of aquatic environments, controlling both the penetration and the underwater light radiation climate. DOC can be photodegraded by light, thus facilitating biodegradation, especially in regions where the incidence of solar radiation is high, such as higher altitudes and lower latitudes. This study quantified the photodegradation of dissolved organic material in a natural tropical lake surrounded by native forests (Brazilian Atlantic Forest) through two experiments: i) the first experiment exposed concentrated autochthonous, allochthonous, and lake water to in situ solar radiation; ii) this experiment also exposed the same organic material to artificial UV radiation in an incubator under controlled conditions. The quality and quantity of dissolved organic carbon were measured using indices based on carbon absorbance and fluorescence spectrum. In the in situ experiment, it was observed that the DOC degradation profile of the concentrated allochthonous and autochthonous organic material were distinct from each other in the absorbance indices, and the lake water mostly resembled the latter one. On the other hand, we did not see evidence of any significant difference among treatments in the laboratory experiment. An increase in the SR index and a concomitant decrease in the fluorescence of humic compounds and SUVA254 over time were observed. In both experiments, the amount of degraded organic material over time was low and some possible explanations are discussed.  相似文献   

20.
The Seine’s estuary (France) waters are the receptacle of effluents originating from wastewater treatment plants (WWTP). In this estuary, mudflats are deposition zones for sediments and their associated contaminants, and play an essential role in the mercury (Hg) biogeochemical cycle mainly due to indigenous microorganisms. Microcosms were used to assess the impact of WWTP-effluents on mercury methylation by monitoring Hg species (total dissolved Hg in porewater, methylmercury and total mercury) and on microbial communities in sediments. After effluent amendment, methylmercury (MeHg) concentrations increased in relation with the total Hg and organic matter content of the WWTP-effluents. A correlation was observed between MeHg and acid-volatile-sulfides concentrations. Quantification of sulfate-reducing microorganisms involved in Hg methylation showed no increase of their abundance but their activity was probably enhanced by the organic matter supplied with the effluents. WWTP-effluent spiking modified the bacterial community fingerprint, mainly influenced by Hg contamination and the organic matter amendment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号