首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Gravel bars (GBs) contribute to carbon dioxide (CO2) emissions from stream corridors, with CO2 concentrations and emissions dependent on prevailing hydraulic, biochemical, and physicochemical conditions. We investigated CO2 concentrations and fluxes across a GB in a prealpine stream over three different discharge‐temperature conditions. By combining field data with a reactive transport groundwater model, we were able to differentiate the most relevant hydrological and biogeochemical processes contributing to CO2 dynamics. GB CO2 concentrations showed significant spatial and temporal variability and were highest under the lowest flow and highest temperature conditions. Further, observed GB surface CO2 evasion fluxes, measured CO2 concentrations, and modelled aerobic respiration were highest at the tail of the GB over all conditions. Modelled CO2 transport via streamwater downwelling contributed the largest fraction of the measured GB CO2 concentrations (31% to 48%). This contribution increased its relative share at higher discharges as a result of a decrease in other sources. Also, it decreased from the GB head to tail across all discharge‐temperature conditions. Aerobic respiration accounted for 17% to 36% of measured surface CO2 concentrations. Zoobenthic respiration was estimated to contribute between 4% and 8%, and direct groundwater CO2 inputs 1% to 23%. Unexplained residuals accounted for 6% to 37% of the observed CO2 concentrations at the GB surface. Overall, we highlight the dynamic role of subsurface aerobic respiration as a driver of spatial and temporal variability of CO2 concentrations and evasion fluxes from a GB. As hydrological regimes in prealpine streams are predicted to change following climatic change, we propose that warming temperatures combined with extended periods of low flow will lead to increased CO2 release via enhanced aerobic respiration in newly exposed GBs in prealpine stream corridors.  相似文献   

2.
内陆水体是大气CO2收支估算的重要组成部分。农业流域分布着大量池塘景观水体,且具备蓄洪抗旱、消纳污染、水产养殖等多种功能。但是,农业流域不同功能的小型池塘CO2排放特征尚不清楚。本研究以极具农业流域代表性的烔炀河流域为研究对象,选取流域中用于水产养殖(养殖塘)、生活污水承纳(村塘)、农业灌溉(农塘)、蓄水(水塘)的4个功能不同的景观池塘,基于为期1年的野外实地观测,以明确农业流域小型池塘CO2排放特征。结果表明,不同功能池塘水体CO2排放差异显著,受养殖活动、生活污水输入和农田灌溉等人类活动影响,养殖塘((80.37±100.39) mmol/(m2·d))、村塘((48.69±65.89) mmol/(m2·d))和农塘((13.50±15.81) mmol/(m2·d))是大气CO2的热点排放源,其CO2排放通量分别是自然蓄水塘((4.52±23.26) mmol/(m2·d))的18、11和3倍。统计分析也表明,该流域池塘CO2排放变化总体上受溶解氧、营养盐等因素驱动。4个不同景观池塘CO2排放通量全年均值为(37.31±67.47) mmol/(m2·d),是不容忽视的CO2排放源,其中养殖塘和村塘具有较高的CO2排放潜力,在未来研究中需要重点关注。  相似文献   

3.
Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO2 fluxes and quantify CO2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO2 flux were made during September–October 2010 and ranged from 85 to 1,766 g m−2 day−1. Comparative maps of soil CO2 flux were simulated and CO2 emission rates estimated from three accumulation chamber (AC) CO2 flux surveys. Least-squares inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions recovered 58–77% of the CO2 emission rates estimated based on simulated AC soil CO2 fluxes. Spatial distributions of modeled surface CO2 fluxes based on EC and AC observations showed moderate to good correspondence (R 2 = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO2 emissions over relatively large areas.  相似文献   

4.
The ecosystem services provided by forests modulate runoff generation processes, nutrient cycling and water and energy exchange between soils, vegetation and atmosphere. Increasing atmospheric CO2 affects many linked aspects of forest and catchment function in ways we do not adequately understand. Global levels of atmospheric CO2 will be around 40% higher in 2050 than current levels, yet estimates of how water and solute fluxes in forested catchments will respond to increased CO2 are highly uncertain. The Free Air CO2 Enrichment (FACE) facility of the University of Birmingham's Institute of Forest Research (BIFoR) is the only FACE in mature deciduous forest. The site specializes in fundamental studies of the response of whole ecosystem patches of mature, deciduous, temperate woodland to elevated CO2 (eCO2). Here, we describe a dataset of hydrological parameters – seven weather parameters at each of three heights and four locations, shallow soil moisture and temperature, stream hydrology and CO2 enrichment – retrieved at high frequency from the BIFoR FACE catchment.  相似文献   

5.
河流作为连接陆地和海洋碳库之间的通道,是全球内陆水体碳排放最主要的载体,在全球碳循环中发挥着至关重要的作用。全球河流水-气界面二氧化碳(CO2)脱气显著的时间异质性特征研究有助于深入理解其碳循环过程与机制,也为准确评估碳通量以及完善碳循环模型提供了科学支撑。本文系统梳理了国内外的相关研究成果,总结了目前河流CO2脱气通量在昼夜、季节以及多年尺度上的动态变化及其影响因素,指出其昼夜变化与季节变化存在一定的周期性,并对不同空间尺度上CO2脱气通量的时间差异进行讨论。同时分析当前研究中的不足,认为缺乏河流二氧化碳分压(pCO2)与CO2脱气系数(k)高分辨率且长期连续的直接测量,限制了河流CO2脱气通量时间尺度变化的周期性及相互之间关系的厘定,使得气候变化与人类活动对河流CO2脱气时间动态的影响仍然难以量化与预测。最后,根据目前存在的问题,展望了未来的研究重点,为全球河流水-气界面碳循环过程与机制、模型研究提供新的思路与方向,以及可以更准确地评估和预测未来河流碳排放的变化趋势。  相似文献   

6.
Data on the distribution of fCO2 were obtained during a cruise in the Aegean Sea during February 2006. The fCO2 of surface water (fCO2sw) was lower than the atmospheric fCO2 (fCO2atm) throughout the area surveyed and ΔfCO2 values varied from ?34 to ?61 μatm. The observed under-saturation suggests that surface waters in the Aegean represent a sink for atmospheric CO2 during the winter of 2006. Higher fCO2sw values were recorded in the ‘less warm’ and ‘less saline’ shallow northernmost part of the Aegean Sea implying that the lower seawater temperature and salinity in this area play a crucial role in the spatial distribution of fCO2sw.A first estimate of the magnitude of the air–sea CO2 exchange and the potential role of the Aegean Sea in the transfer of atmospheric CO2 was also obtained. The air–sea CO2 fluxes calculated using different gas transfer formulations showed that during February 2006, the Aegean Sea absorbs atmospheric CO2 at a rate ranging from ?6.2 to ?11.8 mmol m?2 d?1 with the shipboard recorded wind speeds and at almost half rate (?3.5 to ?5.5 mmol m?2 d?1) with the monthly mean model-derived wind speed. Compared to recent observations from other temperate continental shelves during winter period, the Aegean Sea acts as a moderate to rather strong sink for atmospheric CO2.Further investigations, including intensive spatial and temporal high-resolution observations, are necessary to elucidate the role of the Aegean Sea in the process of transfer of atmospheric CO2 into the deep horizons of the Eastern Mediterranean.  相似文献   

7.
自成库以来,三峡水库CO2、CH4等温室气体通量较蓄水前发生明显改变。如何科学认识和客观评估三峡水库修建及运行对其CO2、CH4等温室气体通量的影响备受关注。本文简要回顾了自2009年以来在三峡水库开展CO2、CH4等温室气体通量监测与分析工作,综述认为,现阶段三峡水库温室气体排放以水-气界面扩散释放为主要途径。陆源输入的有机碳是主导三峡水库CO2、CH4产生的主要碳源,但在局部区段或时段自源性有机碳的贡献亦十分显著。同蓄水前相比,三峡水库碳排放量呈现为净增加,淹没效应约占水库C净增量的20%,库区内点面源污染负荷并未对CO2排放的净增量产生显著贡献,阻隔效应和生态系统重建效应对三峡水库碳排放的净增量产生显著贡献。近10年来,监测方法比对、监测点位优化等工作在一定程度上完善了三峡水库温室气体通量监测体系。新方法、新技术的引入也为三峡水库温室气体通量监测分析提供了有利支撑和保障,但复杂水文环境...  相似文献   

8.
The climate warming is mainly due to the increase in concentrations of anthropogenic greenhouse gases, of which CO2 is the most important one responsible for radiative forcing of the climate. In order to reduce the great estimation uncertainty of atmospheric CO2 concentrations, several CO2-related satellites have been successfully launched and many future greenhouse gas monitoring missions are planned. In this paper, we review the development of CO2 retrieval algorithms, spatial interpolation methods and ground observations. The main findings include: 1) current CO2 retrieval algorithms only partially account for atmospheric scattering effects; 2) the accurate estimation of the vertical profile of greenhouse gas concentrations is a long-term challenge for remote sensing techniques; 3) ground-based observations are too sparse to accurately infer CO2 concentrations on regional scales; and 4) accuracy is the primary challenge of satellite estimation of CO2 concentrations. These findings, taken as a whole, point to the need to develop a high accuracy method for simulation of carbon sources and sinks on the basis of the fundamental theorem of Earth’s surface modelling, which is able to efficiently fuse space- and ground-based measurements on the one hand and work with atmospheric transport models on the other hand.  相似文献   

9.
湖泊、河流等内陆水体是连接陆地生态系统和海洋的“长程碳环路”的重要节点,也是温室气体二氧化碳(CO2)排放源,在调节陆地、海洋间的碳迁移转换中发挥着重要作用。相对于自然水体,城市水体因面积小、水深浅且受监测方法限制,水-气界面碳通量经常被忽略。为探讨我国亚热带城市水体温室气体排放特征,本研究以湖南省长沙市典型城市水体,包括洋湖、西湖、松雅湖、月湖4个湖泊和湘江长沙段为研究对象,分别于2022年4和10月采用光化学反馈-腔增强吸收光谱法(OF-CEAS)和扩散模型法对水-气界面CO2通量进行对比测定。结果表明,长沙城市湖泊与河流春季为CO2排放源,秋季为吸收汇,河流水-气界面CO2通量呈显著季节差异。河湖之间CO2通量在春季表现为显著差异,秋季差异不显著。CO2通量与水体溶解氧、水体总氮浓度等呈显著正相关。2种方法的CO2通量对比测定在湖泊上显著相关,但对河流而言相关性不显著。研究揭示的城市湖泊与河流CO2气体的排放特征有利于深入探究城市水体碳的迁移转化,可对全面了解全球气候变化过程和河湖湿地温室气体减排和调控提供科学支撑。  相似文献   

10.
水库作为温室气体的重要来源,对区域气候变化有不可忽略的影响。然而,目前对水库溶存温室气体的空间异质性及垂向特征的认知仍然欠缺。为了揭示水库分层期和混合期溶存温室气体空间特征及排放通量,也为厘清水库温室气体产生和排放的关键过程提供重要支撑。研究选择东北地区大型水库——汤河水库为对象,于2021年7—9月和10月(分别代表水库分层期和混合期)对水库不同位置(坝前、库中和库尾)开展溶存温室气体垂向分层监测。研究结果显示,水库CH4排放通量变化范围为0.018~0.174 mmol/(m2·d),是大气CH4的源,空间分布为库尾>库中>坝前;CO2通量为-4.91~58.77 mmol/(m2·d),除分层期东支库尾,其余点位均表现为大气CO2的源,空间分布为坝前>库中>库尾。时间上,分层期CH4排放通量(0.071±0.044 mmol/(m2·d))高于混合期((0.027±0.008) mm...  相似文献   

11.
A land surface hydrology parameterization for use in atmospheric GCMs is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large scale parameterizations: water balance calculations are performed for a number of intervals of the topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well at the dynamics of land surface-atmosphere interactions.  相似文献   

12.
An understanding of the symbiotic water and gas exchange processes at the ecosystem scale is essential to the development of appropriate restoration plans of extracted peatlands. This paper presents ecosystem scale measurements of the atmospheric exchange of water and carbon dioxide (CO2) from a restored vacuum extracted peatland in eastern Québec, utilizing full‐scale micrometeorological measurements of both evaporation and CO2. The results indicate that the adopted restoration practices reduce the loss of water from the peat, but CO2 emissions are ~25% greater than an adjacent nonrestored comparison site. The blockage of drainage ditches and the existence of a mulch cover at the site keep the moisture conditions more or less constant. Consequently, the CO2 flux, which is predominantly soil respiration, is strongly controlled by peat temperature fluctuations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Hydroelectric reservoirs generate energy without significant combustion of fossil fuels. However, these systems can, potentially, emit greenhouse gases (GHG’s) at a rate which may be significant at the global scale, and, possible, co-equal, per kilowatt-hour, to that from conventional coal or oil-fired systems. Although much of the new construction of hydroelectric reservoirs is in the tropics, most of the data on GHG emissions comes from temperate regions. Further, much of the existing data on reservoir gas emissions comes from single sites, usually near the terminal dams. Large tropical reservoirs often involve the impoundments of river systems with complex morphology which in turn can cause spatial heterogeneity in gas flux. We evaluated spatial and seasonal variability in CO2 concentrations and gas flux for five large (50–1,400 km2) reservoirs in the Cerrado region of Brazil. Most of data set (87% of all measurements) showed CO2 supersaturation and net efflux to the atmosphere. There was as much or more variation in pCO2 over space and among seasons. The large studied reservoirs showed different zones in terms of CO2 emission because those fluxes are dependent on flooded biomass, watershed input of organic matter and dam operation regime. Here we demonstrate that the reservoirs in the Brazilian Cerrado have low rates of CO2 emissions compared to existing global comparisons. Our results suggest that ignoring the spatial variability can lead to more than 25% error in total system gas flux.  相似文献   

14.
Increases in atmospheric CO2 concentration not only affects climate variables such as precipitation and air temperature, but also affects intrinsic ecosystem physiological properties such as bulk stomatal conductance and intercellular CO2 concentration. De-convolving these two effects remains uncertain in biosphere–atmosphere water and carbon cycling. Using a simplified analytical net ecosystem CO2 exchange (NEE) model, tested with recently collected flux measurements in a humid grassland ecosystem in Ireland, we assess how much projected climate shifts affect net canopy photosynthesis (A) without physiological adjustments and contrast those findings with published field data on physiological adjustments for several grassland ecosystems. Our analysis suggests that the intrinsic grassland ecosystem physiological adjustment of A is about 45 times more important than the resulting climatic forcing shifts from the IS92a scenario (and a doubling of atmospheric CO2 concentration). Also, our analysis shows that increase in precipitation results in concomitant decrease in the two climate variables—net radiation and vapor pressure deficit, and these decreases have opposite (and almost canceling) effects on A. Implications to afforestation policy and future experimental efforts to quantify the carbon sink from humid grassland ecosystems are also discussed.  相似文献   

15.
Satellite observations of atmospheric CO2 are able to truly capture the variation of global and regional CO2 concentration.The model simulations based on atmospheric transport models can also assess variations of atmospheric CO2 concentrations in a continuous space and time,which is one of approaches for qualitatively and quantitatively studying the atmospheric transport mechanism and spatio-temporal variation of atmospheric CO2 in a global scale.Satellite observations and model simulations of CO2 offer us two different approaches to understand the atmospheric CO2.However,the difference between them has not been comprehensively compared and assessed for revealing the global and regional features of atmospheric CO2.In this study,we compared and assessed the spatio-temporal variation of atmospheric CO2 using two datasets of the column-averaged dry air mole fractions of atmospheric CO2(XCO2)in a year from June 2009 to May 2010,respectively from GOSAT retrievals(V02.xx)and from Goddard Earth Observing System-Chemistry(GEOS-Chem),which is a global 3-D chemistry transport model.In addition to the global comparison,we further compared and analyzed the difference of CO2 between the China land region and the United States(US)land region from two datasets,and demonstrated the reasonability and uncertainty of satellite observations and model simulations.The results show that the XCO2 retrieved from GOSAT is globally lower than GEOS-Chem model simulation by 2 ppm on average,which is close to the validation conclusion for GOSAT by ground measures.This difference of XCO2 between the two datasets,however,changes with the different regions.In China land region,the difference is large,from 0.6 to 5.6 ppm,whereas it is 1.6 to 3.7 ppm in the global land region and 1.4 to 2.7 ppm in the US land region.The goodness of fit test between the two datasets is 0.81 in the US land region,which is higher than that in the global land region(0.67)and China land region(0.68).The analysis results further indicate that the inconsistency of CO2concentration between satellite observations and model simulations in China is larger than that in the US and the globe.This inconsistency is related to the GOSAT retrieval error of CO2 caused by the interference among input parameters of satellite retrieval algorithm,and the uncertainty of driving parameters in GEOS-Chem model.  相似文献   

16.
17.
Carbon dioxide (CO2) capture and geologic storage has been postulated as one possible method to stabilize the atmospheric concentration of CO2 by injecting and storing it in deep geologic formations. This issue paper analyzes the viability of capture and geologic storage of becoming an effective method to aid in stabilizing the atmospheric concentration of CO2. It is herein shown that such viability is contingent on overcoming major obstacles that are hydrogeological, technical, and economic in nature. Our analysis indicates that capture and geologic storage is likely to have negligible success in reducing the atmospheric buildup of CO2 in the coming decades. The magnitude of the anthropogenic emissions of CO2 indicates that a transition of the world economy away from reliance on fossil fuels might be the only path to stabilize its atmospheric concentration.  相似文献   

18.
We examined how the projected increase in atmospheric CO2 and concomitant shifts in air temperature and precipitation affect water and carbon fluxes in an Asian tropical rainforest, using a combination of field measurements, simplified hydrological and carbon models, and Global Climate Model (GCM) projections. The model links the canopy photosynthetic flux with transpiration via a bulk canopy conductance and semi-empirical models of intercellular CO2 concentration, with the transpiration rate determined from a hydrologic balance model. The primary forcing to the hydrologic model are current and projected rainfall statistics. A main novelty in this analysis is that the effect of increased air temperature on vapor pressure deficit (D) and the effects of shifts in precipitation statistics on net radiation are explicitly considered. The model is validated against field measurements conducted in a tropical rainforest in Sarawak, Malaysia under current climate conditions. On the basis of this model and projected shifts in climatic statistics by GCM, we compute the probability distribution of soil moisture and other hydrologic fluxes. Regardless of projected and computed shifts in soil moisture, radiation and mean air temperature, transpiration was not appreciably altered. Despite increases in atmospheric CO2 concentration (Ca) and unchanged transpiration, canopy photosynthesis does not significantly increase if Ci/Ca is assumed constant independent of D (where Ci is the bulk canopy intercellular CO2 concentration). However, photosynthesis increased by a factor of 1.5 if Ci/Ca decreased linearly with D as derived from Leuning stomatal conductance formulation [R. Leuning. Plant Cell Environ 1995;18:339–55]. How elevated atmospheric CO2 alters the relationship between Ci/Ca and D needs to be further investigated under elevated atmospheric CO2 given its consequence on photosynthesis (and concomitant carbon sink) projections.  相似文献   

19.
Soil CO2 flux is strongly influenced by precipitation in many ecosystem types, yet knowledge of the effects of precipitation on soil CO2 flux in semi‐arid desert ecosystems remains insufficient, particularly for sandy soils. To address this, we investigated the response of sandy soil CO2 flux to rainfall pulses in a desert ecosystem in northern China during August–September 2011. Significant changes (P < 0.05) were found in diel patterns of soil CO2 flux induced by small (2.1 mm), moderate (12.4 mm) and large (19.7 mm) precipitation events. Further analysis indicated that rainfall pulses modified the response of soil CO2 flux to soil temperature, including hysteresis between soil CO2 flux and soil temperature, with Fs higher when Ts was increasing than when Ts was decreasing, and the linear relationship between them. Moreover, our results showed that rainfall could result in absorption of atmospheric CO2 by soil, possibly owing to mass flow of CO2 induced by a gradient of gas pressure between atmosphere and soil. After each precipitation event, soil CO2 flux recovered exponentially to pre‐rainfall levels with time, with the recovery times exhibiting a positive correlation with precipitation amount. On the basis of the amounts of precipitation that occurred at our site during the measurement period (August–September), the accumulated rain‐induced carbon absorption evaluated for rainy days was 1.068 g C m?2; this corresponds approximately to 0.5–2.1% of the net primary production of a typical desert ecosystem. Thus, our results suggest that rainfall pulses can strongly influence carbon fluxes in desert ecosystems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm−2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号