首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
蒙古中南部地区基于天然地震的 勒夫波相速度层析成像   总被引:5,自引:2,他引:3  
借助中蒙国际科技合作项目获取的宽频带地震台阵观测数据, 采用小波变换频时分析技术提取了蒙古中南部地区901条双台间基阶勒夫波相速度频散曲线. 通过对该曲线进行二维反演, 重构了蒙古中南部地区12—80 s周期内横向分辨率约为50 km的勒夫波相速度分布图. 结果显示, 蒙古中南部地区相速度分布存在一定的横向不均匀性. 短周期内(12—20 s), 相速度分布受地表地形的控制, 杭爱—肯特山盆表现为高速异常, 乌兰巴托盆地、 中戈壁带及南戈壁带均表现为低速异常; 中等周期内(20—40 s), 研究区相速度分布形态与短周期类似, 但横向不均匀性强度减弱; 中长周期内(40—70 s), 南戈壁带和杭爱—肯特山盆为低速异常, 中戈壁带为高速异常, 整个区域表现出南北低速异常夹中部高速异常的形态, 与瑞雷波中长周期速度分布形态显著不同. 结合中戈壁带分布大量新生代火山岩, 推测研究区域内存在较强的径向各向异性.   相似文献   

2.
青藏高原东北缘与蒙古高原分别受到印度-欧亚板块碰撞的直接影响和远场效应作用,对这两个地区开展深入研究对我们了解碰撞导致的变形和构造运动、以及碰撞作用的边界范围有着重要意义。基于现有的台阵观测数据,我们分别开展了蒙古中南部地区与青藏高原东北缘的地震面波层析成像。1蒙古中南部地区位于中亚造山带腹地的蒙古地区,是公认的研究大陆岩石圈变形的关键地区之一。由于之前地震资料的不足,我们对其认识十分匮乏。本研究收集了架设在蒙古中南部的69个地震台站观测数据。运用小波变换频时分析技术提取了7 181条瑞利波和901条勒夫波台站间相速度频散。采用连续分区(continuous regionalization)方法构建了蒙古中南部地区12~80s周期内的相速度及其方位各向异性分布图。与已有结果相比,本文结果具有更高的分辨率。基于获得的纯路径频散,遵循Montagner提出的各向异性表述,采用非线性最小二乘算法,我们逐点反演了研究区内每个网格点下的相关参数,获得了蒙古高原中南部地区三维SV波的速度结构分布。结果表明:(1)中戈壁带在整个地壳和上地幔顶部都表现为低速异常,且深度大致延伸到70km左右,其各向异性强度较弱且快波方向较为杂乱。地质资料也显示,在中戈壁带有大量分布的新生代火山岩,可以推断出露的火山岩跟中戈壁带地壳和上地幔顶部的低速结构有直接关系,且中戈壁带下方可能存在垂向的地幔流。(2)在蒙古主断裂带(MML)两侧,S波速度结构与方位各向异性都表现出极大的差异,证实了该断裂带的存在且可能延伸到整个岩石圈。(3)在断裂带MML以南的南戈壁带,地壳内方位各向异性表现为NNE-SSW方向,推测跟印度-欧亚板块碰撞产生的远程效应有关。进入上地幔后,南戈壁带相速度方位各向异性主要表现为NWW-SEE方向,非常接近APM方向。这可能表明南戈壁带上地幔方位各向异性受地幔流动的影响。地壳与上地幔表现出来的完全不同的方位各向异性特征,可能暗示南戈壁带地壳与上地幔变形是解耦的。(4)杭爱—肯特山盆地及其周边地区的方位各向异性在我们给出的周期范围内基本上保持为NNW-SSE方向,表现出垂直连贯变形的特征。其快波方向垂直于贝加尔湖裂谷,与裂谷张开的方向一致,我们推测该区域的应力场受到贝加尔湖裂谷的控制。2青藏高原东北缘利用青藏高原东北缘地区固定和流动地震台网2007年8月~2012年1月期间记录的远震波形,运用小波变换频时分析方法分别测定了1 216和653条周期为15~140s的台站间基阶瑞利波相速度和群速度频散曲线。通过对上述频散进行反演,重构了青藏高原东北缘分辨率高达0.5°×0.5°的二维相速度和群速度分布图。然后通过对所提取到的每个网格点瑞利波相速度和群速度频散进行联合反演,得到了研究区下方一维S波速度结构。最后通过线性插值,得到了青藏高原东北缘下方地壳上地幔三维S波结构。结果表明:(1)在本文的速度结构图上,班公—怒江缝合带下方存在显著的深达180km的高速异常,我们推断位于班公—怒江缝合带下面的高速块体可能就是印度板块,这表明印度板块的前缘已经俯冲到了班公—怒江缝合带附近。(2)我们的结果显示,在青藏高原东北缘的柴达木盆地北部和祁连山地块下面100~250km深处存在板片状高速异常体。结合已有的研究结果和该高速异常体的形态,我们推测此高速异常体可能就是亚洲板块,其前缘已经抵达柴达木盆地北部,且没有明显的向南俯冲的迹象。(3)在印度、亚洲岩石圈地幔中间,我们可以看到显著的延伸到250km深度的低速异常,此低速且低阻异常体的深度远超过南侧的印度板块和北侧的亚洲板块,可能是地幔物质底辟上涌现象造成的。  相似文献   

3.
基于中蒙国际科技合作项目中获取的宽频带地震阵观测资料,利用提取到的周期为10~80 s的每个网格点瑞雷波相速度频散,反演得到了蒙古中南部下方地壳以及上地幔S波速度结构.结果表明:25 km深度处S波速度分布特征受地表构造形态控制,北部杭爱-肯特山脉为明显高速异常(约3.75~3.82 km/s),中南部戈壁沙漠为低速异常(约3.55~3.65 km/s);42 km深度处S波速度受地壳厚度影响,具有西北到东南逐渐增大的趋势,杭爱-肯特山盆下地壳相对较高的S波速(约4.1 km/s)是由盆地形成过程中拉伸作用导致盆地下地壳厚度减薄造成的;60~100 km深度范围内S波速度呈现南北高中部低的形态,分析认为中部戈壁低速异常与该地区新生代火山活动有关,而火山活动范围纵向上由中西部向中东部逐渐变深,横向由中东部向中西部逐渐变宽;此外,中东部地区地壳的隆起可能是由于火山活动引起的地幔热流上涌造成的.  相似文献   

4.
蒙古中南部地区噪声层析成像   总被引:3,自引:2,他引:1       下载免费PDF全文
依托中蒙国际合作项目"远东地区地磁场、重力场及深部构造观测与模型研究",我们首次获取了蒙古中南部地区密集的地震台阵观测资料.本研究收集了69套宽频带台站2011年8月至2013年7月间的垂直向连续记录,利用噪声互相关方法计算了台站间的经验格林函数,并采用基于连续小波变换的频时分析方法,提取了1478条周期6~30s的瑞雷波的相速度频散曲线.利用DitmarYanovskaya方法,我们构建了研究区6~30s瑞雷波的高分辨率(0.5°×0.5°)相速度分布图.结果表明,蒙古中南部地区的地壳上地幔速度结构存在横向非均匀性,但并不显著(相对变化~±2%).短周期(如6s)的相速度分布与地表地质构造具有明显的相关性,具体来说,北部山盆显示为高速,南部盆地、戈壁滩均显示为低速;随着周期的增大(如15s,20s),地形的控制作用相对减弱.较长周期(30s)的相速度分布图上,南部的高速区进一步扩大,与南部地壳厚度较薄有关.蒙古主构造线南北两侧相速度分布有明显差异,暗示它不仅是地表地形和构造的分界线,而且还是地壳结构的分界线.从6~30s中戈壁一直显示为低速,可能与该区新生代火山活动有关;研究区北部杭爱山—肯特盆地一直显示为相对的高速,与该区具有较老、稳定的地层有关.  相似文献   

5.
车子强  吴忠良  高原 《地震》2023,(1):105-123
海原断裂带是位于青藏高原东北缘的一条NWW走向大型边界断裂带,为了研究该区域地壳速度结构与变形特征,使用中国地震局地震预测研究所布设的跨海原断裂带流动地震台阵(SACHY-Array)和研究区域内固定地震台站共61个台站(40个流动台站和21个固定台站)的垂向连续波形数据。采用背景噪声互相关方法,提取了面波相速度频散曲线,反演得到周期范围为5~30 s、分辨率1°×1°的Rayleigh波相速度和方位各向异性图像。结果表明,短周期5~10 s内,河西走廊过渡带东部、鄂尔多斯地块西北部以及银川地堑南部均呈现低速异常体,祁连造山褶皱带东段表现为相对高速体;海原断裂带西南侧快波偏振方向为NWW、 NW向,鄂尔多斯西缘及邻区快波偏振方向主要为近NS向,各向异性方向与区域断裂走向基本一致。15~30 s周期内,河西走廊过渡带东部及银川地堑南部的低速异常逐渐减弱且范围不断减小,15 s周期左右,河西走廊过渡带东部的低速体在烟筒山断裂带下方有错断的趋向,陇中盆地中央、鄂尔多斯西南缘均存在高速异常体;方位各向异性方向与短周期基本一致,不过各向异性强度较弱。本文认为,海原断裂带是高低速过渡带,位于断裂带...  相似文献   

6.
本文利用均匀布设于中国东北地区的48个中国国家地震台网固定台站所收集的5年期宽频带远震数据,利用双台法手动挑选出68642条高质量的面波频散曲线,并合成为1088条纯路径平均频散曲线.结合东北地区的密集流动台阵得到的背景噪声相速度频散曲线,本文反演得到了东北地区瑞利波各向同性相速度及方位角各向异性图像.长时间搜集并经过严格筛选的相速度频散数据有效地提升了结果的分辨率.短周期各向同性相速度结果主要受控于浅部结构,各大盆地均明显地表现为相对低速,而山区则为相对高速.40 s左右的相速度图像显示松辽盆地西北角有明显的高速.60 s以上图像中,松辽盆地分为较为明显的南北两部分:北部各向同性相速度值略低,且有明显的北西—南东向方位角各向异性;南部各向同性相速度值偏高,且方位各向异性不明显,可能说明盆地北部100 km以下存在速度较低、流动性较强的地幔,而南部该深度范围似乎对应高速、流动性较弱的地幔.结果似乎表明,松辽盆地西北角可能仍然存在不太厚的完整的岩石圈,但其他区域均已遭到不同程度的破坏.区域内各大火山区在相速度图像中均显示为相对低速,长白山下方在短周期到长周期图像中均显示为较强的低速;五大连池火山群从25s到60s存在较明显低速;大兴安岭—带哈拉哈和阿巴嘎火山群的低速可延伸至120 s.同时,五大连池、哈拉哈和阿巴嘎火山在60~100 s的范围内的低速"根"通过松辽盆地下方各向异性为北西—南东向的低速结构与东部长白山火山的低速"根"相连,显示区域内的新生代火山活动很可能与长白山下方热物质的上涌有关.  相似文献   

7.
山西地区面波相速度分布图像   总被引:1,自引:0,他引:1  
本文根据山西数字地震台网31个台站和周边河北、河南、陕西、内蒙数字地震台网6个台站2009年2月-2011年11月记录的面波资料,利用双台法测定了350条路径上周期8~75 s的基阶瑞利波相速度频散曲线.通过Ditmar&Yanovskaya方法反演得到33个周期分辨率为40~50 km的相速度分布图像.分析研究了4个具有代表性周期的相速度分布图像和3条不同方向的相速度剖面,这些图像揭示了山西地区地壳上地慢速度结构的横向非均匀性质和相速度纵向变化特征.10s周期的相速度分布图像显示出断陷带与两侧隆起区相速度存在明显的差异,凡个断陷盆地的最大沉降中心附近呈现低相速度异常;山西6级以上强震大都分布在15s周期高相速度与低相速度急剧变化的过渡带上;20~26 s周期的相速度以38°N为界呈现出南高北低格局,与山西断陷盆地带莫霍界面埋深南浅北深的结果相吻合;36 s~54 s周期相速度图像的低速区域逐渐收缩到大同一带,进一步说明南部区域在该周期反映的深度范围已进入上地慢,而大同盆地的低速可能与该区域的新生代火山群有关.沿113°E的南北相速度纵剖面显示周期25~75 s以38°N为界,南部相速度高、北部相速度低,证实了38°N线附近是晋北地块、晋南地块的“软”、“硬”块体的结合部位,可能是由于软流圈上涌幅度不同造成了深部速度的南北差异;其他两个横切裂谷的剖面显示出与人工地震测深剖面相似的特征.  相似文献   

8.
东北地区背景噪声的Rayleigh和Love波相速度层析成像   总被引:5,自引:2,他引:3       下载免费PDF全文
本文利用中国数字地震台网位于东北地区的122个宽频地震台站的18个月记录的三分量连续地震噪声数据,采用互相关方法提取了Rayleigh和Love波经验格林函数,并利用时频自动分析技术获取了相应的相速度频散曲线.通过反演频散曲线,获得了Rayleigh和Love波周期为8~35s的二维相速度分布.结果表明,东北地区相速度的分布存在横向和垂向的不均匀性.短周期的相速度分布同地表地质构造密切相关,松辽盆地及山间沉积盆地呈现低速异常,而大兴安岭、小兴安岭及东部的一些山岭显示高速异常.随着周期的增加,位于中间的松辽盆地变为高低速相间,两侧的造山带呈现低速异常.这种异常的转变,可能是受构造活动或者莫霍面深度的影响.另外,在周期为20~35s频段内,Rayleigh和Love波同一周期的相速度在松辽盆地和位于吉林地区的郯庐断裂带表现不一致,表明可能存在径向各向异性.  相似文献   

9.
中国大陆及邻区Rayleigh面波相速度分布特征   总被引:13,自引:5,他引:8       下载免费PDF全文
本文根据102个数字化台站记录的长周期垂直向面波资料,利用双台互相关方法测量了538条独立路径的基阶Rayleigh面波相速度频散资料,反演获得了中国大陆及边邻地区(70°E~140°E,18°N~55°N)20~120 s(周期间隔为5 s) 共21个周期的Rayleigh波相速度空间分布图像. 检测板测试结果显示中国大陆中东部地区横向分辨率可达3°,而西部及边邻地区大约5°. 研究表明,中国大陆地区的Rayleigh波相速度分布横向差异显著,大致以104°E为界,可分成具有不同速度结构特征的东、西两部分. 一般较短周期(20~35 s)的相速度分布受地形和地壳厚度的影响较大,总体表现为东部速度高,西部速度低;塔里木盆地、青藏地块及其东缘的松潘-甘孜地块形成整个研究区内最为突出的低速异常体,蒙古西部低速特征也较清晰;东部的四川盆地、扬子地块、华南地块、松辽盆地、日本海及蒙古东部高速特征明显. 随着周期的增大,青藏地块中部的低速异常体横向尺度逐渐缩小,而喜马拉雅冲断带、塔里木盆地相速度不断升高,意味着青藏低速区受到南、西北、东三个方向的高速区夹击,可能导致高原中部软弱的低速物质向东南方向迁移;同时,东部地区由高速逐渐转变为大面积的低速分布,反映东部地区岩石圈较薄而软流圈发育. 随着青藏地块低速特征的减弱,印支地块北部及相邻海域、东海、东北吉林深震区、日本海、中-朝地块至蒙古东部成为120 s周期上突出的低速异常体,而上扬子地块包括四川盆地高速特征依然明显,显示出稳定的古板块特征. 南北地震带始终呈现出相对较低的速度特征,并成为划分中国大陆具有不同岩石圈相速度特征的东部与西部的天然分界.  相似文献   

10.
鄂尔多斯及邻区基于程函方程的面波层析成像   总被引:1,自引:0,他引:1  
利用鄂尔多斯及邻区的固定台站和流动台站记录到的面波资料,使用基于程函方程的面波层析成像的新方法,得到了鄂尔多斯及邻区12~150 s周期的瑞利波相速度的分布图.短周期的相速度很好的揭示出鄂尔多斯及邻区的山脉隆起和拉张盆地等引起的高低速异常的分布特征.中等周期的相速度显示鄂尔多斯盆地内部为显著的高速异常,而它的四周逐渐地被低速异常所包围.大同火山区的低速异常在垂向上进行不断的延伸和扩展,推测是由于其下方的岩浆上涌引起地壳和上地幔顶部升温造成的.长周期的相速度显示鄂尔多斯盆地下方在岩石圈深度范围内,以北纬38°为界南北部岩石圈的差异比较明显,呈现南部厚北部薄的特点.研究发现研究区从西到东岩石圈逐渐减薄,这可能是由于受到太平洋板块俯冲引起的地幔热物质上涌和运移的影响.  相似文献   

11.
We apply ambient noise tomography to continuous vertical component broadband seismic data between January 1, 2010 and December 31, 2011from the regional networks of 190 stations deployed by China Earthquake Administration in Hebei, Shanxi and Inner Mengolia. Ambient noise cross-correlations were performed to produce the Green's functions of each station-pair. Firstly, we used the multiple-filter analysis method to extract surface wave group and phase velocity dispersion curves from inter-station paths at periods from 7 to 40s. Then the study area was discretized into a 0.2°×0.2° grid to obtain the group and phase velocity distributions using O'ccam inversion method. After that, three dimensional (3-D) S-wave velocity structures from the surface down to 50km are inverted from group and phase velocities dispersion results. the results of S wave velocity distribution maps generally demonstrate good correlations with surface geological and tectonic features, and they also clearly revealed the lateral velocity variation in the crust. In the mid-upper crust, the basins are clearly resolved with low S wave velocity due to its thick sedimentary layer, and the Taihang and Yanshan uplifts show relative higher S wave velocity distribution. With the increase of depth (>30km), the S wave velocity distribution presents a contrary characteristic compared to that of the shallow layer, and the S wave velocity beneath the Taihang and Yanshan uplifts are much lower than basin areas, which is possibly correlated with the thickness of the crust. 3-D S wave velocity shows a low-velocity zone at~10~20km depth observed beneath the Tanshan-Hejian-Xintai-Cixian belt and Bohai Bay. the low-velocity zone at~20~30km depth beneath the Datong area may be associated with the thermal material in the crust-mantle. Our S wave velocity distribution maps clearly show that Taihang Mountains is not only the boundary of topography and tectonic zone, but also the transition zone of high and low S wave velocity.  相似文献   

12.
We processed more than 3000 inter-station great circle paths to determine the phase velocity for the fundamental mode of Rayleigh wave, and finally arrived at 110 paths of high quality dispersion data, which show good spatial coverage in western China and neighboring regions. Rayleigh wave phase velocity dispersion model WChina1D was obtained and compared with previous global and regional models. Phase velocity maps from 15 to 120 s were inverted and the maps of 20, 40, 80, and 120 s are presented in this paper. Checkerboard tests show the average lateral resolution in our area of interest is about 7°. Our tomographic results corroborate a prominent low-velocity anomaly lying mainly in the lower crust and uppermost mantle in the Chang Thang terrane. The apparent low-velocity anomaly also appears in the wide area of northeastern Tibet in the crust and upper mantle. The low-velocity area around southeastern Tibet may be created by the southeastern migration of the low-velocity mass of the Tibetan plateau. The eastern Tarim shows structure with higher velocities relative to that of central Tarim. A large-scale low-velocity anomaly is clearly seen in central and western Mongolia. Our high quality measurements were also used to evaluate the CUB global shear velocity model [Shapiro, N., Ritzwoller, M., 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int. 151, 88-105] of the crust and upper mantle. The 40 s Rayleigh phase velocity map predicted from CUB model shows an apparent discrepancy with our measurements in western China and western Mongolia, which implies a higher estimated (about +1-2%) phase velocity model in these regions, probably due to the Gaussian smoothing condition in their tomography inversion.  相似文献   

13.
云南壳幔S波速度结构与强震的构造背景   总被引:8,自引:2,他引:6       下载免费PDF全文
本文选取云南及周边65个台站记录到的47个地震事件,利用相匹配滤波技术分离出了基阶Rayleigh面波信号.选取与震中处于同一大圆弧上的两个台站,利用双台格林函数法获取了台间相速度频散,频散的周期范围在10~80 s之间.从2000个波形记录中提取了152个台站对之间的相速度频散,最后,利用台间的相速度频散反演得到云南...  相似文献   

14.
中国西部及邻区岩石圈S波速度结构面波层析成像   总被引:7,自引:5,他引:2       下载免费PDF全文
黄忠贤  李红谊  胥颐 《地球物理学报》2014,57(12):3994-4004
本文利用瑞利波群速度频散资料和层析成像方法,研究了中国西部及邻近区域(20°N—55°N,65°E—110°E)的岩石圈S波速度结构.结果表明这一地区存在三个以低速地壳/上地幔为特征的构造活动区域:西蒙古高原—贝加尔地区,青藏高原,印支地区.西蒙古高原岩石圈厚度约为80 km,上地幔低速层向下延伸至300 km深度,说明存在源自地幔深部的热流活动.缅甸弧后的上地幔低速层下至200 km深度,显然与印度板块向东俯冲引起俯冲板片上方的热/化学活动有关.青藏高原地壳厚达70 km,边缘地区厚度也在50 km以上并且具有很大的水平变化梯度,与高原平顶陡边的地形特征一致.中下地壳的平均S波速度明显低于正常大陆地壳,在中地壳20~40 km深度范围广泛存在速度逆转的低速层,这一低速层的展布范围与高原的范围相符.这些特征说明青藏高原中下地壳的变形是在印度板块的北向挤压下发生塑性增厚和侧向流动.地幔的速度结构呈现与地壳显著不同的特点.在高原主体和川滇西部地区上地幔顶部存在较大范围的低速,低速区范围随深度迅速减小;100 km以下滇西低速消失,150 km以下基本完全消失.青藏高原上地幔速度结构沿东西方向表现出显著的分段变化.在大约84°E以西的喀喇昆仑—帕米尔—兴都库什地区,印度板块的北向和亚洲板块的南向俯冲造成上地幔显著高速;84°E—94°E之间上地幔顶部速度较低,在大约150~220 km深度范围存在高速板片,有可能是俯冲的印度岩石圈,其前缘到达昆仑—巴颜喀拉之下;在喜马拉雅东构造结以北区域,存在显著的上地幔高速区,可能阻碍上地幔物质的东向运动.川滇西部岩石圈底界深度与扬子克拉通相似,约为180 km,但上地幔顶部速度较低.这些现象表明青藏高原岩石圈地幔的变形/运动方式可能与地壳有本质的区别.  相似文献   

15.
本文利用喜马拉雅二期台阵674个流动地震台一年的远震垂直向观测资料,获取了18491条独立路径上的Rayleigh波相速度频散曲线,并反演得到了周期10~80 s的Rayleigh波的相速度分布图.通过对比,本文与已有成像结果具有较一致的高低速分布特征,表明了本文结果的可靠性.结果显示,研究区的相速度分布存在明显的横向非均匀性.短周期(如10~15 s)的相速度分布与地表地形密切相关,中等周期(如20~40 s)的相速度分布受地壳厚度的影响较大.在长周期(如60~80 s),鄂尔多斯块体的高速比阿拉善块体更显著、完整,表明同属于华北板块的阿拉善地块,其上地幔结构并没有鄂尔多斯稳定.从短周期至长周期,与周缘地块相比,青藏高原始终表现出较明显的低速异常,可能暗示其具有较活跃的地壳上地幔结构.松潘一甘孜和北祁连块体的中上地壳均存在低速层.全球参考模型Crust1.0和Lithos1.0均不能很好地解释我们的观测频散,基于本文获得的相速度结果可在很大程度上对Crust1.0和Lithos1.0模型进行补充和完善.  相似文献   

16.
华北地区瑞雷面波相速度层析成像   总被引:17,自引:8,他引:9       下载免费PDF全文
利用华北科学探测台阵190个宽频带台站和8个甚宽带台站2006年10月至2009年5月记录的远震垂直向资料,用小波变换频时分析方法测定了1587条独立路径的基阶瑞雷波相速度频散曲线,并使用Ditmar&Yanovskaya方法反演得到111°~120°E,37°~42°N区域内、周期10~60 s的高分辨率相速度分布图...  相似文献   

17.
中国东北地区噪声层析成像   总被引:17,自引:9,他引:8       下载免费PDF全文
中国东北地区是中国唯一的深震孕育区,获取该区的壳幔结构,对于研究板块俯冲、深震以及火山活动等有重要的科学意义.本文利用该区159个固定台站2011年1月至2012年6月和27个流动台站2011年1月至2011年6月间的垂向波形连续记录,计算了台站间的预估格林函数,并采用基于连续小波变换的时频分析方法,测量了双台路径上瑞雷波的群速度和相速度频散曲线.通过质量控制和筛选,最终得到了2204条路径上周期5~40 s的群/相速度频散曲线.检测板测试表明,反演结果可以达到2°×2°的分辨.利用Ditmar & Yanovskaya反演方法,我们得到了研究区(105°E-135°E,39°N-52°N)周期8~30 s的瑞雷波的群速度和相速度分布图.不同周期的群/相速度分布图,反映了不同深度S波速度的横向变化情况.研究结果显示:中国东北地区的地壳上地幔S波速度结构存在横向非均匀性.短周期(如8 s)的群/相速度分布与地表地质构造具有明显的相关性,具体来说,山区显示为高速,沉积盆地显示为低速;随着周期的增大(如15 s,22 s),地形的控制作用相对减弱;较长周期(如30 s)的群/相速度分布与地壳厚度密切相关.  相似文献   

18.
青藏高原东南部地区瑞雷波相速度层析成像   总被引:13,自引:7,他引:6       下载免费PDF全文
本研究收集了"中国地震科学探测台阵-南北地震带南段"项目325个流动宽频带台站于2011年8月至2012年9月记录的远震垂直向资料,利用双台法测得了3594条独立路径上的瑞雷波相速度频散曲线,反演得到了青藏高原东南部地区周期10~60s瑞雷波的相速度分布图像.空间分辨尺度图表明,在台站覆盖范围内的绝大部分地区横向分辨率达到50km.2D相速度分布图显示,青藏高原东南部地区地壳上地幔S波速度结构存在较明显的横向非均匀性.短周期(如10s)的相速度分布主要受地表沉积层厚度的影响.绝大多数地震发生在周期15s相速度图上的低速区或高低速的陡变梯度带附近,充分说明该区的强震活动与中上地壳速度结构的变化有直接关系.中等周期(如20~30s)的相速度分布主要与中下地壳速度结构、地壳厚度密切相关,小江断裂、松潘—甘孜块体呈现最显著的低速,可能暗示这两处的中、下地壳存在低速层.较长周期(如40~60s)的相速度分布与上地幔顶部热状态和构造活动(如岩浆作用)有关.滇西南地区表现为大范围的显著低速,可能暗示滇西南地区上地幔顶部物质存在部分熔融.不同构造块体下方的频散曲线,具有不同的相速度特征.腾冲火山下方的频散曲线在10~60s一直为较低的速度,尤其是到40s以后,相速度随周期的变大增速明显放缓,至60s比其他任何块体速度都低,暗示腾冲火山区下方的低速至少来自上地幔顶部(约100km).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号