首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have investigated ion outflows observed by the Akebono satellite and the EISCAT radar in the nightside auroral region on February 16, 1993. The Akebono satellite at about 7000 km altitude observed the region of suprathermal ion outflows and inverted-V type electron precipitation alternately with a horizontal separation of 70–150 km at the ionospheric level. These two regions corresponded to the upward and downward field-aligned current region, respectively, and intense ELF waves were observed in the ion outflow region. From the EISCAT VHF radar observation (Common Program 7 mode), it has been suggested that the ion outflow region and the enhanced electron temperature region were aligned along geomagnetic field lines with vertical and horizontal separations of 200–400 and 70–80 km, respectively and these two regions convected equatorward across the EISCAT radar at Tromsø site. Based on these results, we propose a model for this ion outflow as follows. In the nightside auroral region, downward FAC regions exist near the edge of the inverted-V type electron precipitation regions. ELF waves are excited probably by a plasma instability due to the upward thermal electron beam carrying the downward FACs, and these ELF waves cause transverse ion heating at the top of the ionosphere. The produced ion conics contribute significantly to ion outflow.  相似文献   

2.
It is now well known that there is a substantial outflow of ionospheric plasma from the terrestrial ionosphere at high latitudes. The outflow consists of light thermal ions (H+, He+) as well as both light and heavy energized ions (H+, He+, O+, N+, NO+, O2+, N2+). The thermal ion outflows tend to be associated with the classical polar wind, while the energized ions are probably associated with either auroral energization processes or nonclassical polar wind processes. Part of the problem with identifying the exact cause of a given outflow relates to the fact that the ionosphere continuously convects into and out of the various high-latitude regions (sunlight, cusp, polar cap, nocturnal oval) and the time-constant for outflow is comparable to the convection time. Therefore, it is difficult to separate and quantify the possible outflow mechanisms. Some of these mechanisms are as follows. In sunlit regions, the photoelectrons can heat the thermal electrons and the elevated electron temperature acts to increase the polar wind outflow rate. At high altitudes, the escaping photoelectrons can also accelerate the polar wind as they drag the thermal ions with them. In the cusp and auroral oval, the precipitating magnetospheric electrons can heat the thermal electrons in a manner similar to the photoelectrons. Also, energized ions, in the form of beams and conics, can be created in association with field-aligned auroral currents and potential structures. The cusp ion beams and conics that have been convected into the polar cap can destabilize the polar wind when they pass through it at high altitudes, thereby transferring energy to the thermal ions. Additional energization mechanisms in the polar cap include Joule heating, hot magnetospheric electrons and ions, electromagnetic wave turbulence, and centrifugal acceleration.Some of these causes of ionospheric outflow will be briefly reviewed, with the emphasis on the recent simulations of polar wind dynamics in convecting flux tubes of plasma.  相似文献   

3.
研究了中高度(离地心3-4个地球半径)极隙区上行电子束流和上行氧离子(o)锥引起的沿磁力线传播的电磁不稳定性.采用的物理模型假定:上行电子具有单能束流分布函数,而上行氧离子(o)锥可用单能环-束分布函数来描述.结果表明,左旋和右旋圆偏振的低频电磁模是不稳定的,激发不稳定性的自由能源主要由上行电子束流提供,而上行氧离子(o)锥因自由能太小只影响频率色散关系,上行粒子(电子和氧离子)与背景等离子体密度比的变化对电磁不稳定性有重要影响.这些结果对解释权隙区纬度地面站低频电磁波观测资料和理解极隙区动力学过程是很有益的.  相似文献   

4.
The sensitive method for detecting and measuring the velocity of a weak luminosity wave, traveling from bottom to top along an arc or isolated auroral beams, has been developed. This wave is caused by dispersion of precipitating electrons over velocities and by a differential atmospheric penetration of different-energy electrons, and the wave velocity gives information about the location of the electron acceleration region in the magnetosphere. The method was tested using different model signals and was used to study pulsating auroras and auroral breakup. A luminosity wave has been detected in pulsating auroras, and it has been estimated that the injection region is located at a distance of 5–6 R e . The application of the method to intensification of auroras during breakup indicated that such a wave is absent; i.e., breakup electrons being accelerated near the ionosphere at altitudes of 2000–8000 km. It has been assumed that the regions of anomalous resistance, generated in the ionosphere by field-aligned currents during the breakup phase, cause intense local field-aligned electric fields. These fields accelerate thermal electrons and form the auroral breakup pattern.  相似文献   

5.
High-resolution measurements by the double probe electric field instrument on the Freja satellite are presented. The observations show that extremely intense (up to 1 V m−1) and fine-structured (<1 km) electric fields exist at auroral latitudes within the altitude regime explored by Freja (up to 1700 km). The intense field events typically occur within the early morning sector of the auroral oval (01-07 MLT) during times of geomagnetic activity. In contrast to the observations within the auroral acceleration region characterized by intense converging electric fields associated with electron precipitation, upward ion beams and upward field-aligned currents, the intense electric fields observed by Freja are often found to be diverging and located within regions of downward field-aligned currents outside the electron aurora. Moreover, the intense fields are observed in conjunction with precipitating and transversely energized ions of energies 0.5-1 keV and may play an important role in the ion heating. The observations suggest that the intense electric field events are associated with small-scale low-conductivity ionospheric regions void of auroral emissions such as east-west aligned dark filaments or vortex streets of black auroral curls located between or adjacent to auroral arcs within the morningside diffuse auroral region. We suggest that these intense fields also exist at ionospheric altitudes although no such observations have yet been made. This is possible since the height-integrated conductivity associated with the dark filaments may be as low as 0.1 S or less. In addition, Freja electric field data collected outside the auroral region are discussed with particular emphasis on subauroral electric fields which are observed within the 19–01 MLT sector between the equatorward edge of the auroral oval and the inner edge of the ring current.  相似文献   

6.
A new phenomenon was found at the polar edge of the auroral oval in the postmidnight-morning sectors: field-aligned (FA) high-energy upward electron beams in the energy range 20–40 keV at altitudes about 3 RE, accompanied by bidirectional electron FA beams of keV energy. The beam intensity often reaches more than 0.5 · 103 electrons/s · sr · keV · cm2, and the beams are observed for a relatively long time (3 102–103 s), when the satellite at the apogee moves slowly in the ILAT-MLT frame. A qualitative scenario of the acceleration mechanism is proposed, according to which the satellite is within a region of bidirectional acceleration where a stochastic FA acceleration is accomplished by waves with fluctuating FA electric field components in both directions.  相似文献   

7.
Intense (106 cm−2 sr−1 s−1) fluxes of upflowing ENAs from the polar cap have been observed in the energy range 0.1–13 keV (hydrogen assumed) from the Astrid satellite at 1000 km altitude. If a source altitude of 400 km is assumed, the ENA emissions come from an arc-like region at magnetic latitudes 70–85° extending from dusk over to the nightside. Simulated images show that the observed emissions may be the ENA-albedo effect of the auroral ion precipitation. It is also possible that the observed emissions may originate from upward accelerated ions with cone-like pitch-angle distributions charge exchanging with the upper atmosphere.  相似文献   

8.
The polar wind is an ambipolar outflow of thermal plasma from the high-latitude ionosphere to the magnetosphere, and it primarily consists of H+, He+ and O+ ions and electrons. Statistical and episodic studies based primarily on ion composition observations on the ISIS-2, DE-1, Akebono and Polar satellites over the past four decades have confirmed the existence of the polar wind. These observations spanned the altitude range from 1000 to ∼50,500 km, and revealed several important features in the polar wind that are unexpected from “classical” polar wind theories. These include the day–night asymmetry in polar wind velocity, which is 1.5–2.0 times larger on the dayside; appreciable O+ flow at high altitudes, where the velocity at 5000–10,000 km is of 1–4 km/s; and significant electron temperature anisotropy in the sunlit polar wind, in which the upward-to-downward electron temperature ratio is 1.5–2. These features are attributable to a number of “non-classical” polar wind ion acceleration mechanisms resulting from strong ionospheric convection, enhanced electron and ion temperatures, and escaping atmospheric photoelectrons. The observed polar wind has an averaged ion temperature of ∼0.2–0.3 eV, and a rate of ion velocity increase with altitude that correlates strongly with electron temperature and is greatest at low altitudes (<4000 km for H+). The rate of velocity increase below 4000 km is larger at solar minimum than at solar maximum. Above 4000 km, the reverse is the case. This suggests that the dominant polar wind ion acceleration process may be different at low and high altitudes, respectively. At a given altitude, the polar wind velocity is highly variable, and is on average largest for H+ and smallest for O+. Near solar maximum, H+, He+, and O+ ions typically reach a velocity of 1 km/s near 2000, 3000, and 6000 km, respectively, and velocities of 12, 7, and 4 km/s, respectively, at 10,000 km altitude. Near solar minimum, the velocity of all three species is smaller at high altitudes. Observationally it is not always possible to unambiguously separate an energized “non-polar-wind” ion such as a low-energy “cleft ion fountain” ion that has convected into a polar wind flux tube from an energized “polar-wind” ion that is accelerated locally by “non-classical” polar-wind ion acceleration mechanisms. Significant questions remain on the relative contribution between the cleft ion fountain, auroral bulk upflow, and the topside polar-cap ionosphere to the O+ polar wind population at high altitudes, the effect of positive spacecraft charging on the lowest-energy component of the H+ polar wind population, and the relative importance of the various classical and non-classical ion acceleration mechanisms. These questions pose several challenges in future polar wind observations: These include measurement of the lowest-energy component in the presence of positive spacecraft potential, definitive determination and if possible active control of the spacecraft potential, definitive discrimination between polar wind and other inter-mixed thermal ion populations, measurement of the three-dimensional ion drift velocity vector and the parallel and perpendicular ion temperatures or the detailed three-dimensional velocity distribution function, and resolution of He+ and other minor ion species in the polar wind population.  相似文献   

9.
本文讨论了等离子体湍流对电子加速的两种模型:(1)假定在空间中存在一个空间均匀的等离子体湍流区,当具有一定初始分布的电子束通过此湍流区时,研究湍流场对电子束的加速过程;(2)在某一封闭的区域中,存在着具有一定初始分布和空间均匀的等离子体,当某种类型的等离子体波突然传入此等离子体区,然后考察此区中电子的加速过程。在这两种模型中,可能存在着某种电子消失机制。假定湍谱是幂指数形式,我们给出了不同类型湍流扩散系数的普遍形式。利用较简单的数学方法,求解了包括消失过程的一维准线性动力学方程,对于给定的初始分布,得出了分布函数的解析解,并给出了平均能量时间关系的表达式。另外,对于特定的湍谱指数,解出了当平行电场和湍流同时存在时的分布函数。最后,对所得结果进行了数值分析和讨论。  相似文献   

10.
A preliminary analysis of Pc5, ULF wave activity observed with the IMAGE magnetometer array and the EISCAT UHF radar in the post midnight sector indicates that such waves can be caused by the modulation of the ionospheric conductivity as well as the wave electric field. An observed Pc5 pulsation is divided into three separate intervals based upon the EISCAT data. In the first and third, the Pc5 waves are observed only in the measured electron density between 90 and 112 km and maxima in the electron density at these altitudes are attributed to pulsed precipitation of electrons with energies up to 40 keV which result in the height integrated Hall conductivity being pulsed between 10 and 50 S. In the second interval, the Pc5 wave is observed in the F-region ion temperature, electron density and electron temperature but not in the D and E region electron densities. The analysis suggests that the wave during this interval is a coupled Alfven and compressional mode.  相似文献   

11.
The field-aligned neutral oscillations in the F-region (altitudes between 165 and 275 km) were compared using data obtained simultaneously with two independent instruments: the European Incoherent Scatter (EISCAT) UHF radar and a scanning Fabry-Perot interferometer (FPI). During the night of February 8, 1997, simultaneous observations with these instruments were conducted at Tromsø, Norway. Theoretically, the field-aligned neutral wind velocity can be obtained from the field-aligned ion velocity and by diffusion and ambipolar diffusion velocities. We thus derived field-aligned neutral wind velocities from the plasma velocities in EISCAT radar data. They were compared with those observed with the FPI (=630.0 nm), which are assumed to be weighted height averages of the actual neutral wind. The weighting function is the normalized height dependent emission rate. We used two model weighting functions to derive the neutral wind from EISCAT data. One was that the neutral wind velocity observed with the FPI is velocity integrated over the entire emission layer and multiplied by the theoretical normalized emission rate. The other was that the neutral wind velocity observed with the FPI corresponds to the velocity only around an altitude where the emission rate has a peak. Differences between the two methods were identified, but not completely clarified. However, the neutral wind velocities from both instruments had peak-to-peak correspondences at oscillation periods of about 10–40 min, shorter than that for the momentum transfer from ions to neutrals, but longer than from neutrals to ions. The synchronizing motions in the neutral wind velocities suggest that the momentum transfer from neutrals to ions was thought to be dominant for the observed field-aligned oscillations rather than the transfer from ions to neutrals. It is concluded that during the observation, the plasma oscillations observed with the EISCAT radar at different altitudes in the F-region are thought to be due to the motion of neutrals.  相似文献   

12.
考虑电子吸附效应的低电离层加热研究   总被引:2,自引:1,他引:1       下载免费PDF全文
基于低电离层自洽加热模型,综合考虑了低电离层中电子的复合效应及典型吸附效应,本文数值仿真了大功率高频无线电波持续加热低电离层所产生的电子温度、电子密度的扰动,并且首次模拟分析了由于电子温度扰动造成的加热电波自吸收效应.结果表明:电子吸收大功率加热电波能量导致了电子温度的增加,同时改变了电离层的吸收指数,引起了加热电波的自吸收效应.加热电波的自吸收效应对低电离层较高区域的电子温度扰动有重要的抑制作用.因此,随着加热频率的减小或有效辐射功率的增大,低电离层较低区域的电子温度增量明显增大而在高度100 km以上区域的电子温度增量始终较小.另一方面,随着电子温度的增加,电子的复合系数减小而电子的吸附系数增加,导致了电子密度在低电离层中较高区域出现正扰动而在较低区域出现负扰动.当饱和电子温度较大时,继续减小加热频率或增大有效辐射功率对电子密度扰动所造成的改变较小,尤其当电子温度超出复合系数和吸附系数的温度敏感区间.此外,电子温度与电子密度的饱和时间相差较大,电子温度的饱和时间为微秒量级而电子密度的饱和时间为秒量级.  相似文献   

13.
A stable evening sector are is studied using observations from the FAST satellite at 1250 km altitude and the MIRACLE ground-based network, which contains all-sky cameras, coherent radars (STARE), and magnetometers. Both FAST and STARE observe a northward electric field region of about 200 km width and a field magnitude of about 50 mV/m southward of the arc, which is a typical signature for an evening-sector arc. The field-aligned current determined from FAST electron and magnetometer data are in rather good agreement within the arcs. Outside the arcs, the electron data misses the current carriers of the downward FAC probably because it is mainly carried by electrons of smaller energy than the instrument threshold. Studying the westward propagation speed of small undulations associated with the arc using the all-sky cameras gives a velocity of about 2 km//s. This speed is higher than the background ionospheric plasma speed (about 1 km//s), but it agrees rather well with the idea originally proposed by Davis that the undulations reflect an E × B motion in the acceleration region. The ground magnetograms indicate that the main current flows slightly south of the arc. Computing the ionospheric conductivity from FAST electron data and using the ground magnetograms to estimate the current yields an ionospheric electric field pattern, in rather good agreement with FAST results.  相似文献   

14.
The occurrence frequencies of dayside ion conics with various conic angles are obtained as a function of altitude from Exos-D (Akebono) observations. We made a model calculation of ion conic evolution to match the observation results. The observed occurrence frequencies of ion conics with 80° to 90° conic angle are used as an input to the model and the occurrence frequencies of ion conics with smaller conic angles are numerically calculated at higher altitudes. The calculated occurrence frequencies are compared with the observed ones of ion conics with smaller conic angles. We take into account conic angle variation with altitude in both adiabatic and non-adiabatic cases, horizontal extension of ion conics due to E × B drift, and evolution to elevated conics and ion beams in the model. In the adiabatic case, the conic angle decreases with increasing altitude much faster than was observed. The occurrence frequency of small-angle conics is much larger than the observed value without E × B drift and evolution to the other UFIs. An agreement is obtained by assuming non-adiabatic variation of conic angles with altitude and an ion E × B drift to gyro velocity ratio of 0.08 to 0.6, depending on geomagnetic activities.  相似文献   

15.
Observations from the special UK EISCAT program UFIS are presented. UFIS is a joint UHF-VHF experiment, designed to make simultaneous measurements of enhanced vertical plasma flows in the F-region and topside ionospheres. Three distinct intervals of upward ion flow were observed. During the first event, upward ion fluxes in excess of 1013 m–2 s–1 were detected, with vertical ion velocities reaching 300 ms–1 at 800 km. The upflow was associated with the passage of an auroral arc through the radar field of view. In the F-region, an enhanced and sheared convection electric field on the leading edge of the arc resulted in heating of the ions, whilst at higher altitudes, above the precipitation region, strongly enhanced electron temperatures were observed; such features are commonly associated with the generation of plasma upflows. These observations demonstrate some of the acceleration mechanisms which can exist within the small-scale structure of an auroral arc. A later upflow event was associated with enhanced electron temperatures and only a moderate convection electric field, with no indication of significantly elevated ion temperatures. There was again some evidence of F-region particle precipitation at the time of the upflow, which exhibited vertical ion velocities of similar magnitude to the earlier upflow, suggesting that the behaviour of the electrons might be the dominant factor in this type of event. A third upflow was detected at altitudes above the observing range of the UHF radar, but which was evident in the VHP data from 600 km upwards. Smaller vertical velocities were observed in this event, which was apparently uncorrelated with any features observed at lower altitudes. Limitations imposed by the experimental conditions inhibit the interpretation of this event, although the upflow was again likely related to topside plasma heating.  相似文献   

16.
A kinetic theory is necessary to explain the electron flows forming strong field-aligned currents in the auroral region. Its construction in this paper is based on the following propositions. (a) In the equatorial region, the arrival of electrons through the lateral surface of the magnetic flux tube is compensated for by their escape along the magnetic field. This is provided by action of the pitch-angle diffusion mechanism in the presence of plasma turbulence concentrated in this region. (b) Outside the equatorial region, the distribution functions of trapped and precipitating particles become “frozen.” The distributions and particle concentrations are calculated there in a model with conservation of the total energy and the magnetic moment. (c) The quasi-neutrality condition yields a large-scale parallel electric field, which contributes to the conserved total energy. In this field, the electron acceleration occurs, causing strong field-aligned currents directed upward from the ionosphere.  相似文献   

17.
电离层加热实验中超强电子密度增强特征   总被引:2,自引:1,他引:1       下载免费PDF全文
2011年11月利用欧洲非相干散射雷达协会(EISCAT)的大功率加热设备和诊断设施开展了挪威高纬度地区电离层加热实验. 在此次加热实验中, UHF雷达探测到了十分明显的电子密度增强现象, 反射高度附近电子密度最大增幅可达269.3%, 而在远离谐振区的300~500 km及以上高度的增幅也可达30%~50%. 通过对加热前后离子线谱和数据残差的对比分析, 表明300~500 km的电子密度增强是真实可信的, 在如此大的空间范围出现增幅如此大的电子密度增强特征实属罕见. 另外通过对等离子体线谱的分析, 得到了等离子体线双谐振峰结构, 本文利用电子的速度分布函数和等离子体线谱之间的关系, 对加热实验中观测到的等离子体线谱进行了仿真, 提出了超热电子是引起本次电子密度增强的可能机制. 并利用仿真中所使用的超热电子速度参数对超热电子的电离能力、横向和纵向自由程进行了计算, 最终验证了所提出的物理机制的合理性.  相似文献   

18.
Three models for the magnetosphere-ionosphere coupling feedback instability are considered. The first model is based on demagnetization of hot ions in the plasma sheet. The instability takes place in the global magnetosphere-ionosphere system when magnetospheric electrons drift through a spatial gradient of hot magnetospheric ion population. Such a situation exists on the inner and outer edges of the plasma sheet where relatively cold magnetospheric electrons move earthward through a radial gradient of hot ions. This leads to the formation of field-aligned currents. The effect of upward field-aligned current on particle precipitation and the magnitude of ionospheric conductivity leads to the instability of this earthward convection and to its division into convection streams oriented at some angle with respect to the initial convection direction. The growth rate of the instability is maximum for structures with sizes less than the ion Larmor radius in the equatorial plane. This may lead to formation of auroral arcs with widths about 10 km. This instability explains many features of such arcs, including their conjugacy in opposite hemispheres. However, it cannot explain the very high growth rates of some auroral arcs and very narrow arcs. For such arcs another type of instability must be considered. In the other two models the instability arises because of the generation of Alfven waves from growing arc-like structures in the ionospheric conductivity. One model is based on the modulation of precipitating electrons by field-aligned currents of the upward moving Alfven wave. The other model takes into consideration the reflection of Alfven waves from a maximum in the Alfven velocity at an altitude of about 3000 km. The growth of structures in both models takes place when the ionization function associated with upward field-aligned current is shifted from the edges of enhanced conductivity structures toward their centers. Such a shift arises because the structures move at a velocity different from the E × B drift. Although both models may work, the growth rate for the model, based on the modulation of the precipitating accelerated electrons, is significantly larger than that of the model based on the Alfven wave reflection. This mechanism is suitable for generation of auroral arcs with widths of about 1 km and less. The growth rate of the instability can be as large as 1 s-1, and this mechanism enables us to justify the development of auroral arcs only in one ionosphere. It is hardly suitable for excitation of wide and conjugate auroral arcs, but it may be responsible for the formation of small-scale structures inside a wide arc.Polar Geophysical Institute, Apatity, Russia  相似文献   

19.
The medium-scale (50–200 km in the projection onto ionospheric altitudes) splitting of the field-aligned currents flowing out of the ionosphere has been considered in the case when the approximation of the distribution function of hot magnetospheric ions by the kappa distribution is taken into account. It was assumed that the condition of magnetostatic equilibrium and isotropy of hot magnetospheric plasma pressure is satisfied in the magnetosphere. The theoretical parameter of magnetospheric plasma hot stratification has been obtained for the case of ion kappa distribution. The parameter characterizes the number of structures into which the band of the field-aligned current flowing out of the ionosphere is split. The theoretical predictions have been compared with the observations on the Intercosmos-Bulgaria-1300 and Aureol-3 satellites. It has been indicated that the number of measured structures is in better agreement with that of the theoretically predicted structures in 70% of cases if the non-Maxwellian tails of ion distribution functions are taken into account.  相似文献   

20.
The simultaneous measurements of the boundary of the trapped radiation region, where auroral electrons precipitate, on the Meteor-3M satellite (the circular polar orbit at an altitude of ∼1000 km) and the westward electrojet dynamics during the main phase of a strong (Dst = −263 nT) magnetic storm that occurred on May 15, 2005, are analyzed. At the end of the first hour of the storm main phase, the nightside boundary of the trapped radiation region and the peak of the precipitating electron fluxes with a energies of ∼1 keV shifted toward the Earth to L ∼ 3. The westward electrojet center approached the same L shell. Near the boundary of the trapped radiation region, the auroral electron spectrum had the shape of typical inverted V. The differential spectrum maximum shifted to an energy of ∼100 eV, when the latitude decreased by ∼1°. The nightside boundary of the trapped radiation region, the electron precipitation equatorward boundary, and the westward electrojet center are compared with the known empirical dependences of the position of these structures on the Dst variation amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号