首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
1961-2003年间鄱阳湖流域气候变化趋势及突变分析   总被引:21,自引:2,他引:19  
本文利用1961-2003年间鄱阳湖流域14个气象站的气温、降水量、蒸发量等观测数据和8个主要水文站的流量数据,研究该时段内鄱阳湖流域的气候变化趋势、突变及其空间分布的差异.研究表明,鄱阳潮流域气温和降水均在1990年发生突变,继而呈现显著的上升趋势;在季节变化上,冬季平均气温在1986年发生突变,增温显著;夏季降水量和夏季暴雨频率均在1992年发生突变增加,暴雨频率增加是夏季降水量增加的主要原因;蒸发皿蒸发量和参照蒸散量均呈现显著下降趋势,该变化在夏季尤为明显.上述变化趋势均以1990s最为显著,这与长江流域气候变化趋势基本一致.在空间分布上,饶河水系、信江水系和赣江下游等气候变化更为显著.笔者认为,鄱阳湖流域气候变化在长江流域中比较突出.该流域1990s暖湿气候在加强;气温的升高、降水量和暴雨频率的增加以及蒸发量的下降强化了五河流量的增加趋势,由此可大致判定鄱阳湖流域气候变化与洪涝灾害之间可能存在的关系,这可为理解气候变化在该流域的响应和预测该流域未来可能的洪涝灾害提供依据.  相似文献   

2.
郭鹏  陈晓玲  刘影 《湖泊科学》2006,18(5):458-463
对鄱阳湖流域三个主要控制站湖口、外洲和梅港多年(1955-2001年)水沙数据进行了统计分析,利用滑动平均法,Spearman秩次相关检验、线性回归检验方法对三个测站的水沙变化趋势进行了分析检验,结果表明,鄱阳湖泥沙出湖集中于长江大汛前的2-6月,在长江7-9月大汛期间,会出现长江泥沙倒灌鄱阳湖的情况.湖口站近期(1990-2001年)径流量和输沙量变幅都非常大,同上世纪80年代相比,年均径流量增加255.3×10~8 m~3.年均减少沙量0.29×10~8 t;外洲站近期的输沙量明显减少,沙量分别为70年代前、70年代、80年代的49.6%、48.7%和52.3%;梅港站径流量略微增加沙量无明显变化趋势.从入湖径流来看,赣江和信江占52.4%,入湖泥沙量占了76.0%以上.从赣江和信江水沙总体变化趋势来看,赣江径流量变化趋势不明显,而输沙量具有明显减少的趋势;信江径流量增加趋势明显,输沙量基本无明显趋势.鄱阳湖流域水沙变化主要受人类活动的影响.土地利用方式的改变和流域水利工程设施的修建极大地影响了流域水沙特征及其变化趋势.  相似文献   

3.
洞庭湖流域气候变化特征(1961-2003年)   总被引:6,自引:0,他引:6  
以22个气象站1961-2003年的气象观测数据为基础,对洞庭湖流域的气温、降水和参照蒸散量进行趋势与突变分析.从1970年开始,洞庭湖流域经历了一个缓慢而稳定的增温过程,1990s发生突变进入快速增温时期;尤其是是在春、冬季节,这种突变式的增温特征非常显著;秋季持续而稳定增温,而夏季气温并无明显变化.进入1990s,洞庭湖流域降水有明显增多,尤其是夏季降水突变式增加;与此同时,夏季暴雨频率也突变式增大,但是暴雨强度并无明显变化.1900s迄今,参照蒸散量持续而稳定的减少,夏季减少量尤为显著.全球变暖的区域响应,驱动洞庭湖流域水循环速度加快,夏季降水增多,而蒸发能力减弱,这是1990s洞庭湖流域洪水频发的主要气候因子.  相似文献   

4.
1990s长江流域降水趋势分析   总被引:2,自引:0,他引:2  
依据国家气象局提供的实测月降水和日降水资料,运用Mann-Kendall(M-K)非参数检验法验证了降水趋势,并通过空间插补法,由点扩展到面,分析了1990s长江流域降水变化特征,发现1990s长江流域降水变化以降水在时间和空间分布上的集中度的增加为主要特点:时间上,年降水的增加趋势以冬季1月和夏季6月降水的集中增加为主;一日降水量大于等于50mm的暴雨日数和暴雨量在1990s也有了较明显的增加.空间上,年降水、夏季降水、冬季降水的增加都以中下游区的增加为主,尤其以鄱阳湖水系、洞庭湖水系的降水增加为主.1990s长江流域春季和秋季降水的减少以5月和9月两个汛期月份的降水减少为主,除金沙江水系和洞庭湖水系等少数地区外,流域大部分地区降水呈减少趋势.上述1990s出现的降水趋势明显与近年来全球变暖背景下长江流域各地区不同的温度及水循环变异有关.  相似文献   

5.
1960-2012年鄱阳湖流域旱涝急转事件时空演变特征   总被引:2,自引:0,他引:2  
王容  李相虎  薛晨阳  张丹 《湖泊科学》2020,32(1):207-222
基于鄱阳湖流域五河7个主要入湖控制站19602012年的实测径流资料,通过短周期旱涝急转指数,结合TFPW-MK趋势检验法及集合经验模态分解法,分析了鄱阳湖流域旱涝急转事件的时空分布、演变趋势、强度及周期变化等,并探讨了旱涝急转指数的不确定性及旱涝急转事件的成因.结果表明:鄱阳湖流域旱涝急转事件主要分布在310月,其中36月主要表现为“旱转涝”,710月主要表现为“涝转旱”,且不同年代间存在一定的时空差异;五河以轻度旱涝急转事件为主,重度旱涝急转事件发生频率较低,主要发生在抚河、信江和饶河流域,且多以“涝转旱”事件为主;在年代际上,鄱阳湖流域旱涝急转事件在1990s发生的频率最高,在2000s最低.同时,除饶河外,鄱阳湖流域年最强“涝转旱”事件的发生强度呈减弱趋势,而年最强“旱转涝”事件的发生强度在赣江和修水北支有减弱趋势,在饶河和修水南支有增强趋势.五河旱涝急转的变化存在2个特征时间尺度,分别为1 a和21~35 a,而年最强旱涝急转事件的发生强度具有3 a左右的周期变化特征.这些变化与流域降水的不均匀性及强烈的人类活动等有关.本研究结果有助于全面系统认识鄱阳湖流域在全球变暖背景下极端水文事件的发生机制和变化规律,可为鄱阳湖区防汛抗旱减灾提供重要的科学依据.  相似文献   

6.
研究了鄱阳湖流域在1955-2002年间的径流系数的变化,重点分析了它与水循环的两个基本要素:降水量和蒸发量的关系,同时对其原因进行了初步的探讨.经分析,在鄱阳湖流域中,径流系数较大的是饶河流域和信江流域,较小的是抚河流域;在年内变化上,4-6月为五河流域径流系数比较大的月份,这与鄱阳湖流域降水集中期相对应.在空间上,4-6月仍然以饶河流域和信江流域相对较大,而抚河流域较小,特别是8月份的径流系数远小于其他四河;年代际变化上,1990s径流系数增加较为显著.尽管鄱阳湖流域的径流系数除了受气候因子的影响外,还受到水土流失和地形等因素的影响,但是降水量的增加,特别是暴雨频率的增加仍然是其主要影响因素,蒸发量的减小对径流系数的增加也有一定程度的影响.径流系数与气温并无明显的线性相关关系.  相似文献   

7.
以天山北坡头屯河为例,结合近50年的径流和相应气象站的降水、温度等资料,运用Mann-Kendall非参数检验的方法对头屯河径流变化的时间序列进行了检验分析.结果表明:在过去的50年里,头屯河的年径流量呈单调下降趋势,20世纪90年代与50年代和60年代相比,分别减少了0.004×108 m3和0.072×108 m3;降水没有单调变化趋势,而年平均温度则表现出持续升高趋势,与1950's相比平均升高了1.12℃.对头屯河径流、降水和温度时间序列的逐月资料变化趋势检验分析发现,头屯河8~10月的流量呈较为明显下降趋势,降水变化在此期间也呈减少趋势.由此得出结论:头屯河流域降水季节变化趋势,尤其夏季降水减少趋势以及温度的明显增加,可能是造成径流减少的主要原因.  相似文献   

8.
鄱阳湖流域干旱气候特征研究   总被引:2,自引:1,他引:1  
闵屾  严蜜  刘健 《湖泊科学》2013,25(1):65-72
本文利用鄱阳湖流域127个站点1960-2007年逐日降水和温度资料,选用Z指数对鄱阳湖流域的气象干旱进行分析,并将干旱分为偏旱、大旱和特旱三个等级.研究结果表明鄱阳湖流域干旱基本呈现出南少北多、南强北弱的空间分布形式.鄱阳湖流域7-12月发生的干旱以偏旱为主,大旱和特旱主要出现在1-6月.线性趋势变化分析表明,2000年以来干旱范围和干旱强度均呈现出增加的趋势,其中,2003、2004和2007年的干旱较为严重.2003年大部分月份偏旱范围广、强度大,全年大旱和特旱出现的范围均较小,但3-4月和6-7月的大旱和特旱强度较大;2004年大部分月份偏旱范围和强度均相对较小,但在3月和6月出现范围较大且强度较强的大旱和特旱;2007年干旱分布更为极端,仅在7、10和11月出现范围较广或强度较大的偏旱,而在5月集中出现面积超过80%的大旱和特旱.  相似文献   

9.
以天山北坡头屯河为例,结合近50年的径流和相应气象站的降水、温度等资料,运用Mann-Kendall非参数检验的方法对头屯河径流变化的时间序列进行了检验分析.结果表明在过去的50年里,头屯河的年径流量呈单调下降趋势,20世纪90年代与50年代和60年代相比,分别减少了0.004×108 m3和0.072×108 m3;降水没有单调变化趋势,而年平均温度则表现出持续升高趋势,与1950's相比平均升高了1.12℃.对头屯河径流、降水和温度时间序列的逐月资料变化趋势检验分析发现,头屯河8~10月的流量呈较为明显下降趋势,降水变化在此期间也呈减少趋势.由此得出结论头屯河流域降水季节变化趋势,尤其夏季降水减少趋势以及温度的明显增加,可能是造成径流减少的主要原因.  相似文献   

10.
基于CGCM2对未来100年气候的9个模拟试验,对中国半干旱地区青海湖、岱海和呼伦湖及其流域,运用蒙特卡罗分析法模拟湖泊水量对气候变化的响应以及相应的概率.结果表明,从2020s,2050s和2080s三个时期温度增加的发生频率高于75%的分布看,温度将稳定增加2-5℃.未来的年平均温度增幅将超过了过去50年的观测记录,与过去一万年期间高温期的变化幅度相当.三个时期75%以上发生频率的温度和降水变化将会分别引起青海湖流域为-5%至 10%,呼伦湖流域为-7%至 5%,岱海流域为 2%至 12%的降水变化.虽然未来年降水总量的变幅没有超过过去50年器测记录变幅,更不及全新世的降水变化量,但湖泊水量对气候变化的反映变率较变幅要大.模拟的气候变化在75%概率的情况下,未来3个湖泊水量将有累计30%-45%的变化,变幅在±10%之间.快速的湖泊水量变化不能不引起对不远未来的水资源状况的重视和警备.  相似文献   

11.
A case study on the responses of streamflow to climate change in the Toutun River basin was carried out based on data analysis of streamflow, precipitation, and temperatures during the past 50 years.Temporal series of the streamflow change in the Toutun River basin was analyzed and tested using the Mann-Kendall nonparametric test. Results revealed that the annual runoff of the Toutun River had been in a monotonic decreasing trend for the past 50 years. Compared with the 1950s and 1960s, the annual runoff in the 1990s decreased by 4.0×105 m3 and 7.2×105 m3. The precipitation did not show monotonic trend during the past 50 years, but the annual temperature increased by 1.12℃ since the 1950s. Further data analysis indicated that the monthly runoff of the Toutun River decreased significantly from August to October, with precipitation displaying the similar pattern of seasonal change. Analysis suggests that the reduction of streamflow in the Toutun River basin is possibly caused by the seasonal change of precipitation, especially the precipitation reduction in summer, and temperature increases.  相似文献   

12.
Abstract

The management of water resources requires knowledge of the spatial and temporal distribution of surface and groundwater resources, and an assessment of the influence of man on the hydrological regime.

For small water courses regional estimates can be made from representative basins which offer guidelines (1) for the computation of mean annual flow and in some cases for the determination of the statistical distribution of the annual flow; (2) for the computation of the 10-year flood maximum discharge and volume.

An example concerning the tropical African Sahel is given. From a general study of the daily precipitation, a simple rainfall/runoff model used on a daily basis and calibrated on data from representative basins, and also the direct comparison of results from 55 representative basins, statistical distribution curves were established for annual runoff based on mean annual precipitation and the geomorphological characteristics of the basins.

Another example concerning tropical Africa west of Congo presents a methodology for the computation of the 10-year flood (maximum discharge and volume).

The systematic study of 60 representative basins makes it possible to plot the runoff coefficient R/P as a function of basin climate, mean slope and soil permeability. Other curves are used to determine the time of rise and the base time of the hydrograph as a function of the basin area and the mean slope.

The experimental basin is a good tool for the assessment of the influence of man on hydrological parameters. An example shows the influence of land use on the regression between annual precipitation and annual runoff.  相似文献   

13.
With increasing uncertainties associated with climate change, precipitation characteristics pattern are receiving much attention these days. This paper investigated the impact of climate change on precipitation in the Kansabati basin, India. Trend and persistence of projected precipitation based on annual, wet and dry periods were studied using global climate model (GCM) and scenario uncertainty. A downscaling method based on Bayesian neural network was applied to project precipitation generated from six GCMs using two scenarios (A2 and B2). The precipitation values for any of three time periods (dry, wet and annual) do not show significant increasing or decreasing trends during 2001–2050 time period. There is likely an increasing trend in precipitation for annual and wet periods during 2051–2100 based on A2 scenario and a decreasing trend in dry period precipitation based on B2 scenario. Persistence during dry period precipitation among stations varies drastically based on historical data with the highest persistence towards north‐west part of the basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The assessment of surface water resources (SWRs) in the semi‐arid Yongding River Basin is vital as the basin has been in a continuous state of serious water shortage over the last 20 years. In this study, the first version of the geomorphology‐based hydrological model (GBHM) has been applied to the basin over a long period of time (1956–2000) as part of an SWR assessment. This was done by simulating the natural hydrological processes in the basin. The model was first evaluated at 18 stream gauges during the period from 1990 to 1992 to evaluate both the daily streamflows and the annual SWRs using the land use data for 1990. The model was further validated in 2000 with the annual SWRs at seven major stream gauges. Second, the verified model was used in a 45‐year simulation to estimate the annual SWRs for the basin from 1956 to 2000 using the 1990 land use data. An empirical correlation between the annual precipitation and the annual SWRs was developed for the basin. Spatial distribution of the long‐term mean runoff coefficients for all 177 sub‐basins was also achieved. Third, an additional 10‐year (1991–2000) simulation was performed with the 2000 land use data to investigate the impact of land use changes from 1990 to 2000 on the long‐term annual SWRs. The results suggest that the 10‐year land use changes have led to a decrease of 8·3 × 107 m3 (7·9% of total) for the 10‐year mean annual SWRs in the simulation. To our knowledge, this work is the first attempt to assess the long‐term SWRs and the impact of land use change in the semi‐arid Yongding River Basin using a semi‐distributed hillslope hydrological model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
C. Sezen 《水文科学杂志》2020,65(11):1909-1927
ABSTRACT

In this study, annual and seasonal precipitation trend analysis was performed in the Euphrates-Tigris basin, Turkey, using innovative trend analysis (ITA) and discrete wavelet transformation. In this context, it was seen that there is a downward trend in winter, spring and annual precipitation, whereas precipitation has an increasing tendency in summer and autumn seasons, in the greater part of the basin. When annual and seasonal data were decomposed into wavelet components, the most significant trends were observed for high-periodic wavelet components, such as D3 (8-year), D4 (16-year) and D5 (32-year), where these components represent the periods of the precipitation data. Then, the relationship between North Atlantic Oscillation (NAO) and trend in precipitation was investigated. In this regard, it was found that there could be a significant relationship between the NAO and precipitation trends of the Euphrates-Tigris basin, especially in winter, based on the wavelet ITA.  相似文献   

16.
Based on the hydrologic and meteorological data in the Yarkand River Basin during 1957–2008, the nonlinear hydro-climatic process was analyzed by a comprehensive method, including the Mann–Kendall trend test, wavelet analysis, wavelet regression analysis and correlation dimension. The main findings are as following: (1) The annual runoff, annual average temperature and annual precipitation showed an increasing trend during the period of 1957–2008, and the average increase extent in runoff, temperature and precipitation was 2.234 × 10m3/10 year, 0.223 °C/10 year, and 4.453 mm/10 year, respectively. (2) The nonlinear pattern of runoff, temperature and precipitation was scale-dependent with time. In other words, the annual runoff, annual average temperature and annual precipitation at five time scales resulted in five patterns of nonlinear variations respectively. (3) Although annual runoff, annual average temperature and annual precipitation presented nonlinear variations at different time scales, the runoff has a linear correlation with the temperature and precipitation. (4) The hydro-climatic process of the Yarkand River is chaotic dynamic system, in which the correlation dimension of annual runoff, annual average temperature and annual precipitation is 3.2118, 2.999 and 2.992 respectively. None of the correlation dimensions is an integer, and it indicates that the hydro-climatic process has the fractal characteristics.  相似文献   

17.
In this study, the applicability of the statistical downscaling model (SDSM) in downscaling precipitation in the Yangtze River basin, China was investigated. The investigation includes the calibration of the SDSM model by using large-scale atmospheric variables encompassing NCEP/NCAR reanalysis data, the validation of the model using independent period of the NCEP/NCAR reanalysis data and the general circulation model (GCM) outputs of scenarios A2 and B2 of the HadCM3 model, and the prediction of the future regional precipitation scenarios. Selected as climate variables for downscaling were measured daily precipitation data (1961–2000) from 136 weather stations in the Yangtze River basin. The results showed that: (1) there existed good relationship between the observed and simulated precipitation during the calibration period of 1961–1990 as well as the validation period of 1991–2000. And the results of simulated monthly and seasonal precipitation were better than that of daily. The average R 2 values between the simulated and observed monthly and seasonal precipitation for the validation period were 0.78 and 0.91 respectively for the whole basin, which showed that the SDSM had a good applicability on simulating precipitation in the Yangtze River basin. (2) Under both scenarios A2 and B2, during the prediction period of 2010–2099, the change of annual mean precipitation in the Yangtze River basin would present a trend of deficit precipitation in 2020s; insignificant changes in the 2050s; and a surplus of precipitation in the 2080s as compared to the mean values of the base period. The annual mean precipitation would increase by about 15.29% under scenario A2 and increase by about 5.33% under scenario B2 in the 2080s. The winter and autumn might be the more distinct seasons with more predicted changes of precipitation than in other seasons. And (3) there would be distinctive spatial distribution differences for the change of annual mean precipitation in the river basin, but the most of Yangtze River basin would be dominated by the increasing trend.  相似文献   

18.
This study aims to determine temporal trends and spatial distribution of the annual and monthly precipitation in the Haihe River Basin, China, during 1951–2008. A significant decreasing trend was observed for the annual precipitation, mainly attributed to the abrupt decrease in the flood‐season precipitation (June–September) around the year of 1979. No significant trend was revealed for precipitation within Period I of 1951–1979 and Period II of 1980–2008. Results of this study indicated that the relative contributions of the flood‐season precipitation decreased temporally with time and spatially with elevation. This study also identified a potential movement of storm centers from east to west portions of the basin. In addition, analysis on the precipitation anomalies also suggested a redistribution of the non‐flood season precipitation over the study area. Compared with the west portion of the basin, generally, the east received relatively more precipitation during the non‐flood season, while similar trend of precipitation redistribution was not observed in the flood season. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Recent hydro‐climatological trends and variability characteristics were investigated for the Lake Naivasha basin with the aim of understanding the changes in water balance components and their evolution over the past 50 years. Using a Bayesian change point analysis and modified Mann–Kendall tests, time series of annual mean, maximum, minimum, and seasonal precipitation and flow, as well as annual mean lake volumes, were analysed for the period 1960–2010 to uncover possible abrupt shifts and gradual trends. Double cumulative curve analysis was used to investigate the changes in hydrological response attributable to either human influence or climatic variability. The results indicate a significant decline in lake volumes at a mean rate of 9.35 × 106 m3 year?1. Most of the river gauging stations showed no evidence of trends in the annual mean and maximum flows as well as seasonal flows. Annual minimum flows, however, showed abrupt shifts and significant (upward/downward) trends at the main outlet stations. Precipitation in the basin showed no evidence of abrupt shifts, but a few stations showed gradual decline. The observed changes in precipitation could not explain the decline in both minimum flows and lake volumes. The findings show no evidence of any impact of climate change for the Lake Naivasha basin over the past 50 years. This implies that other factors, such as changes in land cover and infrastructure development, have been responsible for the observed changes in streamflow and lake volumes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The aim of this paper is to quantify meteorological droughts and assign return periods to these droughts. Moreover, the relation between meteorological and hydrological droughts is explored. This has been done for the River Meuse basin in Western Europe at different spatial and temporal scales to enable comparison between different data sources (e.g. stations and climate models). Meteorological drought is assessed in two ways: using annual minimum precipitation amounts as a function of return period, and using troughs under threshold as a function of return period. The Weibull extreme value type 3 distribution has been fitted to both sources of information. Results show that the trough-under-threshold precipitation is larger than the annual minimum precipitation for a specific return period. Annual minimum precipitation values increase with spatial scale, being most pronounced for small temporal scales. The uncertainty in annual minimum point precipitation varies between 68% for the 30-day precipitation with a return period of 100 years, and 8% for the 120-day precipitation with a return period of 10 years. For spatially-averaged values, these numbers are slightly lower. The annual discharge deficit is significantly related to the annual minimum precipitation.

Citation Booij, M. J. & de Wit, M. J. M. (2010) Extreme value statistics for annual minimum and trough-under-threshold precipitation at different spatio-temporal scales. Hydrol. Sci. J. 55(8), 1289–1301.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号