首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insertion of fluid viscous dampers in building structures is an innovative technology that can improve significantly the seismic response. These devices could be very useful also in the retrofit of existing buildings. The effect of this typology of damping system is usually identified with an equivalent supplemental damping ratio, which depends on the maximum displacement of the structure, so that iterative procedures are required. In this paper, a simplified direct assessment method for nonlinear structures equipped with nonlinear fluid viscous dampers is proposed. The method proposed in this study is composed by two steps. The first one yields the direct estimate of the supplemental damping ratio provided by nonlinear viscous dampers in presence of a linear elastic structural response. The second step extends the procedure to structures with nonlinear behavior. Both graphical and analytical approaches have been developed. The proposed method has then been verified through several applications and comparisons with nonlinear dynamic analyses. Moreover, an investigation has been performed with regard to the influence of the relations that define the damping reduction factor and the hysteretic damping. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
大底盘多塔楼结构的混合隔震控制   总被引:2,自引:0,他引:2  
结合某实际工程,针对大底盘多塔楼结构提出混合隔震的控制策略,即对大底盘上的一栋或多栋塔楼采用隔震技术,并在隔震层附设一定数量的被动、主动或半主动的减震控制装置。建立了这种大底盘多塔楼结构混合隔震控制体系的运动方程,方程中各塔楼与下部结构及隔震层之间的刚度解耦,并考虑了隔震层的非线性。研究中比较了被动非线性粘滞阻尼器,半主动变孔隙阻尼器与理想主动控制时的减震控制效果。结果表明,这种混合隔震体系可以有效地减小上部塔楼与下部结构的地震反应,提高大底盘多塔楼结构的抗震安全性,取得明显的经济和社会效益。半主动变孔隙阻尼器可以极好地追踪理想主动控制力,取得与理想主动控制相近的减震控制效果。被动非线性粘滞阻尼器也能取得较好的减震效果,且易于维护,经济性较好,从工程应用的角度来看更为现实可行,具有较好的应用推广价值。  相似文献   

3.
A new direct performance‐based design method utilizing design tools called performance‐spectra (P‐Spectra) for low‐rise to medium‐rise frame structures incorporating supplemental damping devices is presented. P‐Spectra are graphic tools that relate the responses of nonlinear SDOF systems with supplemental dampers to various damping parameters and dynamic system properties that structural designers can control. These tools integrate multiple response quantities that are important to the performance of a structure into a single compact graphical format to facilitate direct comparison of different potential solutions that satisfy a set of predetermined performance objectives under various levels of seismic hazard. An SDOF to MDOF transformation procedure that defines the required supplemental damping properties for the MDOF structure to achieve the response defined by the target SDOF system is also presented for hysteretic, linear viscous and viscoelastic damping devices. Using nonlinear time‐history analyses of idealized shear structures, the accuracy of the transformation procedure is verified. A seismic performance upgrade design example is presented to demonstrate the usefulness of the proposed method for achieving design performance goals using supplemental damping devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Viscous dampers are widely employed for enhancing the seismic performance of structural systems, and their design is often carried out using simplified approaches to account for the uncertainty in the seismic input. This paper introduces a novel and rigorous approach that allows to explicitly consider the variability of the intensity and characteristics of the seismic input in designing the optimal viscous constant and velocity exponent of the dampers based on performance-based criteria. The optimal solution permits controlling the probability of structural failure, while minimizing the damper cost, related to the sum of the damper forces. The solution to the optimization problem is efficiently sought via the constrained optimization by linear approximation (COBYLA) method, while Subset simulation together with auxiliary response method are employed for the performance assessment at each iteration of the optimization process. A 3-storey steel moment-resisting building frame is considered to illustrate the application of the proposed design methodology and to evaluate and compare the performances that can be achieved with different damper nonlinearity levels. Comparisons are also made with the results obtained by applying simplifying approaches, often employed in design practice, as those aiming to minimize the sum of the viscous damping constant and/or considering a single hazard level for the performance assessment.  相似文献   

5.
6.
An effective strategy of seismic retrofitting consists of installing nonlinear viscous dampers between the existing building, with insufficient lateral resistance, and some auxiliary towers, specially designed and erected as reaction structures. This allows improving the seismic performance of the existing building without any major alteration to its structural and nonstructural elements, which makes this approach particularly appealing for buildings with heritage value. In this paper, the nonlinear governing equations of the coupled lateral‐torsional seismic motion are derived from first principles for the general case of a multistory building connected at various locations in plan and in elevation to an arbitrary number of multistory towers. This formulation is then used to assess the performance of the proposed retrofitting strategy for a real case study, namely, a 5‐story student hall of residence in the city of Messina, Italy. The results of extensive time‐history analyses highlight the key design considerations associated with the stiffness of the reaction towers and the mechanical parameters of the nonlinear viscous dampers, confirming the validity of this approach.  相似文献   

7.
Viscoelastic dampers, as supplementary energy dissipation devices, have been used in building structures under seismic excitation or wind loads. Different analytical models have been proposed to describe their dynamic force deformation characteristics. Among these analytical models, the fractional derivative models have attracted more attention as they can capture the frequency dependence of the material stiffness and damping properties observed from tests very well. In this paper, a Fourier-transform-based technique is presented to obtain the fractional unit impulse function and the response of structures with added viscoelastic dampers whose force-deformation relationship is described by a fractional derivative model. Then, a Duhamel integral-type expression is suggested for the response analysis of a fractional damped dynamic system subjected to deterministic or random excitation. Through numerical verification, it is shown that viscoelastic dampers are effective in reducing structural responses over a wide frequency range, and the proposed schemes can be used to accurately predict the stochastic seismic response of structures with added viscoelastic dampers described by a Kelvin model with fractional derivative.  相似文献   

8.
Gaussian mixture–based equivalent linearization method (GM-ELM) is a recently developed stochastic dynamic analysis approach which approximates the random response of a nonlinear structure by collective responses of equivalent linear oscillators. The Gaussian mixture model is employed to achieve an equivalence in terms of the probability density function (PDF) through the superposition of the response PDFs of the equivalent linear system. This new concept of linearization helps achieve a high level of estimation accuracy for nonlinear responses, but has revealed some limitations: (1) dependency of the equivalent linear systems on ground motion intensity and (2) requirements for stationary condition. To overcome these technical challenges and promote applications of GM-ELM to earthquake engineering practice, an efficient GM-ELM-based fragility analysis method is proposed for nonstationary excitations. To this end, this paper develops the concept of universal equivalent linear system that can estimate the stochastic responses for a range of seismic intensities through an intensity-augmented version of GM-ELM. Moreover, the GM-ELM framework is extended to identify equivalent linear oscillators that could capture the temporal average behavior of nonstationary responses. The proposed extensions generalize expressions and philosophies of the existing response combination formulations of GM-ELM to facilitate efficient fragility analysis for nonstationary excitations. The proposed methods are demonstrated by numerical examples using realistic ground motions, including design code–conforming nonstationary ground motions.  相似文献   

9.
This paper describes a proposed methodology, referred to as probabilistic seismic control analysis, for the development of probabilistic seismic demand curves for structures with supplemental control devices. The resulting curves may be used to determine the probability that any response measure, whether for a structure or control device, exceeds a pre‐determined allowable limit. This procedure couples conventional probabilistic seismic hazard analysis with non‐linear dynamic structural analyses to provide system specific information. This method is performed by evaluating the performance of specific controlled systems under seismic excitations using the SAC Phase II structures for the Los Angeles region, and three different control‐systems: (i) base isolation; (ii) linear viscous brace dampers; and (iii) active tendon braces. The use of a probabilistic format allows for consideration of structural response over a range of seismic hazards. The resulting annual hazard curves provide a basis for comparison between the different control strategies. Results for these curves indicate that no single control strategy is the most effective at all hazard levels. For example, at low return periods the viscous system has the lowest drift demands. However, at higher return periods, the isolation system becomes the most effective strategy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Viscous and other damping devices are often used as elements of seismic isolation systems. Despite the widespread application of nonlinear viscous systems particularly in Japan (with fewer applications in the USA and Taiwan), the application of viscous damping devices in isolation systems in the USA progressed intentionally toward the use of supplementary linear viscous devices due to the advantages offered by these devices. This paper presents experimental results on the behavior of seismically isolated structures with low damping elastomeric (LDE) and single friction pendulum (SFP) bearings with and without linear and nonlinear viscous dampers. The isolation systems are tested within a six‐story structure configured as moment frame and then again as braced frame. Emphasis is placed both on the acquisition of data related to the structural system (drifts, story shear forces, and isolator displacements) and on non‐structural systems (floor accelerations, floor spectral accelerations, and floor velocities). Moreover, the accuracy of analytical prediction of response is investigated based on the results of a total of 227 experiments, using 14 historic ground motions of far‐fault and near‐fault characteristics, on flexible moment frame and stiff braced frame structures isolated with LDE or SFP bearings and linear or nonlinear viscous dampers. It is concluded that when damping is needed to reduce displacement demands in the isolation system, linear viscous damping results in the least detrimental effect on the isolated structure. Moreover, the study concludes that the analytical prediction of peak floor accelerations and floor response spectra may contain errors that need to be considered when designing secondary systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
城市桥梁粘滞阻尼器防地震碰撞分析与参数设计   总被引:2,自引:0,他引:2  
研究了粘滞阻尼器防止城市梁桥地震碰撞反应的效果并提出了其参数设计方法。分析了线性粘滞阻尼器与非线性粘滞阻尼器阻尼系数的等效关系。运用随机振动理论与随机等效线性化理论建立了邻联间安装粘滞阻尼器后最大相对位移及墩顶最大位移的计算方法。以控制邻联最大相对位移小于实际间隙为目标,提出了防碰撞粘滞阻尼器参数设计方法。对1座4跨隔震连续梁桥进行了仿真分析,结果表明:粘滞阻尼器能有效抑制邻联的碰撞反应且不会显著增大桥墩的延性需求。在相同阻尼系数的情况下,粘滞阻尼器的速度指数越小,其防碰撞效果越好。利用人工波进行的时程分析结果验证了参数设计方法的可行性。  相似文献   

12.
Earthquake ground motion records are nonstationary in both amplitude and frequency content. However, the latter nonstationarity is typically neglected mainly for the sake of mathematical simplicity. To study the stochastic effects of the time‐varying frequency content of earthquake ground motions on the seismic response of structural systems, a pair of closely related stochastic ground motion models is adopted here. The first model (referred to as ground motion model I) corresponds to a fully nonstationary stochastic earthquake ground motion model previously developed by the authors. The second model (referred to as ground motion model II) is nonstationary in amplitude only and is derived from the first model. Ground motion models I and II have the same mean‐square function and global frequency content but different features of time variation in the frequency content, in that no time variation of the frequency content exists in ground motion model II. New explicit closed‐form solutions are derived for the response of linear elastic SDOF and MDOF systems subjected to stochastic ground motion model II. New analytical solutions for the evolutionary cross‐correlation and cross‐PSD functions between the ground motion input and the structural response are also derived for linear systems subjected to ground motion model I. Comparative analytical results are presented to quantify the effects of the time‐varying frequency content of earthquake ground motions on the structural response of linear elastic systems. It is found that the time‐varying frequency content in the seismic input can have significant effects on the stochastic properties of system response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A stochastic approach for obtaining reliable estimates of the peak response of nonlinear systems to excitations specified via a design seismic spectrum is proposed. This is achieved in an efficient manner without resorting to numerical integration of the governing nonlinear equations of motion. First, a numerical scheme is utilized to derive a power spectrum which is compatible in a stochastic sense with a given design spectrum. This power spectrum is then treated as the excitation spectrum to determine effective damping and stiffness coefficients corresponding to an equivalent linear system (ELS) via a statistical linearization scheme. Further, the obtained coefficients are used in conjunction with the (linear) design spectrum to estimate the peak response of the original nonlinear systems. The cases of systems with piecewise linear stiffness nonlinearity, along with bilinear hysteretic systems are considered. The seismic severity is specified by the elastic design spectrum prescribed by the European aseismic code provisions (EC8). Monte Carlo simulations pertaining to an ensemble of nonstationary EC8 design spectrum compatible accelerograms are conducted to confirm that the average peak response of the nonlinear systems compare reasonably well with that of the ELS, within the known level of accuracy furnished by the statistical linearization method. In this manner, the proposed approach yields ELS which can replace the original nonlinear systems in carrying out computationally efficient analyses in the initial stages of the aseismic design of structures under severe seismic excitations specified in terms of a design spectrum.  相似文献   

14.
粘弹性阻尼器连接的相邻结构非线性随机地震反应分析   总被引:7,自引:1,他引:7  
本文用随机等价线性化方法探讨了相邻结构之间用粘弹性阻尼器连接后的非线性随机地震反应,分析发现:在小震作用下,粘弹性阻尼器对相邻结构可以同时达到较好的控制效果;但是在强烈地震作用下,安装粘弹性阻尼器有可能会在减少一个结构的地震反应的同时,增大另外一个结构的地震反应。  相似文献   

15.
The seismic events occurred in recent years highlighted the extreme vulnerability of large part of the existing constructed facilities and the need to adopt innovative solutions to improve their seismic performance. With this purpose, the possible exploitation of a seismic early warning system (SEWS) in the framework of semi-active structural control using magnetorheological (MR) dampers is herein investigated. The main idea consists in the use of these time-varying properties devices to control an hosting structure by changing their behaviour according to an anticipate estimate, provided by the SEWS, of the peak ground acceleration (PGA) of the incoming earthquake. In this way, the dampers are able to adapt their mechanical characteristics to the specific earthquake obtaining the optimal seismic response. The present paper describes the application of this protection technique to a case-study problem, a highway bridge located in Southern California. The seismic response of the benchmark bridge is investigated by nonlinear time-history analyses by adopting 16 real earthquake ground excitations. These accelerograms cover a wide variety of magnitudes, distances to fault and soil types. Possible errors on estimation of PGA provided by SEWS and their effects on the proposed control system are also considered. The results obtained confirm that unavoidable errors in the PGA estimates provided by the SEWS do not propagate to the seismic response. Conversely, the proposed strategy turns out to damp these errors, resulting in a robust seismic behaviour of the protected structure.  相似文献   

16.
Viscoelastic–plastic (VEP) dampers are hybrid passive damping devices that combine the advantages of viscoelastic and hysteretic damping. This paper first formulates a semi‐analytical procedure for predicting the peak response of nonlinear SDOF systems equipped with VEP dampers, which forms the basis for the generation of Performance Spectra that can then be used for direct performance assessment and optimization of VEP damped structures. This procedure is first verified against extensive nonlinear time‐history analyses based on a Kelvin viscoelastic model of the dampers, and then against a more advanced evolutionary model that is calibrated to characterization tests of VEP damper specimens built from commercially available viscoelastic damping devices, and an adjustable friction device. The results show that the proposed procedure is sufficiently accurate for predicting the response of VEP systems without iterative dynamic analysis for preliminary design purposes. A design method based on the Performance Spectra framework is then proposed for systems equipped with passive VEP dampers and is applied to enhance the seismic response of a six‐storey steel moment frame. The numerical simulation results on the damped structure confirm the use of the Performance Spectra as a convenient and accurate platform for the optimization of VEP systems, particularly during the initial design stage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
巨子型有控结构体系中黏滞阻尼器参数研究   总被引:2,自引:0,他引:2  
巨子型有控结构体系(Mega-sub Controlled Structure System,即MSCSS)是一种新型的超高层建筑结构体系.本文针对MSCSS的构造特点,提出一种安装黏滞阻尼器的新的布置方案,通过研究该布置方案中取不同黏滞阻尼器参数时巨子型有控结构体系在罕遇地震作用下的动力响应,提出了与该结构体系动力特...  相似文献   

18.
The effectiveness of viscous and viscoelastic dampers for seismic response reduction of structures is quite well known in the earthquake engineering community. This paper deals with the optimal utilization of these dampers in a structure to achieve a desired performance under earthquake‐induced ground excitations. Frequency‐dependent and ‐independent viscous dampers and viscoelastic dampers have been considered as the devices of choice. To determine the optimal size and location of these dampers in the structure, a genetic algorithm is used. The desired performance is defined in terms of several different forms of performance functions. The use of the genetic approach is not limited to any particular form of performance function as long as it can be calculated numerically. For illustration, numerical examples for different building structures are presented showing the distribution and size of different dampers required to achieve a desired level of reduction in the response or a performance index. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A new concept for the earthquake resistant design of timber shear wall structures is proposed. By providing friction devices in the corners of the framing system of the shear wall, its earthquake resistance and damage control potential can be enhanced considerably. During severe earthquake excitations, the friction devices slip and a large portion of the seismic energy input is dissipated by friction rather than by inelastic deformation of the sheathing-to-framing connectors. A simple numerical model is developed and results of inelastic time-history dynamic analyses show the superior performance of the friction damped timber shear walls compared to conventional shear wall systems. The proposed friction devices act both as safety valves by limiting the inertia forces transmitted to the structure, and as structural dampers by dissipating a significant portion of the seismic energy input. The devices can be used in any configuration of the framing system to accommodate architectural or construction requirements. The damping system may also be conveniently incorporated in existing timber shear wall buildings to upgrade significantly their earthquake resistance.  相似文献   

20.
This paper concerns the seismic response of structures isolated at the base by means of High Damping Rubber Bearings (HDRB). The analysis is performed by using a stochastic approach, and a Gaussian zero mean filtered non‐stationary stochastic process is used in order to model the seismic acceleration acting at the base of the structure. More precisely, the generalized Kanai–Tajimi model is adopted to describe the non‐stationary amplitude and frequency characteristics of the seismic motion. The hysteretic differential Bouc–Wen model (BWM) is adopted in order to take into account the non‐linear constitutive behaviour both of the base isolation device and of the structure. Moreover, the stochastic linearization method in the time domain is adopted to estimate the statistical moments of the non‐linear system response in the state space. The non‐linear differential equation of the response covariance matrix is then solved by using an iterative procedure which updates the coefficients of the equivalent linear system at each step and searches for the solution of the response covariance matrix equation. After the system response variance is estimated, a sensitivity analysis is carried out. The final aim of the research is to assess the real capacity of base isolation devices in order to protect the structures from seismic actions, by avoiding a non‐linear response, with associated large plastic displacements and, therefore, by limiting related damage phenomena in structural and non‐structural elements. In order to attain this objective the stochastic response of a non‐linear n‐dof shear‐type base‐isolated building is analysed; the constitutive law both of the structure and of the base devices is described, as previously reported, by adopting the BWM and by using appropriate parameters for this model, able to suitably characterize an ordinary building and the base isolators considered in the study. The protection level offered to the structure by the base isolators is then assessed by evaluating the reduction both of the displacement response and the hysteretic dissipated energy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号