首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Future climate projections of Global Climate Models (GCMs) under different emission scenarios are usually used for developing climate change mitigation and adaptation strategies. However, the existing GCMs have only limited ability to simulate the complex and local climate features, such as precipitation. Furthermore, the outputs provided by GCMs are too coarse to be useful in hydrologic impact assessment models, as these models require information at much finer scales. Therefore, downscaling of GCM outputs is usually employed to provide fine-resolution information required for impact models. Among the downscaling techniques based on statistical principles, multiple regression and weather generator are considered to be more popular, as they are computationally less demanding than the other downscaling techniques. In the present study, the performances of a multiple regression model (called SDSM) and a weather generator (called LARS-WG) are evaluated in terms of their ability to simulate the frequency of extreme precipitation events of current climate and downscaling of future extreme events. Areal average daily precipitation data of the Clutha watershed located in South Island, New Zealand, are used as baseline data in the analysis. Precipitation frequency analysis is performed by fitting the Generalized Extreme Value (GEV) distribution to the observed, the SDSM simulated/downscaled, and the LARS-WG simulated/downscaled annual maximum (AM) series. The computations are performed for five return periods: 10-, 20-, 40-, 50- and 100-year. The present results illustrate that both models have similar and good ability to simulate the extreme precipitation events and, thus, can be adopted with confidence for climate change impact studies of this nature.  相似文献   

2.
The aim of this study is to estimate likely changes in flood indices under a future climate and to assess the uncertainty in these estimates for selected catchments in Poland. Precipitation and temperature time series from climate simulations from the EURO-CORDEX initiative for the periods 1971–2000, 2021–2050 and 2071–2100 following the RCP4.5 and RCP8.5 emission scenarios have been used to produce hydrological simulations based on the HBV hydrological model. As the climate model outputs for Poland are highly biased, post processing in the form of bias correction was first performed so that the climate time series could be applied in hydrological simulations at a catchment-scale. The results indicate that bias correction significantly improves flow simulations and estimated flood indices based on comparisons with simulations from observed climate data for the control period. The estimated changes in the mean annual flood and in flood quantiles under a future climate indicate a large spread in the estimates both within and between the catchments. An ANOVA analysis was used to assess the relative contributions of the 2 emission scenarios, the 7 climate models and the 4 bias correction methods to the total spread in the projected changes in extreme river flow indices for each catchment. The analysis indicates that the differences between climate models generally make the largest contribution to the spread in the ensemble of the three factors considered. The results for bias corrected data show small differences between the four bias correction methods considered, and, in contrast with the results for uncorrected simulations, project increases in flood indices for most catchments under a future climate.  相似文献   

3.
Projecting changes in the frequency and intensity of future precipitation and flooding is critical for the development of social infrastructure under climate change. The Mekong River is among the world's large-scale rivers severely affected by climate change. This study aims to define the duration of precipitation contributing to peak floods based on its correlation with peak discharge and inundation volume in the Lower Mekong Basin (LMB). We assessed the changes in precipitation and flood frequency using a large ensemble Database for Policy Decision-Making for Future Climate Change (d4PDF). River discharge in the Mekong River Basin (MRB) and flood inundation in the LMB were simulated by a coupled rainfall-runoff and inundation (RRI) model. Results indicated that 90-day precipitation counting backward from the day of peak flooding had the highest correlation with peak discharge (R2 = .81) and inundation volume (R2 = .81). The ensemble mean of present simulation of d4PDF (1951–2010) showed good agreement with observed extreme flood events in the LMB. The probability density of 90-day precipitation shifted from the present to future climate experiments with a large variation of mean (from 777 to 900 mm) and SD (from 57 to 96 mm). Different patterns of sea surface temperature significantly influence the variation of precipitation and flood inundation in the LMB in the future (2051–2110). Extreme flood events (50-year, 100-year, and 1,000-year return periods) showed increases in discharge, inundation area, and inundation volume by 25%–40%, 19%–36%, and 23%–37%, respectively.  相似文献   

4.
An appropriate, rapid and effective response to extreme precipitation and any potential flood disaster is essential. Providing an accurate estimate of future changes to such extreme events due to climate change are crucial for responsible decision making in flood risk management given the predictive uncertainties. The objective of this article is to provide a comparison of dynamically downscaled climate models simulations from multiple model including 12 different combinations of General Circulation Model (GCM)–regional climate model (RCM), which offers an abundance of additional data sets. The three major aspects of this study include the bias correction of RCM scenarios, the application of a newly developed performance metric and the extreme value analysis of future precipitation. The dynamically downscaled data sets reveal a positive overall bias that is removed through quantile mapping bias correction method. The added value index was calculated to evaluate the models' simulations. Results from this metric reveal that not all of the RCMs outperform their host GCMs in terms of correlation skill. Extreme value theory was applied to both historic, 1980–1998, and future, 2038–2069, daily data sets to provide estimates of changes to 2‐ and 25‐year return level precipitation events. The generalized Pareto distribution was used for this purpose. The Willamette River basin was selected as the study region for analysis because of its topographical variability and tendency for significant precipitation. The extreme value analysis results showed significant differences between model runs for both historical and future periods with considerable spatial variability in precipitation extremes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The analysis of the impact of climate change (CC) on flood peaks has been the subject of several studies. However, a flood is characterized not only by its peak, but also by other characteristics such as its volume and duration. Little effort has been directed towards the study of the impact of CC on these characteristics. The aim of the present study is to evaluate and compare flood characteristics in a CC context, in the watershed of the Baskatong reservoir (Province of Québec, Canada). Comparisons are based on observed flow data and simulated flow series obtained from hydrological models using meteorological data from a regional climate model for a reference period (1971–2000) and a future period (2041–2070). To this end, two hydrological models HSAMI and HYDROTEL are considered. Correlations, stationarity, change‐points, and the multivariate behaviour of flood series were studied. The results show that, at various levels, all flood characteristics could be affected by CC. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Abstract

The physically-based flood frequency models use readily available rainfall data and catchment characteristics to derive the flood frequency distribution. In the present study, a new physically-based flood frequency distribution has been developed. This model uses bivariate exponential distribution for rainfall intensity and duration, and the Soil Conservation Service-Curve Number (SCS-CN) method for deriving the probability density function (pdf) of effective rainfall. The effective rainfall-runoff model is based on kinematic-wave theory. The results of application of this derived model to three Indian basins indicate that the model is a useful alternative for estimating flood flow quantiles at ungauged sites.  相似文献   

8.
9.
10.
This work examines future flood risk within the context of integrated climate and hydrologic modelling uncertainty. The research questions investigated are (1) whether hydrologic uncertainties are a significant source of uncertainty relative to other sources such as climate variability and change and (2) whether a statistical characterization of uncertainty from a lumped, conceptual hydrologic model is sufficient to account for hydrologic uncertainties in the modelling process. To investigate these questions, an ensemble of climate simulations are propagated through hydrologic models and then through a reservoir simulation model to delimit the range of flood protection under a wide array of climate conditions. Uncertainty in mean climate changes and internal climate variability are framed using a risk‐based methodology and are explored using a stochastic weather generator. To account for hydrologic uncertainty, two hydrologic models are considered, a conceptual, lumped parameter model and a distributed, physically based model. In the conceptual model, parameter and residual error uncertainties are quantified and propagated through the analysis using a Bayesian modelling framework. The approach is demonstrated in a case study for the Coralville Dam on the Iowa River, where recent, intense flooding has raised questions about potential impacts of climate change on flood protection adequacy. Results indicate that the uncertainty surrounding future flood risk from hydrologic modelling and internal climate variability can be of the same order of magnitude as climate change. Furthermore, statistical uncertainty in the conceptual hydrological model can capture the primary structural differences that emerge in flood damage estimates between the two hydrologic models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The present study is aimed to: (a) project future low flow conditions in the five largest river basins in Germany, and (b) to account for the projections uncertainties. The eco-hydrological model SWIM was driven by different regional climate models (REMO, CCLM, and Wettreg) to simulate daily river discharges in each study basin. The 50-year low flow was estimated for the period 1961 to 2000, and its return period was assessed for two scenario periods, 2021–2060 and 2061–2100, using the generalized extreme value distribution. The 50-year low flow is likely to occur more frequently in western, southern, and parts of central Germany after 2061, as suggested by more than or equal to 80% of the model runs. The current low flow period (from August to September) may be extended until late autumn at the end of this century. The return period of 50-year deficit volume shows a similar temporal and spatial pattern of change as for the low flow, indicating slightly less severe conditions with lower confidence. When compared with flood projections for the same area using the same models, the severer low flows projected in this study appear more pronounced, consistent, and have lower uncertainty.  相似文献   

12.
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.  相似文献   

13.
Yi-Ru Chen  Bofu Yu 《水文科学杂志》2013,58(10):1759-1769
Abstract

Over the past century, land-use has changed in southeast Queensland, and when coupled with climatic change, the risk of flooding has increased. This research aims to examine impacts of climate and land-use changes on flood runoff in southeast Queensland, Australia. A rainfall–runoff model, RORB, was calibrated and validated using observed flood hydrographs for one rural and one urbanized catchment, for 1961–1990. The validated model was then used to generate flood hydrographs using projected rainfall based on two climate models: the Geophysical Fluid Dynamics Laboratory Climate Model 2.1 (GFDL CM2.1) and the Conformal-Cubic Atmospheric Model (CCAM), for 2016–2045. Projected daily rainfall for the two contrasting periods was used to derive adjustment factors for a given frequency of occurrence. Two land-use change scenarios were used to evaluate likely impacts. Based on the projected rainfall, the results showed that, in both catchments, future flood magnitudes are unlikely to increase for large flood events. Extreme land-use change would significantly impact flooding in the rural catchment, but not the urbanized catchment.
Editor Z.W. Kundzewicz; Associate editor Y. Gyasi-Agyei  相似文献   

14.
Abstract

The impulse response of a linear convective-diffusion analogy (LD) model used for flow routing in open channels is proposed as a probability distribution for flood frequency analysis. The flood frequency model has two parameters, which are derived using the methods of moments and maximum likelihood. Also derived are errors in quantiles for these parameter estimation methods. The distribution shows that the two methods are equivalent in terms of producing mean values—the important property in case of unknown true distribution function. The flood frequency model is tested using annual peak discharges for the gauging sections of 39 Polish rivers where the average value of the ratio of the coefficient of skewness to the coefficient of variation equals about 2.52, a value closer to the ratio of the LD model than to the gamma or the lognormal model. The likelihood ratio indicates the preference of the LD over the lognormal for 27 out of 39 cases. It is found that the proposed flood frequency model represents flood frequency characteristics well (measured by the moment ratio) when the LD flood routing model is likely to be the best of all linear flow routing models.  相似文献   

15.
Particular attention is given to the reliability of hydrological modelling results. The accuracy of river runoff projection depends on the selected set of hydrological model parameters, emission scenario and global climate model. The aim of this article is to estimate the uncertainty of hydrological model parameters, to perform sensitivity analysis of the runoff projections, as well as the contribution analysis of uncertainty sources (model parameters, emission scenarios and global climate models) in forecasting Lithuanian river runoff. The impact of model parameters on the runoff modelling results was estimated using a sensitivity analysis for the selected hydrological periods (spring flood, winter and autumn flash floods, and low water). During spring flood the results of runoff modelling depended on the calibration parameters that describe snowmelt and soil moisture storage, while during the low water period—the parameter that determines river underground feeding was the most important. The estimation of climate change impact on hydrological processes in the Merkys and Neris river basins was accomplished through the combination of results from A1B, A2 and B1 emission scenarios and global climate models (ECHAM5 and HadCM3). The runoff projections of the thirty-year periods (2011–2040, 2041–2070, 2071–2100) were conducted applying the HBV software. The uncertainties introduced by hydrological model parameters, emission scenarios and global climate models were presented according to the magnitude of the expected changes in Lithuanian rivers runoff. The emission scenarios had much greater influence on the runoff projection than the global climate models. The hydrological model parameters had less impact on the reliability of the modelling results.  相似文献   

16.
Abstract

This study aims to assess the potential impact of climate change on flood risk for the city of Dayton, which lies at the outlet of the Upper Great Miami River Watershed, Ohio, USA. First the probability mapping method was used to downscale annual precipitation output from 14 global climate models (GCMs). We then built a statistical model based on regression and frequency analysis of random variables to simulate annual mean and peak streamflow from precipitation input. The model performed well in simulating quantile values for annual mean and peak streamflow for the 20th century. The correlation coefficients between simulated and observed quantile values for these variables exceed 0.99. Applying this model with the downscaled precipitation output from 14 GCMs, we project that the future 100-year flood for the study area is most likely to increase by 10–20%, with a mean increase of 13% from all 14 models. 79% of the models project increase in annual peak flow.

Citation Wu, S.-Y. (2010) Potential impact of climate change on flooding in the Upper Great Miami River Watershed, Ohio, USA: a simulation-based approach. Hydrol. Sci. J. 55(8), 1251–1263.  相似文献   

17.
M. Nouh 《水文研究》2006,20(11):2393-2413
Real data on wadi flood flows from Saudi Arabia, Yemen, Oman, Kuwait, UAE, Bahrain and Qatar were used to develop methodologies for the prediction of annual maximum flows and average monthly flows in the Arabian Gulf states. For the prediction of annual maximum floods, three methods have been investigated. In the first method, regional curves were developed and used together with the mean annual flood flow, estimated from the characteristics of the drainage basin, to estimate flood flows at a location in the basin. The second method fits data to various probability distribution functions, with a developed methodology introduced to account for floods generated by more than one system of climate, and the best fitted function was used for flood estimates. In the third method, only floods over a threshold, which depends on characteristics of the drainage basin, were considered and modelled. For the prediction of average monthly flows, stochastic simulation approaches of flood frequency analysis were used. Each of the prediction methods was verified by being applied in 40 different drainage basins. Based on the results obtained, recommendations were made on the best method to be applied (at present) by design engineers in the Arabian Gulf states. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper discusses some aspects of flood frequency analysis using the peaks-over-threshold model with Poisson arrivals and generalized Pareto (GP) distributed peak magnitudes under nonstationarity, using climate covariates. The discussion topics were motivated by a case study on the influence of El Niño–Southern Oscillation on the flood regime in the Itajaí river basin, in Southern Brazil. The Niño3.4 (DJF) index is used as a covariate in nonstationary estimates of the Poisson and GP distributions scale parameters. Prior to the positing of parametric dependence functions, a preliminary data-driven analysis was carried out using nonparametric regression models to estimate the dependence of the parameters on the covariate. Model fits were evaluated using asymptotic likelihood ratio tests, AIC, and Q–Q plots. Results show statistically significant and complex dependence relationships with the covariate on both nonstationary parameters. The nonstationary flood hazard measure design life level (DLL) was used to compare the relative performances of stationary and nonstationary models in quantifying flood hazard over the period of records. Uncertainty analyses were carried out in every step of the application using the delta method.  相似文献   

19.
Abstract

There is increasing concern that flood risk will be exacerbated in Antalya, Turkey as a result of global-warming-induced, more frequent and intensive, heavy rainfalls. In this paper, first, trends in extreme rainfall indices in the Antalya region were analysed using daily rainfall data. All stations in the study area showed statistically significant increasing trends for at least one extreme rainfall index. Extreme rainfall datasets for current (1970–1989) and future periods (2080–2099) were then constructed for frequency analysis using the peaks-over-threshold method. Frequency analysis of extreme rainfall data was performed using generalized Pareto distribution for current and future periods in order to estimate rainfall intensities for various return periods. Rainfall intensities for the future period were found to increase by up to 23% more than the current period. This study contributed to better understanding of climate change effects on extreme rainfalls in Antalya, Turkey.  相似文献   

20.
In the present paper, an ensemble approach is proposed to estimate possible modifications caused by climate changes in the extreme precipitation regime, with the rain gauge Napoli Servizio Idrografico (Naples, Italy) chosen as test case. The proposed research, focused on the analysis of extremes on the basis of climate model simulations and rainfall observations, is structured in several consecutive steps. In the first step, all the dynamically downscaled EURO‐CORDEX simulations at about 12 km horizontal resolution are collected for the current period 1971–2000 and the future period 2071–2100, for the RCP4.5 and the RCP8.5 concentration scenarios. In the second step, the significance of climate change effects on extreme precipitation is statistically tested by comparing current and future simulated data and bias‐correction is performed by means of a novel approach based on a combination of simple delta change and quantile delta mapping, in compliance with the storm index method. In the third step, two different ensemble models are proposed, accounting for the variabilities given by the use of different climate models and for their hindcast performances. Finally, the ensemble models are used to build novel intensity–duration–frequency curves, and their effects on the early warning system thresholds for the area of interest are evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号