首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
依据《地震震级的规定(GB 17740—2017)》,分析了2009—2017年新疆地震台网所记录的新疆及邻区476次中深源地震事件,测定了13601个mb(短周期体波震级)和12035个mB(BB)(宽频带体波震级)的数据样本,回归分析mbmB(BB)得到回归方程及量规函数,结果显示mbmB(BB)相关系数为0.966,表明两者显著相关。因此,建议对于中强型中深源地震可以直接从原始速度型宽频带数字地震记录上测定长周期体波震级mB(BB),提高地震速报测定的速度和精度。通过震级偏差统计和台站场地响应计算,分析新疆地震台网中的XKR、HTA、ATS和KSZ等地震台站震级偏差较大的原因为砂岩、灰岩、砂土层等类型的台基放大了场地响应,说明台基类型对体波震级偏差的影响较大。与NEIC测定的体波震级对比时,发现新疆地震台网测定体波震级平均偏大0.42级,且偏差随着震源深度的增加有增大的趋势。  相似文献   

2.
孙冬军  刘芳  毕波 《中国地震》2022,38(1):112-119
本文选取2013年芦山地震和2017年九寨沟地震波形,重新量取垂直向振幅,计算宽频带面波震级MS(BB),分析各台站实测震级出现方向性差异的原因。其中,通过572个宽频带台站实测芦山地震震级MS(BB)7.1,通过603个宽频带台站实测九寨沟地震震级MS(BB)6.9。芦山地震实测震级大于MS(BB)7.3的台站呈现WN-ES向分布,与断层倾向一致;实测震级小于MS(BB)7.0的台站呈现NE-WS向分布,与其所在断层走向一致。九寨沟地震实测震级大于MS(BB)7.0的台站分布呈现NE向分布,与断层倾向一致;实测震级小于MS(BB)6.8的台站总体分布较为离散,大体呈现NW-SE向分布,与树正断裂走向一致。实测震级偏大的台站方向性分布与多普勒效应和P波辐射花样联系不明显。对比分析芦山地震和九寨沟地震,去除场地响应和仪器自身影响,台站实测震级差异性仍然存在,因此,台站实测震级差异性是由于受到了多普勒效应、辐射花样、仪器和场地响应之外的因素影响。综合考虑地震震级涉及的影响因素,芦山地震和九寨沟地震的台站实测震级差异性可能与地震波的传播路径有关。  相似文献   

3.
针对九寨沟MS7.0地震之后不同时间段的余震序列目录,利用推定最大余震震级,给出了实际最大余震震级的估计值。结果表明,推定最大余震震级随主震后时间尺度的延长而趋于稳定,且该值与实际发生的最大余震的震级一致。需要强调的是,就九寨沟地震序列而言,当余震数据较为完备时,采用主震后较短时间段内(1~2天)的余震目录就可以较准确地估算出主震区域内可能发生的最大余震震级。实际上,主震后12h(0.5天)的余震数据已完全可以给出最大余震震级的有效下限。此外,计算中我们采用了里氏震级ML和面波震级MS的余震目录,结果显示,2种震级类型目录的估算结果完全一致,表明利用推定最大余震震级估算实际最大余震震级的方法不受震级类型的影响。据此,该最大余震震级快速评估方法可进一步推广应用于我国大陆地区中强震后强余震灾害分析评估中。目前的拟合技术也显示出随着测震技术的不断进步以及余震识别能力的提高,快速评估方法可以在主震后短时间(<1天)内准确地预测可能发生的最大余震震级。  相似文献   

4.
分析了2009年至2012年巴塘台测定的ML≥3.0的近震共540个,计算出了它们与中国地震台网中心(CSN)发布的ML震级之间的偏差,找出了巴塘台弱S波出现的区域。用相同标准震级,相等震中距的方法,找出了正常波形记录与弱S波波形记录之间的振幅比,计算出了弱S波地震的震级偏差程度,发现该台记录到的弱S波的比例高达46.5%,弱S波的震级偏差达0.7,其结果有利于地震震级测定的准确性.  相似文献   

5.
孙丽  梁建宏  徐志国  刘杰 《中国地震》2021,37(4):843-856
建设中国地震预警系统是国家地震烈度速报与预警工程的主要内容,国内外学者通过对预警系统中确定地震参数的方法研究,发现实时确定准确震级这一问题最具挑战性,亟需一种可用的震级实时测定方法用于建设中国的地震预警系统。本文简要介绍了虚拟地震学家(VS)方法,描述了VS方法在中国地震台网用于实时测定地震参数的软件的实现流程,剖析用该方法实时确定2019年6月17日四川长宁6.0级地震的MVS的过程。通过实时在线测定134个M≥3.0地震的MVS和回放事件波形测定24个M≥5.0地震的MVS,对VS方法进行测试,评估其可用性。结果表明,使用VS方法实时确定的MVS变化平稳,可用性较好。当3个台站的P波信息可用时,第一次测定MVS时偏差δ的平均值为0.32,δ≤0.5的占79%,平均用时为20s。随着时间的推移,更多可用台站及波形的使用可有效提升测定MVS准确度。该方法在中国地震台网的应用具有适用性和可行性,是一种可选的实时确定震级的方法,在地震预警中具有较好的应用潜力。  相似文献   

6.
韩光洁  孙丽  杨志高 《中国地震》2023,39(3):680-688
利用远场台阵反投影技术可以较少地依赖先验经验,于震后快速获得震源破裂过程时空分布特征,并据此估算矩震级。本文使用美国阿拉斯加宽频带台阵记录到的远场直达P波数据,基于反投影方法,对2023年9月9日摩洛哥MW6.9地震震源破裂过程及震级进行分析。结果显示,地震破裂走向以NE-SW向为主,地震能量在10~20s集中在震中距10km范围内释放,与震源机制解和震中区亚特拉斯山脉走向基本一致。震源破裂持续时间结合在全球分布均匀的GSN台网记录到的P波最大位移数据,在震后约15min即可快速估算出本次地震矩震级为MW7.0,与中国地震台网中心和美国地质调查局发布震级基本一致。  相似文献   

7.
余娜  蒋长胜  马玉虎 《地震工程学报》2016,38(4):609-615,623
采用时间序列的“传染型余震序列”(ETAS)模型和最大似然法对2010年4月14日青海玉树MS7.1地震序列的参数进行了估计。为考察其结果的稳定性,设定不同的截止震级和不同的拟合截止时间分别进行序列参数估算。选用截止震级MC=ML1.5对玉树MS7.1地震序列整体的参数进行拟合,计算获得α=0.948 2,p=1.059 6和b=0.817 3。与中国大陆M>7.0地震序列的平均序列参数相比较表明,玉树MS7.1地震序列表现为触发次级余震的能力较弱,序列衰减速率较快。研究表明,截止震级MCα、kp值有一定的影响。随截止震级逐渐增大,参数k值逐渐减小,α值总体上有增加的趋势,而对p值的影响较小。在地震序列的早期阶段,ETAS模型参数中的p值和α值在震后14天内随时间的变化幅度较为明显,其后各参数变化相对平稳。  相似文献   

8.
利用内蒙古地区测震台网记录到的地震波形数据,基于地震预警参数阈值(特征周期τc和位移幅值Pd)开展评估内蒙古地区中强地震潜在破坏区范围的研究。按照一定的筛选条件进行筛选后,拟合出适合内蒙古地区的τc与震级MLPdτc和震源距R的统计关系式;根据现有地震事件的最大震级,得到仪器烈度为Ⅳ度、震级ML=5.0时对应的参数阈值为Pd=0.1075cm和τc=0.686s。最后对近年来内蒙古境内2次中强地震开展线下模拟,结果表明该方法需要台网具有一定密度,如能均匀分布,效果更好,否则会出现结果仅由经验关系式决定、而实际观测值没有发挥作用的问题。  相似文献   

9.
付裕  黄晖  徐鸣洁 《中国地震》2018,34(4):621-631
2016年8月24日意大利中部发生MW6.0地震,2个月之后,震中附近相继发生MW5.5、MW5.9、MW6.5地震。研究这几次较大地震间的相互触发作用及机制十分必要,然而在大地震之后传统地震目录通常缺失很多余震事件,缺失的余震事件包含着早期余震时空分布和迁移规律的信息,为完善余震目录本文利用匹配滤波方法对MW6.0地震后80天内的连续数据进行余震检测,得到了数十倍于模板数量的新检测事件,检测事件与模板事件组成的新余震目录完备震级为1.0,提高了地震目录的完备性。依据新余震目录进行余震时空分布研究,结果显示MW6.0、MW5.9、MW6.5地震的早期余震迁移规律不同。MW6.0地震的早期余震沿着断裂走向同时朝两侧迁移;而MW5.9、MW6.5地震的早期余震向南、北迁移表示出不对称的特征。通过拟合余震迁移前端发现,MW6.0、MW5.5地震的早期余震朝着随后较大地震的方向迁移,且较符合lgt的特征,表明余震迁移可能与慢滑动有关。  相似文献   

10.
利用甘肃省区域台网提供的地震波形资料,计算甘肃南部地区2010年1月~2017年8月ML≥2.0地震的视应力,分析九寨沟地震前甘南地区视应力的时空演化特征,所得结果如下:①ML2.6~3.1、ML2.0~2.5震级段地震视应力的空间分布具有较好的一致性,九寨沟MS7.0地震前,距震中较近的川甘交界地区的舟曲、文县等地呈现出较为集中的视应力高值异常;②ML2.0~2.5、ML2.6~3.1地震的视应力在大区域范围内随时间的变化趋势有一定差异,ML2.6~3.1地震视应力变化更为明显,在较大区域范围内表现为震前显著升高,而ML2.0~2.5地震视应力则在震前一两年内开始下降;③随着区域划分范围向震中靠近,ML2.0~2.5、ML2.6~3.1地震视应力的变化逐渐趋于一致,至震中附近时,2个震级段视应力均表现为“震前几年长时间升高—临震前几个月下降”的同步变化。  相似文献   

11.
By linear regression and orthogonal regression methods, comparisons are made between different magnitudes (lo-cal magnitude ML, surface wave magnitudes MS and MS7, long-period body wave magnitude mB and short-period body wave magnitude mb) determined by Institute of Geophysics, China Earthquake Administration, on the basis of observation data collected by China Seismograph Network between 1983 and 2004. Empirical relations between different magnitudes have been obtained. The result shows that: 1 As different magnitude scales reflect radiated energy by seismic waves within different periods, earthquake magnitudes can be described more objectively by using different scales for earthquakes of different magnitudes. When the epicentral distance is less than 1 000 km, local magnitude ML can be a preferable scale; In case M<4.5, there is little difference between the magnitude scales; In case 4.5MS, i.e., MS underestimates magnitudes of such events, therefore, mB can be a better choice; In case M>6.0, MS>mB>mb, both mB and mb underestimate the magnitudes, so MS is a preferable scale for deter-mining magnitudes of such events (6.08.5, a saturation phenomenon appears in MS, which cannot give an accurate reflection of the magnitudes of such large events; 2 In China, when the epicentral distance is less than 1 000 km, there is almost no difference between ML and MS, and thus there is no need to convert be-tween the two magnitudes in practice; 3 Although MS and MS7 are both surface wave magnitudes, MS is in general greater than MS7 by 0.2~0.3 magnitude, because different instruments and calculation formulae are used; 4 mB is almost equal to mb for earthquakes around mB4.0, but mB is larger than mb for those of mB≥4.5, because the periods of seismic waves used for measuring mB and mb are different though the calculation formulae are the same.  相似文献   

12.
Empirical Global Relations Converting M S and m b to Moment Magnitude   总被引:1,自引:0,他引:1  
The existence of several magnitude scales used by seismological centers all over the world and the compilation of earthquake catalogs by many authors have rendered globally valid relations connecting magnitude scales a necessity. This would allow the creation of a homogeneous global earthquake catalog, a useful tool for earthquake research. Of special interest is the definition of global relations converting different magnitude scales to the most reliable and useful scale of magnitude, the moment magnitude, M W. In order to accomplish this, a very large sample of data from international seismological sources (ISC, NEIC, HRVD, etc.) has been collected and processed. The magnitude scales tested against M W are the surface wave magnitude, M S, the body wave magnitude, m b, and the local magnitude, M L. The moment magnitudes adopted have been taken from the CMT solutions of HRVD and USGS. The data set used in this study contains 20,407 earthquakes, which occurred all over the world during the time period 1.1.1976–31.5.2003, for which moment magnitudes are available. It is shown that well-defined relations hold between M W and m b and M S and that these relations can be reliably used for compiling homogeneous, with respect to magnitude, earthquake catalogs.  相似文献   

13.
Calibration of magnitude scales for earthquakes of the Mediterranean   总被引:1,自引:1,他引:0  
In order to provide the tools for uniform size determination for Mediterranean earthquakes over the last 50-year period of instrumental seismology, we have regressed the magnitude determinations for 220 earthquakes of the European-Mediterranean region over the 1977–1991 period, reported by three international centres, 11 national and regional networks and 101 individual stations and observatories, using seismic moments from the Harvard CMTs. We calibrate M(M0) regression curves for the magnitude scales commonly used for Mediterranean earthquakes (ML, MWA, mb, MS, MLH, MLV, MD, M); we also calibrate static corrections or specific regressions for individual observatories and we verify the reliability of the reports of different organizations and observatories. Our analysis shows that the teleseismic magnitudes (mb, MS) computed by international centers (ISC, NEIC) provide good measures of earthquake size, with low standard deviations (0.17–0.23), allowing one to regress stable regional calibrations with respect to the seismic moment and to correct systematic biases such as the hypocentral depth for MS and the radiation pattern for mb; while mb is commonly reputed to be an inadequate measure of earthquake size, we find that the ISC mb is still today the most precise measure to use to regress MW and M0 for earthquakes of the European-Mediterranean region; few individual observatories report teleseismic magnitudes requiring specific dynamic calibrations (BJI, MOS). Regional surface-wave magnitudes (MLV, MLH) reported in Eastern Europe generally provide reliable measures of earthquake size, with standard deviations often in the 0.25–0.35 range; the introduction of a small (±0.1–0.2) static station correction is sometimes required. While the Richter magnitude ML is the measure of earthquake size most commonly reported in the press whenever an earthquake strikes, we find that ML has not been computed in the European-Mediterranean in the last 15 years; the reported local magnitudes MWA and ML do not conform to the Richter formula and are of poor quality and little use, with few exceptions requiring ad hoc calibrations similar to the MS regression (EMSC, ATH). The duration magnitude MD used by most seismic networks confirms that its use requires accurate station calibrations and should be restricted only to events with low seismic moments.  相似文献   

14.
The magnitudes (M S , m bP , m bS ) of the largest historical earthquakes which occurred in the first half of the 20 th century, calculated on the basis of records of Wiechert horizontal seismographs in Göttingen (Germany) and Zagreb (Croatia), are compared with one another, as well as with the magnitudes reported in worldwide catalogues. Systematic trends are observed in the data regarding the temporal stability of magnitude estimations in Göttingen, as well as the apparent non-linearity of the instrument responsle in the case of the Wiechert seismograph in Zagreb. We were unable to clearly identify their causes – possible explanations include effects caused by the interaction of the seismometer's frame and mass, as well as local soil conditions, but nonhomogeneity of the reference catalogues cannot be ruled out. The results indicate that a careful re-examination and cross-checking of the reported magnitude figures for the earthquakes from the first half of the 20th century is required.  相似文献   

15.
The risk formula, expressing the probability of at least one occurrence of earthquakes of greater-than-design-value magnitudes over the economic life of a structure, is modified taking into consideration the probability of no-earthquake years. The annual maximum earthquake magnitudes of three scales: Richter magnitude, also known as local magnitude (ML), body-wave magnitude (Mb), and moment magnitude (MM) in a geographical area encompassing the Bingöl Province in Turkey are taken from two sources: (1) report by Kalafat et al. (2007) [14] and (2) the web site reporting data by Kandilli Observatory which has been recording earthquakes occurring in and around Turkey since 1900. Statistical frequency analyses are applied on the three sample series using various probability distribution models, and magnitude versus average return period relationships are determined. The values of the ML, Mb, and MM series for 10% and 2% risk are computed to be around 7.2 and 8.3. The tectonic structure and seismic properties of the Bingöl region are also given briefly.  相似文献   

16.
Data from 753 earthquakes are used to determine a relationship between surface-wave magnitude (M s) and bodywave magnitude (m b), and from 541 earthquakes to determine a relationship between surface-wave magnitude (M s) and local magnitude (M L) for China and vicinity: M s=0.9883 m b-0.0420, M s=0.9919 M L-0.1773. The relationship of M s versus m b is obtained for 292 events occurred in the Chinese mainland in the time period from 1964 to 1996, 291 events occurred in Taiwan in the time period from 1964 to 1995 and 170 events occurred in the surrounding area. Standard deviation of the fitting is 0.445. Relationship of M s versus M L is obtained for 36 events occurred in the Chinese mainland, 293 events occurred in Taiwan, China and 212 events occurred in the surrounding area. The total amount is 541 events. Standard deviation of the fitting is 0.4673. The uncertainties of the converted M s in different magnitude intervals can be estimated using complementary cumulative distribution function (CCDF). In the relationship of M s versus m b, taking ±0.25 as a range of uncertainties, in magnitude interval m b 4.0–4.9, the probabilities for the converted M s taken value less than (M s-0.25) and more than (M s+0.25) are 17% and 27% respectively. Similarly, we have probabilities for m b 5.0–5.9 are 34% and 20% and that for m b 6.0–6.9 are 11% and 47%. In the relationship of M s versus M L, if the range of uncertainties is still taken as ±0.25, the corresponding probabilities for magnitude interval M L 4.0–4.9 are 22% and 38%, for M L 5.0–5.9 are 20% and 15% and for magnitude interval M L 6.0–6.9, are 15% and 29%, respectively. The relationships developed in this paper can be used for the conversion of one magnitude scale into another magnitude scales conveniently. The estimation of uncertainties described in this paper is more accurate and more objective than the usual estimation expressed by deviation. The estimations described in this paper indicate various dispersions in different magnitude intervals of original data. The estimations of uncertainties described by probabilities can be well connected with the total estimations of uncertainties in seismic hazard assessment.  相似文献   

17.
Introduction According to the Rapid Earthquake Information Release of CNDSN (Department of Earth- quake Monitoring and Prediction, China Earthquake Administration, 2002), an earthquake with surface wave magnitude MS=8.1 shook west of Kunlun Mountain Pass (KMP) at the juncture of Xinjiang, Qinghai and Xizang on November 14, 2001. This is the largest and the only MS>8.0 earthquake in Chinese mainland over 50 years since the August 15, 1950 MS=8.6 (MW=8.6) Chayuearthquake in Tibeta…  相似文献   

18.
In order to obtain a uniform magnitude catalogue, surface-wave magnitudes Ms and broad-band body-wave magnitudes mB have been determined for large shallow earthquakes from 1904 to 1980. In making the catalogue homogeneous, the author consistently adheres to the original definitions of Ms and mB given by Gutenberg (1945) and Gutenberg and Richter (1956). The determinations of Ms and mB are all based on the amplitude and period data listed in Gutenberg and Richter's unpublished notes, bulletins from stations worldwide, and other basic information. mB is measured on broad-band instruments in periods of ~8 s. Consistency of the magnitude determinations from these different sources is carefully checked in detail. More than 900 shallow shocks of magnitude 7 and over are catalogued. The meaning of the magnitude scales in various catalogues is examined in terms of Ms and mB. Most of the magnitudes listed by Gutenberg and Richter (1954) in their “Seismicity of the Earth” are basically Ms for large shocks shallower than 40 km, but are basically mB for large shocks at depths of 40–60 km. The surface-wave magnitudes given by “Earthquake Data Reports” are higher than Ms by 0.2 unit whether the combined horizontal amplitude or the vertical amplitude is used. mB and the currently used 1 s body-wave magnitude are measured at different periods and should not be directly compared.  相似文献   

19.
Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to bem=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude (M s =6.9–7.2). The Central American tsunamis having magnitudem>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.  相似文献   

20.
A multi-parametric study of empirical relationships between macroseismic data and magnitude is presented for the Italian region by the analysis of a new extended data set concerning 146 earthquakes. The available magnitude determinations include all of the most intense earthquakes which occurred in Italy in the last century and have been obtained by an accurate revision of original instrumental data. Intensity data have been revised and upgraded on the basis of the most recent studies: only local intensities directly documented have been used. Macroseismic determinations ofM s ,m B andM wa magnitudes have been performed. The empirical relationships between maximum felt intensity (I max ) and magnitude have been determined by the use of a distribution-free approach and a linear regression analysis. This last parameterization allows for the explanation of more than 60% of the variation in magnitude. In order to improve these results, the linear dependence between magnitude,I max and average distances (in logarithm) corresponding to fixed attenuation values has been explored. The comparison between instrumental magnitudes and corresponding macroseismic estimates obtained from empirical relationships shows that the respective uncertainties are comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号