首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单次与多次散射对地方震尾波的作用   总被引:4,自引:1,他引:4       下载免费PDF全文
曾健  聂永安 《地震学报》1989,11(1):12-23
在Aki(1969)的单次反向散射理论和高龙生(1983)的多次散射理论基础上,提出了震源距不为零的单次与多次散射模型。在此模型下,研究了二维无限介质空间中,由统计上均匀分布的各向同性散射体引起的单次与多次散射对地方震尾波功率谱的作用。推导出了二维情况下单次散射和多次散射尾波功率谱的解析表达式,并在二维情况下对不同震源距的单次散射与多次散射对尾波功率谱的作用进行了比较。   相似文献   

2.
Synthesis of coda waves in layered medium   总被引:3,自引:0,他引:3  
  相似文献   

3.
AtenuationofcodawavesandQcvaluebeneaththeChengdutelemeteredseismicnetworkJIANZENG1)(曾健)TIANCHANGCHEN1)(陈天长)WEIBINHAN1)(韩渭宾...  相似文献   

4.
为揭示地震波在地壳小尺度非均匀介质中的散射过程,更准确地描述地震波的包络展宽现象,本文基于多次各向异性散射理论,采用离散波数法求解能量密度积分方程,选取高斯型自相关函数表征的散射模式,得到S波能量密度包络。基于此,本文首先分析了单次散射和多次散射在形成S波能量密度包络中的贡献规律;然后探讨了吸收系数和总散射系数对合成S波能量密度包络的影响;最后对比了在不同散射模式下合成的S波能量密度包络的差异。结果显示:① 不同的散射模式下单次散射和多次散射对地震波散射过程的贡献规律是一致的,对于近震(震源距小于100 km),单次散射模型可以近似合成S波能量密度包络;随着震源距增大,多次前散射模型可以更快地接近总能量密度包络;② 吸收系数增大会降低直达S波和尾波幅值,总散射系数增大会降低直达S波幅值,但使得S波尾波幅值升高;③ 前散射模式下S波能量密度包络随震源距的增大会导致峰值延迟,包络展宽,尾波衰减一致性更快等现象产生。   相似文献   

5.
The analysis and interpretation of coda waves have received increasing attention since the early seventies. In the past few years interest in this subject has spread worldwide, and the study of high-frequency seismic coda waves has become a very important seismological topic. As a conclusion of the studies accomplished in this time, coda waves are considered the result of scattering processes caused by heterogeneities acting on seismic waves.P andS waves play a particularly important role in this interaction. The process introduces an attenuation which, added to the intrinsic absorption, gives the observed apparent attenuation. Therefore, coda waves constitute a thumbprint left by the heterogeneities on the seismograms. Coda waves offer decisive information about the mechanism of how scattering and attenuation take place. This review describes coda waves in detail, and summarizes the work done in this subject to 1986. The relation between coda waves and attenuation in the context of research on seismic scattering problems is stressed. Particular attention has been given to the application of coda waves to estimate source and medium parameters. The state-of-the-art of the temporal variations of coda wave shape, and the possible use of these variations as an earthquake precursor also are presented. Care has been taken to introduce the statistical models used to deal with the heterogeneities responsible for scattering.  相似文献   

6.
The application of standard array processing techniques to the study of coda presents difficulties due to the design criteria of these techniques. Typically the techniques are designed to analyze isolated, short arrivals with definite phase velocity and azimuth and have been useful in the frequency range around 1 Hz. Coda is long in time and may contain waves of different types, phase velocities and azimuths. Nonetheless, it has proved possible to use or adapt array methods to answer two questions: what types of waves are present in coda and where are they scattered? Most work has been carried out on teleseismicP coda; work on local coda has lagged due to lack of suitable data and the difficulties of dealing with high frequencies. The time domain methods of beamforming and Vespagram analysis have shown that there is coherent energy with a high phase velocity comparable toP orPP in teleseismicP coda. These methods can detect this “coherent” coda because it has a fairly definite phase velocity and the same, or close to, azimuth as firstP orPP. This component must consist ofP waves and is either scattered near the source, or reflected in the mantle path as apdpP or precursorPP reflection. The Fourier transform method of the frequency-wavenumber spectrum has been adapted by integrating around circles of constant phase velocity (constant total wavenumber) to produce the wavenumber spectrum, which shows power as a function of wavenumber, or phase velocity. For teleseismicP coda, wavenumber spectra demonstrate that there is a “diffuse” coda of shear,Lg or surface waves scattered from teleseismicP near the receiver. Wavenumber spectra also suggest that the coherent coda is produced by near-source scattering in the crust, not mantle reflection, since it is absent or weak for deep-focus events. Crustal earthquakes have a very strong coherent component of teleseismic coda, suggesting scattering from shear to teleseismicP near the source. Three-component analysis of single-station data has shown the presence of off-azimuth arrivals and may lead to the identification of waves scattered from a single scatterer.  相似文献   

7.
基于单次散射模型的尾波动功率谱分析法,利用西昌遥测台网地震波实时处理系统记录的24个地震数字化波形资料,计算了西昌地区地球介质对应于13个不同的QC值,在1.0-20.0Hz频率范围内,以幂函数QC=QCf^n拟合QC值随的变化关系,其中Q0值在43.0-82.4之间,n值在0.24-0.94之间,平均值分别为66.2和0.53。  相似文献   

8.
The contribution of multiple scattering to the coda waves for three-dimensional elastic medium is investigated by extending the computational procedures developed earlier for the two-dimensional medium. It is shown that the effects of multiple scattering start to become important at a shorter lapse time,t c = 0.65(n 0σu)?1, than in the two-dimensional case (t c = 0.8(n 0σu)?1).  相似文献   

9.
When the quality factorQ is taken into account in attenuation studies, it is necessary to know the relative losses of wave energy due to scattering and to anelastic absorption. The coda is the most important phenomenon now known which is related to elastic scattering of seismic waves. Utilizing coda, this study presents relationships which give theQ factors of the medium around the recording station and discriminate between attenuations arising from elastic scattering (under the assumption of isotropic scattering) and those arising from anelastic absorption. This work proposes a technique for separately determining the attenuation due to isotropic scattering and that due to absorption from the observed envelope of coda waves.  相似文献   

10.
This article summarizes work on multiple scattering based on models of media with randomly distributed scatterers. The scatterers are isotropic and statistically uniform. Measuring distance in terms of mean-free pathL s and time in terms of the mean-free timesL s/V, whereV is the velocity of scattered waves, we have more convenient dimensionless distance and time. It can be shown that after the dimensionless time equals 0.65 energy contributed from multiple scattering becomes predominant. Thus the later coda reflects the effect of multiple scattering rather than single scattering. Treating the seismic record, including starting and tail parts, as a whole, the diffusion theory predicts that at a dense distribution of scatterers and a small distance between source and receiver, codas reflect mainly intrinsicQ i. Of course, this conclusion is coincident with the presumption of the diffusion theory,Q s>Q i. However, from a new integral equation of multiple scattering, which deals with the scattered waves and primary waves separately, the conclusion is similar but clearer. This article quotes the new expression for coda energy in two-dimensional space. It shows that if the receiver is close to the source, the coda decay reflects only intrinsicQ i, then as the distance increases, effects of scatteringQ s, are involved in the decay feature. The theoretical plots of coda decay show that it seems in most cases in the earthQ i should not be smaller than one tenth ofQ s.Project Sponsored by the Joint Earthquake Science Foundation of China.  相似文献   

11.
Ultrasonic coda waves are widely used to study high-frequency scattering. However, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-reflected waves, we performed ultrasonic experiments using aluminum and shale samples, and the rotating staggered-mesh finite-difference method to simulate the wavefield. We analyzed the wavefield characteristics at the different receiving points and the interference characteristics of the boundary-reflected waves with the ultrasonic coda wave, and the effect of sample geometry on the ultrasonic coda waves. The increase in the aspect ratio of the samples delays the interference effect of the laterally reflected waves and reduces the effect on the ultrasonic coda waves. The main waves interfering with the ultrasonic coda waves are laterally reflected PP-, PS-, PPP-, and PPS-waves. The scattering and attenuation of the high-frequency energy in actual rocks can weaken the interference of laterally reflected waves with the ultrasonic coda waves.  相似文献   

12.
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.  相似文献   

13.
We investigate the utility of PKP coda waves for studying weak scattering from small-scale heterogeneity in the mid-mantle. Coda waves are potentially a useful probe of heterogeneity in the mid-mantle because they are not preferentially scattered near the CMB, as PKP precursors are, but are sensitive to scattering at all depths. PKP coda waves have not been used for this purpose historically because of interference with other late-arriving energy due to near-surface resonance and scattering. Any study of deep mantle scattering using coda waves requires the removal of near-surface effects from the data. We have analyzed 3624 recordings of PKP precursors and coda made by stations in the Incorporated Research Institutions for Seismology (IRIS) Global Seismographic Network (GSN). To study the range and time dependence of the scattered waves, we binned and stacked envelopes of the recordings. We have considered precursors that arrive within a 20 s window before PKP and coda waves in a 60 s window after PKP. The PKP scattered waves increase in amplitude rapidly with range as predicted by scattering theory. At ranges below 125°, we predict and observe essentially no scattered energy preceding PKP. Coda amplitudes at these ranges are independent of range and provide an estimate of energy due to near-surface effects that we can expect at all ranges. We use the average coda amplitude at ranges from 120 to 125° to correct coda amplitudes at other ranges. PKP coda waves show a strong dependence on time and range and are clearly influenced by scattering in the lower mantle. PKP coda waves, however, do not provide a tighter constraint on the vertical distribution of mantle heterogeneity than is provided by precursors. This is due, in part, to relatively large scatter in coda amplitudes as revealed by a resampling analysis. Modeling using Rayleigh–Born scattering theory and an exponential autocorrelation function shows that PKP coda amplitudes are not highly sensitive to the vertical distribution of heterogeneity in the mantle. To illustrate this we consider single-scattering in two extreme models of mantle heterogeneity. One allows heterogeneity just at the CMB; the other includes heterogeneity throughout the mantle. The amplitudes of precursors are tightly constrained by our stack and support our earlier conclusion that small-scale heterogeneity is uniformly distributed throughout the lower mantle. The best-fit model includes 8 km scale length heterogeneity with an rms velocity contrast throughout the mantle of 1%.  相似文献   

14.
We first present a summary of recent results on coda interpretation. We emphasize the observation of the stabilization of P to S energy ratio indicating the modal equipartition of the wavefield. This property clearly shows that the coda waves are in the regime of multiple scattering. Numerical solutions of the elastic radiative transfer equation are used to illustrate the evolution of the wave-field towards P-to-S energy stabilization, and asymptotically to complete isotropy. The energy properties of the coda have been widely studied but the phase properties have often been neglected. The recently observed coherent backscattering enhancement, an expression of the so-called `weak localization', demonstrates that interference effects still persist for multiple diffracted waves. Another manifestation of the persistence of the phase is the possibility to reconstruct the Green function between two stations by averaging the cross correlation of coda waves produced by distant earthquakes and recorded at those two stations. This reconstruction is directly related to the properties of reciprocity and time reversal of any wavefield. Using broadband seismic coda waves, we show that the dominant phases of the Green function in the band 2 s–10 s, namely fundamental mode Rayleigh and Love waves, are reconstructed. We analyze the time symmetry of the cross correlation and show how the level of symmetry evolves with the isotropization of the diffuse field with lapse time. Similarly we investigate the correlation in continuous ambient noise records. Whereas the randomness of the coda results from multiple scattering by randomly distributed scatterers, we assume that the seismic noise is random mostly because of the distribution of sources at the surface of the Earth. Surface waves can be extracted from long time series. The dispersion curves of Rayleigh waves are deduced from the correlations. On paths where measurements from earthquake data are also available, we show that they are in good agreement with those deduced from noise correlation. The measurement of velocities from correlation of noise along paths crossing different crustal structures opens the way for a `passive imaging' of the Earth's structure.  相似文献   

15.
地方震尾波由地壳横向不均匀性而产生的反向散射波组成。从这一观点出发,根据尾波随掠过时间的衰减特性,结合地震矩对数和地方震里克特地震级的线性关系,导出利用任一掠过时间的震尾来计算的尾波震级Mc公式。它的简化形式可以和持续时间震级的表达式近似一致。尾波震级可作为持续时间震级的一种广义形式,它是直接从震源地震矩导出的震级标度,从而为解释持续时间震级物理基础提供了可能的途径。应用于丹江地震台的资料,得到丹江口及邻区的尾波品质因子和介质函数以及地震矩对数和震级的期望关系,同时得到实用于该台的持续时间震级和简化尾波震级公式。  相似文献   

16.
The Theory of Coda Wave Interferometry   总被引:7,自引:0,他引:7  
Coda waves are sensitive to changes in the subsurface because the strong scattering that generates these waves causes them to repeatedly sample a limited region of space. Coda wave interferometry is a technique that exploits this sensitivity to estimate slight changes in the medium from a comparison of the coda waves before and after the perturbation. For spatially localized changes in the velocity, or for changes in the source location, the travel-time perturbation may be different for different scattering paths. The coda waves that arrive within a certain time window are therefore subject to a distribution of travel-time perturbations. Here I present the general theory of coda wave interferometry, and show how the time-shifted correlation coefficient can be used to estimate the mean and variance of the distribution of travel-time perturbations. I show how this general theory can be used to estimate changes in the wave velocity, in the location of scatterer positions, and in the source location.  相似文献   

17.
In this paper we show evidences of the fractal nature of the 3-D inhomogeneities in the lithosphere from the study of seismic wave scattering and discuss the relation between the fractal dimension of the 3-D inhomogeneities and that of the fault surfaces. Two methods are introduced to measure the inhomogeneity spectrum of a random medium: 1. the coda excitation spectrum method, and 2. the method of measuring the frequency dependence of scattering attenuation. The fractal dimension can be obtained from the inhomogeneity spectrum of the medium. The coda excitation method is applied to the Hindu-Kush data. Based on the observed coda excitation spectra (for frequencies 1–25 Hz) and the past observations on the frequency dependence of scattering attenuation, we infer that the lithospheric inhomogeneities are multiple scaled and can be modeled as a bandlimited fractal random medium (BLFRM) with an outer scale of about 1 km. The fractal dimension of the 3-D inhomogeneities isD 3=31/2–32/3, which corresponds to a scaling exponent (Hurst number)H=1/2–1/3. The corresponding 1-D inhomogeneity spectra obey the power law with a powerp=2H+1=2–5/3. The intersection between the earth surface and the isostrength surface of the 3-D inhomogeneities will have fractal dimensionD 1=1.5–1.67. If we consider the earthquake fault surface as developed from the isosurface of the 3-D inhomogeneities and smoothed by the rupture dynamics, the fractal dimension of the fault trace on the surface must be smaller thanD 1, in agreement with recent measurements of fractal dimension along the San Andreas fault.  相似文献   

18.
A simple model of single acoustic scattering is used to study the dependence of the shape of local earthquake coda on the anelastic and scattering structures of the lithosphere. The model is applied to the coda of earthquakes located near Stone Canyon, central California, and provides an explanation for the features observed in the data, which include an interesting temporal variation in the coda shape. A surficial layer with aQ of 50 and thickness of 10 or 25 km underlain by a zone with aQ of 1000 extending to the bottom of the lithosphere, together with a scattering scale length,a, that varies with depthz according to the relationa=0.3 exp[-(z/45)2] are found to constitute the simplest structure of the medium compatible with the coda data and with body and surface wave attenuation data. The profile of heterogeneity sizes implies that the scattering strength increases strongly with depth, a constraint required by the necessity to boost the energy of the later coda without forcing the intrinsicQ to be excessively high in the uppermost mantle. This constraint is viewed as an artifact of the single scattering model which overstimates the scattering coefficient due to the neglect of multiple scattering. The observed temporal variation of the signal is difficult to explain by a simple change of the intrinsicQ at some depth. Rather, it is suggested that the scattering properties at depth changed with time through a variation of the fractional rms velocity fluctuation on the order of one percent.  相似文献   

19.
Based on the single scattering model of coda power spectrum analysis, digital waveform data of 50 events recorded by the real-time processing system of the Chengdu telemetry network are analyzed to estimate the Q c values of earth medium beneath the Chengdu telemetry network for several specified frequencies. It is found that the Q c shows the frequency dependency in the form of Q c = Q 0 f n in the range of 1.0 to 20.0Hz. Estimated Q 0 ranges from 60.83 to 178.05, and n is found to be 0.713 to 1.159. The average value of Q 0 and n are 117 and 0.978 respectively. This result indicates the strong frequency dependency of the attenuation of coda waves beneath the Chengdu telemetry network. Comparing with the results obtained in other regions of the world, it is found that Q 0 −1 value and its change with frequency are similar to those in regions with strong tectonic activity. This subject is supported by the Ministry of Personnel, China for partly sponsoring.  相似文献   

20.
龙岗火山区尾波Q值的初步研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于sato单次散射模型,利用2007年5月至2010年2月龙岗火山测震台网记录到的发生在火山区及邻近地区内的41次Mt.≥1.6地震的波形资料,计算了龙岗火山区的尾波Q值,得出尾波Q值与频率的关系为Q(f)=(42.65±7.53)f(0.845 9+0.164 2),具有以低Q值高η值为特征的火山构造活跃地区的尾波...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号