首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
针对黄土边坡与隧道洞口段衬砌的相互作用问题,运用数值模拟的方法分析了以不同进洞高程进洞时黄土隧道洞口段衬砌的动力响应特征和洞口仰坡的动力稳定性。结果表明:进洞高程越大,洞口段隧道衬砌的位移响应与内力响应越大;随着进洞高程的增大,坡面位移放大系数在减小,不同进洞高程进洞时坡面位移放大系数均呈先增大后减小再增大的变化趋势。在0.2~0.6H时变化最为剧烈,0.4H左右时位移放大系数达到了最大值;不同进洞高程进洞时坡面中心和水平方向距离隧道结构1.5D处的坡面位移放大系数变化趋势基本一致,其大小关系为:纯边坡位移放大系数 < 有隧道结构中面位移放大系数 < 距隧道1.5D位移放大系数;随着进洞高程的增大,剪应变增量和坡面位移均在减小,坡面的稳定性在增强。该研究可为黄土地区隧道进洞高程的选择提供一定的参考。  相似文献   

2.
张楠  严松宏    刘子阳 《世界地震工程》2019,35(3):198-203
双洞隧道主隧道与横通道交接部位是隧道抗震中的薄弱位置,以穿越高烈度区隧道为背景,采用MIDAS GTS-NX有限元分析软件,对在汶川地震动作用下的公路隧道横通道进行地震响应分析。在X方向和Y方向地震动荷载的共同作用下,通过对围岩和衬砌的计算结果研究,得出以下结论:隧道整体的最大相对位移主要发生在主隧道与横通道拱顶和连接处;衬砌相对位移随埋深增加而减小;隧道产生的横向变形更大;横通道边墙位置更容易受到剪切破坏,主隧道与横通道连接处拱脚的弯矩、剪力、最大主应力和最大剪应力最大,应重点采取设防措施。  相似文献   

3.
依托于某大直径盾构隧道工程项目,建立了基于黏弹性边界的地层-结构时程分析有限元模型。首先,基于振动台试验结果,验证了有限元数值模拟方法的有效性;进而,从软硬土层剪切波速比、软硬土层与隧道的相对位置、隧道埋深等三个方面,系统开展了上软下硬场地对大直径盾构隧道地震响应的影响研究。研究表明:上软下硬场地中的大直径盾构隧道弯矩最大值始终出现在软硬土层分界线附近。随着软硬土层剪切波速差异的增大,隧道的弯矩、剪力和接头张开量都有明显的增大,而隧道轴力和直径变形率的增大幅度较小。软硬土层与隧道的相对位置对隧道内力的影响具有不确定性。随着隧道埋深的增大,隧道弯矩、轴力和直径变形率逐渐增大。  相似文献   

4.
地震时隧道衬砌受力敏感性的简化理论分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为了分析地震区隧道对各影响因素的敏感性,把隧道简化为圆形用拟静力法考虑地震的作用;围岩压力简化为均布,运用结构力学中的力法原理,结合敏感度函数的定义,推导了衬砌的内力(弯矩、轴力、剪力)关于垂直和水平地震作用力、地震作用下增加的孔隙水压力和围岩压力的敏感度函数.并对一工程实例进行了计算.结果表明:衬砌内力对各影响因素的敏感性与各因素数值的大小无关,与衬砌结构形状及侧压力系数有关;并随着侧压力系数的增加敏感性减小,表明浅埋隧道对地震的作用更敏感;衬砌对水平地震作用敏感性最大,并指出了一些最敏感的部位;孔隙水压力的存在有助于改善隧道的受力.  相似文献   

5.
SV波以大角度斜入射时,场地伴随更大的竖向地震作用,这很可能使得地铁隧道地震响应特点异于小角度斜入射情况。基于粘弹性人工边界理论,采用频域刚度矩阵法计算任意角度斜入射SV波的地震动输入等效节点力,通过ABAQUS有限元软件建立自由场模型,验证了0°、30°、40°和50°斜入射SV波地震动输入的准确性;在此基础上建立任意角度斜入射SV波作用下的地下双线并行圆形地铁隧道地震响应分析数值模型,从场地类别、隧道埋深和双隧道间距等方面分析SV波入射角度对隧道结构横断面地震响应的影响。研究表明:入射角度0°及略大于SV波临界角的入射角度是浅埋圆形地铁隧道结构抗震的最不利角度,尤其对于Ⅱ类场地,若仅在临界角以内研究衬砌结构的地震响应,将显著低估衬砌结构的动力响应;此外,隧道埋深对衬砌动弯矩、动轴力峰值具有显著影响,这种影响与场地类别密切相关;Ⅱ类和Ⅲ类场地中小隧道间距条件下隧道间的动力相互作用对衬砌结构动力响应具有一定的增大效应,而Ⅳ类场地中可忽略隧道间的动力相互作用对衬砌结构动力响应所产生的影响。  相似文献   

6.
为研究高落差埋地管道的地震响应,进行了高落差埋地管道振动台模型试验和有限元数值模拟,探讨管道径厚比、管道倾角、地震波入射角、地震动峰值加速度和管道埋深对高落差埋地管道地震响应的影响规律。试验结果与数值模拟结果符合较好。研究结果表明,在入射角0°的地震波作用下,高落差埋地管道轴向应变峰值随着管道径厚比的增大而增大;在一定管道倾角范围内,管道轴向应变峰值随着管道倾角α的增大而增大;当地震波入射角度从0°变化到60°时,管道上下表面的轴向应变减小,侧面的轴向应变增大;管道应变随着地震动峰值加速度和管道埋深的增加而增大;相同地震作用下,管道最大轴向应变出现在下弯管1/3处附近。  相似文献   

7.
地下综合管廊由于埋深较浅,Rayleigh波能量对综合管廊的地震反应具有重要影响。建立非线性有限元三维动力数值模型,通过边界脉冲荷载生成Rayleigh波,研究Rayleigh波平行入射条件下综合管廊结构的加速度、位移和内力等响应特性,然后分别研究管廊断面尺寸、覆土厚度、Rayleigh波入射角和土体本构等因素对管廊结构动力响应特征的影响。研究结果表明:Rayleigh波平行入射作用下,综合管廊结构顶板受力表现为时而受拉以及时而受压,Rayleigh波传递过程对管廊结构受力产生不利影响;当Rayleigh波入射方向与管廊结构轴向夹角越接近90°,引起的动力响应相对越大;土体采用摩尔-库伦模型(MC模型)时,由于不能考虑材料滞回环属性对能量的耗散,相对于小应变硬化模型(HSS模型)模拟出的管廊结构内力和位移响应要大;管廊埋深越浅,结构位移响应幅值和内力响应幅度变化越大;不同截面管廊结构的纵向位移差别不大,竖向位移则随截面增大而减小,表明随着截面刚度的提高,抗变形能力增强;管廊结构内力峰值变化量随截面增大而减小,单仓结构在Rayleigh波作用下的内力响应最为显著。  相似文献   

8.
为了研究近断层地震动速度脉冲及强竖向地震动对风机塔地震响应的影响,以某陆上风电场1.5 MW风机塔为研究对象开展了结构在水平向脉冲型地震动、水平向非脉冲型地震动、水平与竖向地震动组合3种地震输入工况的时程分析。通过3种工况下塔顶位移时程、加速度时程、塔底剪力、弯矩及轴力的对比分析发现:近断层速度脉冲对结构塔顶水平位移、塔顶水平加速度、塔底剪力与弯矩均影响显著;竖向地震动会加大结构的塔顶竖向加速度响应及塔底轴力响应;随着竖向与水平加速度峰值比增大,塔顶竖向加速度响应增大,最大轴力随着峰值比增大而增大,最小轴力随着峰值比增大而减小。此外,增量动力分析表明,采用自接触的有限元模型可以更真实地预测风机塔的失稳破坏机制。  相似文献   

9.
采用动力时程法开展了拱形与矩形断面地铁车站结构地震反应的研究,分析了拱形断面和矩形断面地铁车站结构的关键截面在地震作用下的内力及变形的差异。结果表明:相比于矩形断面车站结构,拱形断面车站结构顶板边缘处和侧墙顶端的弯矩明显减小,车站侧墙顶端和顶板边缘处因承受弯矩过大而发生破坏的可能降低;内柱截面的轴压比明显减小,且与侧墙的轴压比差异显著减小,受力分配更为合理;拱形车站结构顶、底板的相对位移、内柱和侧墙的位移角相对较小。在已模拟的工况下拱形车站内力分布形式更为合理,水平变形相对较小,更有利于抗震。  相似文献   

10.
历次震害表明隧道等地下结构受地震影响较大,当地震动的卓越频率与结构的固有频率一致时,引发的共振会对结构产生更严重的破坏。针对共振这一地震中的特殊现象,通过ANSYS分析研究浅埋偏压黄土隧道在双向地震耦合作用下隧道衬砌各处的共振响应和围岩至衬砌段共振响应峰值的变化规律,同时考虑偏压角度和断面最大跨径对共振响应峰值的影响。研究结果表明:浅埋偏压黄土隧道具有多阶固有频率,衬砌的位移和应力均出现了共振现象且共振不表现出结构的自振频率特征;从围岩至衬砌段的共振响应具有放大效应;水平位移峰值随偏压角度的增大而减小;适当增大断面最大跨径对于抵抗共振是有利的;拱腰和拱脚处的主应力受共振影响较大,在隧道的抗震设计中应予以加强。  相似文献   

11.
选取某重要工程场地A3钻孔的厚度、剪切波速、密度等实际勘探数据,通过改变硬夹层的埋深,分析硬夹层不同埋深、不同地震时程对场地地震动参数的影响。研究结果表明:在硬夹层厚度不变和模型总厚度不变的情况下,地表水平向的峰值加速度随硬夹层埋深的增大而增大,但增幅逐渐减小;硬夹层埋深到达一定深度时不再影响地表水平峰值加速度;随着硬夹层埋深的增加,整个反应谱的谱值普遍增大。  相似文献   

12.
软弱土层的厚度及埋深对深厚软弱场地地震效应的影响   总被引:10,自引:0,他引:10  
就软弱土层的埋深和厚度对深厚场地地震动的影响进行了数值分析。场地1、场地2和场地3分别选自南京、盐城和天津。场地1、场地2用于分析软弱表层土的厚度对地表地震动参数的影响:场地1的软弱表层土厚度从2m依次增加到30m,构造了18个土层剖面;场地2的软弱表层土的厚度从2m依次增加到36m,构造了21个土层剖面。场地3用于分析软弱夹层的埋深和厚度对地表地震动参数的影响:软弱夹层的埋深从2m增加到62m,构造了16个剖面;软弱夹层的厚度从2m增加到10m,构造了5个剖面。选用Taft、E1 Centro和Northridge地震记录作为输入地震动,将Taft、El Centro和Northridge地震波加速度时程的峰值水平调整为0.35m/s^2,0.70m/s^2和0.98m/s^2,利用程序SHAKE91对不同的构造剖面、不同的输入地震波及不同的峰值加速度水平,共进行了507种组合的场地地震反应分析。分析表明:对于给定的输入地震动条件,当软弱表层土的厚度超过一定界限值时,地表加速度峰值及放大系数的变化已不很明显;当软弱表层土的厚度超过一定界限值时,加速度放大系数会小于1。也即软弱表层土可起到减震的作用;对于同一场地,输入地震动强度越大,此软表层厚度值越小。对于给定的输入地震动和峰值加速度水平,随着软弱夹层埋深的增加,地表加速度峰值和放大系数入都有减小的趋势,当埋深超过一定值后,地表加速度放大系数小于1.0;软弱夹层厚度对地表加速度峰值的影响与软弱夹层所处位置有关。  相似文献   

13.
研究输水隧洞的地震响应问题对引水工程的抗震设计和施工是必要的。采用波动解法,得到了P波入射时水下输水隧洞平面地震响应的解析解。通过对场地模型的分析,给出了水下场地-隧洞衬砌-隧洞内水体体系的地震响应。并着重讨论了P波入射时隧洞埋深和地表水深对衬砌结构动力响应的影响。研究表明,P波入射引起的水下输水隧洞地震响应随着地表水深的增大而增大;低频P波入射时,随着隧洞埋深的增大,隧洞衬砌的动应力逐渐增大,动位移则逐渐减小,而高频P波入射时,隧洞衬砌的动力响应随着隧洞埋深的增大而呈波动式变化。  相似文献   

14.
关于埋深对地下结构地震反应的影响的研究对象多见于地下隧道,对地铁车站地震反应受埋深影响变化规律缺乏深入研究。本文基于ANSYS有限元软件,采用改进的简化方法建立三种不同埋深的地铁车站结构有限元模型,以两种基岩波的水平向和竖向地震动作为激励,求解各模型中地铁车站结构重要部位的地震反应。分析不同埋深时地铁车站结构惯性作用、侧面土体和上部土体三个因素对地铁车站地震反应的影响情况。分析结果表明:在双向地震作用下,地铁车站侧壁弯矩、剪力、轴力和中柱轴力随埋深的增加而增加,中柱剪力和弯矩随埋深增加而减少。埋深越深,侧面土体对地铁车站地震反应影响越大;上部土体使中柱轴力不断增加;结构自身的惯性作用对其地震反应的贡献逐渐减小。  相似文献   

15.
根据《兰州轨道交通1号线一期工程地震安全性评价报告》所给出的100年超越概率63%、10%和2%的场地基岩地震加速度时程,利用有限差分软件进行地下隧道硐室的地震反应分析。在模型底部施加基岩地震动,设置监测点监测衬砌结构的弯矩、轴力及剪力随时间的变化过程,得到100年超越概率63%、10%及2%工况下的隧道结构地震响应。结果表明:隧道衬砌结构最大弯矩位于拱顶处,最大轴力位于拱顶和拱底处,最大剪力位于上侧壁或下侧壁处;隧道结构内力随着超越概率的降低而增大;以超越概率63%的结构最大内力为基准值,在超越概率10%和2%时,弯矩分别增大1.2和1.7倍,轴力分别增大1.3和1.5倍,剪力分别增大1.5和2.9倍,增幅最大。这可能预示着隧道结构在强地震动作用下会发生剪切破坏。  相似文献   

16.
基于深圳市前海自贸区填海场地某一典型的含软弱淤泥夹层钻孔剖面,对填海场地中软弱夹层的厚度和埋深对地面运动特性的影响进行分析。将原软弱夹层按2 m、4 m、6 m、8 m、10 m厚度,0 m(地表)、5 m、10 m、15 m、20 m、30 m、45 m(层底)埋深,构造出35个土层模型。利用土层一维等效线性化分析方法对上述35个土层模型进行不同超越概率地震动输入下的地震反应分析,结果表明:当输入地震动一定时,随着软弱夹层埋深的增加,地表加速度峰值放大倍数k逐渐减小,埋深超过一定深度后,k值小于1;随着软弱夹层的厚度增大,加速度峰值放大倍数k先增显大后减小;随着输入地震动的增大,各工况下地震地表加速度峰值放大倍数k相应都减小,地表加速度峰值减小明显。  相似文献   

17.
土与地下结构在强震作用下可能会发生脱离和滑移,对地下结构的动力特性有较大的影响。研究了FLAC软件中接触面单元的力学原理,利用该软件对圆形隧道进行了地震反应模拟分析,对比分析了土与隧道衬砌之间考虑滑移与未考虑滑移两种情况下隧道的动力响应,给出了隧道衬砌不同位置处围岩与衬砌相对滑移量的分布规律。结果表明:考虑土与衬砌之间的滑移时,隧道衬砌的动轴力极值要明显低于未考虑滑移的情况;隧道衬砌的动弯矩极值和动剪力极值要高于未考虑滑移时的结果;圆形隧道的底部与两侧滑移量较大。在实际抗震设计中应考虑土与衬砌之间滑移对隧道抗震性能的影响。  相似文献   

18.
本文依托西安地铁5号线某区间工程,针对矿山法隧道与盾构法隧道接口处断面突变条件下的结构抗震性能进行了研究,研究表明,在地震作用下,当两者接口处隧道断面高差为3.5m时,隧道横向强度与变形、纵向抗拉与抗压均能满足规范要求。随着隧道断面高差的增大,结构变形也相应增大,接口处为结构抗震薄弱环节。当接口处矿山法隧道断面增大时,地表位移及盾构法隧道拱顶、拱底的相对位移差略有增大,而矿山法隧道拱顶、拱底相对位移增长趋势较为明显。当接口处隧道断面高差介于4—7.5m时,矿山法隧道拱顶、拱底相对位移明显增大,不利于结构抗震。因此为确保地震作用下不同断面隧道相接处的结构抗震满足要求,建议断面高差控制在4.0m以内,可将矿山法隧道设计成刚柔结合的复合式衬砌结构,同时可考虑加固地层、设置变形缝或柔性接缝,并在条件允许时适当减少衬砌结构厚度等。研究结论可为类似工程的设计与施工提供理论支撑。  相似文献   

19.
软土层几何特性与剪切波速对场地峰值加速度的影响   总被引:1,自引:1,他引:0  
软土层对场地地震动的影响一直以来是地震工程学的研究重点。本文应用一维真非线性场地反应分析方法,对某单层匀质场地内软土层的几何特征(厚度与埋深)和剪切波速变化对地面峰值加速度的影响进行了数值分析。研究结果表明:软土层的存在使得场地加速度幅值分布在软土层处发生突变,随着软土层几何特性和剪切波速的不同,这种突变可能使得地面峰值加速度增大或减小;存在一个由软土层厚度、埋深和相对剪切波速三个参数构成的临界状态面,当软土层的状态位于临界面以内时,软土层对地面峰值加速度起放大效应,且加速度效应系数随着上述三个变量的增大表现出先增大后减小的变化规律;当软土层位于临界面以外时,其对地面峰值加速度起衰减效应,加速度效应系数随着上述三个变量的增大而减小。根据算例的参数分析建立了其临界面方程,并提出了估计软土层加速度效应系数的经验公式,可为类似问题提供参考。  相似文献   

20.
禹海涛  李晶  王祺 《地震学报》2022,44(1):123-131
为探讨“最不利地震动”概念在地下结构抗震设计中的适用性,以软土地铁区间隧道为对象建立相应的地层-结构动力分析模型。以直径变形率为分析指标,基于动力时程方法研究18条不同输入地震动作用下隧道结构动力响应的分布及差异性,得出基于隧道地震响应的输入地震动排序,并通过调幅手段对比分析了地面峰值加速度(PGA)和隧道埋深变化对隧道结构地震动响应排序的影响规律。最后,评价了不同输入地震动参数,包括峰值加速度、峰值速度、峰值位移、绝对累积速度(CAV)和阿里亚斯(Arias)强度(IA)与隧道地震响应之间的相关性。分析结果表明:① 随着PGA从0.5 m/s2增加到2 m/s2,地震动排序发生明显变化,并且不同输入地震动引起的隧道地震响应差异显著提高,最不利地震动引起的直径变形率与平均值的比值从1.1增加到1.9;② 隧道从浅埋到深埋的过程中,地震动排序结果基本保持不变;③ PGA为2 m/s2时,隧道地震响应与基岩面峰值速度(PBV)的相关性最好,相关系数达到0.94,其次是与基岩面峰值位移(PBD)和IA,相关系数分别为0.62和0.48,相关性最差的是基岩面峰值加速度(PBA)和CAV,相关系数仅为0.37和0.22。研究结论可为今后软土隧道的输入地震动选择提供科学依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号