首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Groundwater recharge and palaeoclimate in the Sirte and Kufra basins, Libya   总被引:1,自引:0,他引:1  
Stable and radio-isotope results (C, H, O) for groundwaters from the Sirte and northern Kufra basins are used to determine the recharge history during the Holocene and late Pleistocene. Radiocarbon ages have been corrected on the basis of their stable carbon isotope ratios and on environmental samples from the areas, and two groups may be recognised: (1) low 14C activity groundwaters (13000–34000 yr. BP) with δ 13C-5.6 to −11.7‰; and (2) higher 14C activity groundwaters (5000–7800 yr. BP) enriched in 13C up to δ 13C = −3.2‰. There is a general correlation of age with depth.

A well defined freshwater (< 50 mg/l Cl) channel can be traced within the aquifer for some 130 km through the region, which is considered to represent recharge from a former wadi. This water with an age of ± 7800 yr. BP is chemically and isotopically distinct from the regional groundwaters and provides direct evidence of a significant recharge event during the Holocene.

The stable isotope (O and H) composition of groundwater from the Kufra and Sirte basins are all related by an evaporative line with slope δ D = 4.5δ 13O − 35 with an intercept on the meteoric line of -11‰. This suggests a recharge source continuing into the Holocene from air masses, analogous to current heavy monsoon rain derived from south of the Sahara. The spatial and temporal distribution of groundwaters in relation to the evaporative line suggests a progressive change in character of the recharge which is controlled by a shift towards strongly convective rainfall during the Holocene.

The direct hydrogeological and geochemical evidence supports climatic models proposed by several workers in which discrete humid episodes during the Holocene are inferred.  相似文献   


2.
Hanford Loam, from Richland, Washington, was used as a test soil to determine the precision, accuracy and nature of two methods to extract soil water for stable isotopic analysis: azeotropic distillation using toluene, and simple heating under vacuum. The soil was oven dried, rehydrated with water of known stable isotopic compositions, and the introduced water was then extracted.

Compared with the introduced water, initial aliquots of evolved water taken during a toluene extraction were as much as 30 ‰ more depleted in D and 2.7 ‰ more depleted in 18O, whereas final aliquots were as much as 40 ‰ more enriched in D and 14.3 ‰ more enriched in 18O. Initial aliquots collected during the vacuum/heat extraction were as much as 64 ‰ more depleted in D and 8.4 ‰ more depleted in 18O than was the introduced water, whereas the final aliquots were as much as 139 ‰ more enriched in D, and 20.8 ‰ more enriched in 18O. Neither method appears quantitative; however, the difference in stable isotopic composition between the first and last aliquots of water extracted by the toluene method is less than that from the vacuum/heat method. This is attributed to the smaller fractionation factors involved with the higher average temperatures of distillation of the toluene. The average stable isotopic compositions of the extracted water varied from that of the introduced water by up to 1.4 ‰ in δD and 4.2 ‰ in δ18O with the toluene method, and by 11.0 ‰ in δD and 1.8 ‰ in δ18O for the vacuum/heat method.

The lack of accuracy of the extraction methods is thought to be due to isotopic fractionation associated with water being weakly bound (not released below 110°C) in the soil. The isotopic effect of this heat-labile water is larger at low water contents (3.6 and 5.2% water by weight) as the water bound in the soil is a commensurately larger fraction of the total. With larger soilwater contents the small volume of water bound with an associated fractionation is not enough to affect the remaining unbound introduced soil water. Pretreatment of the soil to equilibrate the heat-labile water to the test water produced good results for the toluene distillation but not the vacuum/heat extraction method.

Vapors collected over the soils also show stable isotopic variations related to soilwater content. These vapors also appear to be in closer equilibrium with the free water, as extracted by the toluene method, than with the originally introduced water; thus, the soil vapors do not appear to be isotopically affected by the heat-labile water.

The toluene method appears to be better for extracting soil water for stable isotopic analysis because it allows more precise temperature control and excludes the extraction of heat-labile water which is isotopically fractionated. The bound nature of this heat-labile water limits association with the hydrologically active soil water; thus, the exclusion of this water from the soil water attained by toluene distillation may be advantageous. However, the azeotropic nature of toluene distillation affords no benefit and the extraction procedure must continue to completion.  相似文献   


3.
High-sensitivity stepped extraction reveals two isotopically distinct forms of carbon in submarine basalt glasses: an isotopically light carbon component released by combustion from 200 to 600°C and an isotopically heavy CO2 liberated from vesicles (magmatic carbon) from 600 to 1200°C. The δ13CPDB of the low release temperature carbon varies from −24 to −30‰ and is believed to be surficial organic contamination. A survey of various types of oceanic glasses demonstrates that the δ13C of magmatic CO2 varies from −4.2 to −7.5‰ in mid-ocean ridge basalt (MORB), from −2.8 to −6.7‰ in glasses from Hawaii and Explorer Seamount and from −7.7 to −16.3‰ in glasses from the Scotia Sea and Mariana Trough. Magmatic CO2 in back-arc basin basalts (BABB) is on average 5‰ lighter than equivalent CO2 in MORB and can be explained by the mixing in the source regions for BABB magmas of juvenile (MORB-like) CO2 with an organic carbon component from subducted pelagic sediments. It is inferred that significant amounts of pelagic carbonate carbon (δ13C 0‰) must be recycled into the mantle.  相似文献   

4.
The meteorite ALH84001, a sample of the ancient martian crust, contains small quantities (1%) of strongly chemically zoned carbonate. High spatial resolution (10 μm) ion microprobe analyses show that the chemical zoning is strongly correlated with variations in oxygen isotope ratios. Early formed Ca,Fe-rich cores have δ18O 7‰ increasing to 22‰ SMOW in the more Mg-rich outer cores and magnesite rims. Isolated areas of ankerite appear to be isotopically lighter with δ18O 1‰. The large range in δ18O requires a significant range in either fluid isotopic composition, or temperature, or both, in the course of the deposition sequence. Our data are inconsistent with formation of the zoned carbonates by closed system Rayleigh fractionation. There is no unique interpretation of the oxygen data, but the recent observation of existence of Δ17O excesses in the carbonate appears to rule out models which involve high temperature isotopic exchange with silicate. Comparison with terrestrial analogues suggests that ALH84001 carbonates formed in a hydrothermal system with T<400°C, and which, at least in the early stages of formation, may have involved water with δ18O < 0‰ SMOW. The later stages of deposition probably occurred at temperatures below 150°C, a conclusion which does not preclude the co-existence of thermophilic bacteria; temperatures during earlier stages of deposition are less likely to have been hospitable to bacteria.  相似文献   

5.
Isotopic variations in melting snow are poorly understood. We made weekly measurements at the Central Sierra Snow Laboratory, California, of snow temperature, density, water equivalent and liquid water volume to examine how physical changes within the snowpack govern meltwater δ18O. Snowpack samples were extracted at 0.1 m intervals from ground level to the top of the snowpack profile between December 1991 and April 1992. Approximately 800 mm of precipitation fell during the study period with δ18O values between −21.35 and −4.25‰. Corresponding snowpack δ18O ranged from −22.25 to −6.25‰. The coefficient of variation of δ18O in snowpack levels decreased from −0.37 to −0.07 from winter to spring, indicating isotopic snowpack homogenization. Meltwater δ18O ranged from −15.30 to −8.05‰, with variations of up to 2.95‰ observed within a single snowmelt episode, highlighting the need for frequent sampling. Early snowmelt originated in the lower snowpack with higher δ18O through ground heat flux and rainfall. After the snowpack became isothermal, infiltrating snowmelt displaced the higher δ18O liquid in the lower snowpack through a piston flow process. Fractionation analysis using a two-component mixing model on the isothermal snowpack indicated that δ18O in the initial and final half of major snowmelt was 1.30‰ lower and 1.45‰ higher, respectively, than the value from simple mixing. Mean snowpack δ18O on individual profiling days showed a steady increase from −15.15 to −12.05‰ due to removal of lower δ18O snowmelt and addition of higher δ18O rainfall. Results suggest that direct sampling of snowmelt and snow cores should be undertaken to quantify tracer input compositions adequately. The snowmelt sequence also suggests that regimes of early lower δ18O and later higher δ18O melt may be modeled and used in catchment tracing studies.  相似文献   

6.
Magmatic iron meteorites are considered to be remnants of the metallic cores of differentiated asteroids, and may be used as analogues of planetary core formation. The Fe isotope compositions (δ57/54Fe) of metal fractions separated from magmatic and non-magmatic iron meteorites span a total range of 0.39‰, with the δ57/54Fe values of metal fractions separated from the IIAB irons (δ57/54Fe 0.12 to 0.32‰) being significantly heavier than those from the IIIAB (δ57/54Fe 0.01 to 0.15‰), IVA (δ57/54Fe − 0.07 to 0.17‰) and IVB groups (δ57/54Fe 0.06 to 0.14‰). The δ57/54Fe values of troilites (FeS) separated from magmatic and non-magmatic irons range from − 0.60 to − 0.12‰, and are isotopically lighter than coexisting metal phases. No systematic relationships exist between metal-sulphide fractionation factor (Δ57/54FeM-FeS = δ57/54Femetal − δ57/54FeFeS) metal composition or meteorite group, however the greatest Δ57/54FeM-FeS values recorded for each group are strikingly similar: 0.79, 0.63, 0.76 and 0.74‰ for the IIAB, IIIAB, IAB and IIICD irons, respectively. Δ57/54FeM-FeS values display a positive correlation with kamacite bandwidth, i.e. the most slowly-cooled meteorites, which should be closest to diffusive equilibrium, have the greatest Δ57/54FeM-FeS values. These observations provide suggestive evidence that Fe isotopic fractionation between metal and troilite is dominated by equilibrium processes and that the maximum Δ57/54FeM-FeS value recorded (0.79 ± 0.09‰) is the best estimate of the equilibrium metal-sulphide Fe isotope fractionation factor. Mass balance models using this fractionation factor in conjunction with metal δ57/54Fe values and published Fe isotope data for pallasites can explain the relatively heavy δ57/54Fe values of IIAB metals as a function of large amounts of S in the core of the IIAB parent body, in agreement with published experimental work. However, sequestering of isotopically light Fe into the S-bearing parts of planetary cores cannot explain published differences in the average δ57/54Fe values of mafic rocks and meteorites derived from the Earth, Moon and Mars and 4-Vesta. The heavy δ57/54Fe value of the Earth's mantle relative to that of Mars and 4-Vesta may reflect isotopic fractionation due to disproportionation of ferrous iron present in the proto-Earth mantle into isotopically heavy ferric iron hosted in perovskite, which is released into the magma ocean, and isotopically light native iron, which partitions into the core. This process cannot take place at significant levels on smaller planets, such as Mars, as perovskite is only stable at pressures > 23 GPa. Interestingly, the average δ57/54Fe values of mafic terrestrial and lunar samples are very similar if the High-Ti mare basalts are excluded from the latter. If the Moon's mantle is largely derived from the impactor planet then the isotopically heavy signature of the Moon's mantle requires that the impacting planet also had a mantle with a δ57/54Fe value heavier than that of Mars or 4-Vesta, which then implies that the impactor planet must have been greater in size than Mars.  相似文献   

7.
The stable isotopic composition of hydrogen and oxygen (δ2H and δ18O) and tritium activity (3H) were monitored in monthly precipitation at two continental stations (Ljubljana, Zagreb) and six stations along the eastern Adriatic coasts of Slovenia and Croatia in the period 2001–2003. Mean air temperatures and amount of precipitation were also recorded.

Distinct differences in both meteorological and isotopic data between the continental and maritime stations were observed. Seasonal variations in δ18O are smaller at the maritime stations than at the continental ones due to smaller seasonal temperature variations. A good correlation between δ18O and δ2H was obtained for each station, and the local meteoric water lines are close to the Global Meteoric Water Line, with a decreasing trend of slope for the south-Adriatic stations. Good correlations between δ18O in monthly precipitation and mean monthly air temperature were observed at all stations. The slope of δ18O vs. T varied between 0.37‰ °C−1 and 0.15‰ °C−1. Mean 3H activity and seasonal variation of 3H activity are smaller at maritime stations than at continental ones. Additionally, 3H activity decreases in the NW–SE direction of the Adriatic coast.

The study of spatial variations over this relatively small area rich in geographical and climatic diversities showed the complexity of the isotopic composition of precipitation and the isotopic data obtained for eight stations, most of them in the karstic area along the Adriatic coast, and gave valuable information for regional hydrological investigations and modelling of isotope variability over the Mediterranean basin.  相似文献   


8.
Chemical and isotopic ratio (He, C, H and O) analysis of hydrothermal manifestations on Pantelleria island, the southernmost active volcano in Italy, provides us with the first data upon mantle degassing through the Sicily Channel rift zone, south of the African–European collision plate boundary. We find that Pantelleria fluids contain a CO2–He-rich gas component of mantle magmatic derivation which, at shallow depth, variably interacts with a main thermal (100°C) aquifer of mixed marine–meteoric water. The measured 3He/4He ratios and δ13C of both the free gases (4.5–7.3 Ra and −5.8 to −4.2‰, respectively) and dissolved helium and carbon in waters (1.0–6.3 Ra and −7.1 to −0.9‰), together with their covariation with the He/CO2 ratio, constrain a 3He/4He ratio of 7.3±0.1 Ra and a δ13C of ca. −4‰ for the magmatic end-member. These latter are best preserved in fluids emanating inside the active caldera of Pantelleria, in agreement with a higher heat flow across this structure and other indications of an underlying crustal magma reservoir. Outside the caldera, the magmatic component is more affected by air dilution and, at a few sites, by mixing with either organic carbon and/or radiogenic 4He leached from the U–Th-rich trachytic host rocks of the aquifer. Pantelleria magmatic end-member is richer in 3He and has a lower (closer to MORB) δ13C than all fluids yet analyzed in volcanic regions of Italy and southern Europe, including Mt. Etna in Sicily (6.9±0.2 Ra, δ13C=−3±1‰). This observation is consistent with a south to north increasing imprint of subducted crustal material in the products of Italian volcanoes, whose He and C (but also O and Sr) isotopic ratios gradually evolve towards crustal values northward of the African–Eurasian plate collision boundary. Our results for Pantelleria extend this regional isotopic pattern further south and suggest the presence of a slightly most pristine or ‘less contaminated’, 3He-richer mantle source beneath the Sicily Channel rift zone. The lower than MORB 3He/4He ratio but higher than MORB CO2/3He ratio of Pantelleria volatile end-member are compatible with petro-geochemical evidence that this mantle source includes an upwelling HIMU–EM1-type asthenospheric plume component whose origin, according to recent seismic data, may be in the lower mantle.  相似文献   

9.
DSDP Hole 504B is the deepest basement hole in the oceanic crust, penetrating through a 571.5 m pillow section, a 209 m lithologic transition zone, and 295 m into a sheeted dike complex. An oxygen isotopic profile through the upper crust at Site 504 is similar to that in many ophiolite complexes, where the extrusive section is enriched in18O relative to unaltered basalts, and the dike section is variably depleted and enriched. Basalts in the pillow section at Site 504 haveδ18O values generally ranging from +6.1 to +8.5‰ SMOW(mean= +7.0‰), although minor zeolite-rich samples range up to 12.7‰. Rocks depleted in18O appear abruptly at 624 m sub-basement in the lithologic transition from 100% pillows to 100% dikes, coinciding with the appearance of greenschist facies minerals in the rocks. Whole-rock values range to as low as +3.6‰, but the mean values for the lithologic transition zone and dike section are +5.8 and +5.4‰, respectively.

Oxygen and carbon isotopic data for secondary vein minerals combined with the whole rock data provide evidence for the former presence of two distinct circulation systems separated by a relatively sharp boundary at the top of the lithologic transition zone. The pillow section reacted with seawater at low temperatures (near 0°C up to a maximum of around 150°C) and relatively high water/rock mass ratios (10–100); water/rock ratios were greater and conditions were more oxidizing during submarine weathering of the uppermost 320 m than deeper in the pillow section. The transition zone and dikes were altered at much higher temperatures (up to about 350°C) and generally low water/rock mass ratios ( 1), and hydrothermal fluids probably contained mantle-derived CO2. Mixing of axial hydrothermal fluids upwelling through the dike section with cooler seawater circulating in the overlying pillow section resulted in a steep temperature gradient ( 2.5°C/m) across a 70 m interval at the top of the lithologic transition zone. Progressive reaction during axial hydrothermal metamorphism and later off-axis alteration led to the formation of albite- and Ca-zeolite-rich alteration halos around fractures. This enhanced the effects of cooling and18O enrichment of fluids, resulting in local increases inδ18O of rocks which had been previously depleted in18O during prior axial metamorphism.  相似文献   


10.
Oxygen and carbon data from eight stalagmites from northwest South Island are combined to produce composite records of δ18O and δ13C from 23.4 ka to the present. The chronology is anchored by 43 thermal ionization mass spectrometry (TIMS) uranium series ages. Delta 18O values are interpreted as having a first order positive relationship to temperature, but also to be influenced by precipitation in a complex manner. Delta 13C is interpreted as responding negatively to increases in atmospheric CO2 concentration, biological activity and precipitation amount.

Six climatic phases are recognized. After adjustment of 1.2‰ for the ice volume effect, the δ18O record between 23 and 18 ka varies around −3.72‰ compared to the Holocene average of −3.17‰. Late-glacial warming commenced between 18.2 and 17.8 ka and accelerated after 16.7 ka, culminating in a positive excursion between 14.70 and 13.53 ka. This was followed by a significant negative excursion between 13.53 and 11.14 ka of up to 0.55‰ depth that overlapped the Antarctic Cold Reversal (ACR) and spanned the Younger Dryas (YD). Positive δ18O excursions at 11.14 ka and 6.91–6.47 ka represent the warmest parts of the Holocene. The mid-Holocene from 6 to 2 ka was marked by negative excursions that coincide with increased glacial activity in the South Island. A short positive excursion from 0.71 to 0.57 ka was slightly later than the Medieval Warm Period of Europe.

Delta 13C values were high until 17.79 ka after which there was an abrupt decrease to 17.19 ka followed by a steady decline to a minimum at 10.97 ka. Then followed a general increase, suggesting a drying trend, to 3.23 ka followed by a further general decline. The abrupt decrease in δ-values after 17.79 ka probably corresponds to an increase in atmospheric CO2 concentration, biological activity and wetness at the end of the Last Glaciation, but the reversal identified in the δ18O record from 13.53 to 11.14 ka was not reflected in δ13C changes. The lowest δ13C values coincided with the early Holocene climatic suboptimum when conditions were relatively wet as well as mild.

Major trends in the δ18Oc record are similar to the Northern Hemisphere, but second order detail is often distinctly different. Consequently, at the millennial scale, a more convincing case can be made for asymmetric climatic response between the two hemispheres rather than synchronicity.  相似文献   


11.
Isotope and hydrochemical data of the thermal water system in Cieplice laskie Zdrój (Spa) indicate the existence of two subsystems that greatly differ in volume and which meet at the fault zones of a granitic horst, where they discharge at an altitude of about 340m. One of the subsystems is very small (about 4 × 103 m3) as indicated by the tritium age of the order of 10 years and a low outflow rate. Its recharge area found from the δ18O and δD values, is about 200m above the springs, most probably on the slopes of the foothills of the Karkonosze Mountains south-southwest of the spa. The large subsystem contains water which is free of tritium and whose 14C content is from 1 to 8 pmc with δ13C = −8.0 to −9.2‰. The isotopic composition of this water reflects either the climatic effect (low-altitude recharge during a cooler pre-Holocene climate) or the altitude effect (recharge in the early Holocene period at about 1000m at the heights of the Karkonosze assuming that the 14C concentration is strongly reduced by exchange with calcite in veins). For the former hypothesis, the recharge area of this water is probably either at the foot of the southeastern slopes of the Kaczawa Mountains or/and at the foot of the Rudawy Janowickie Mountains, to the east of Cieplice. The noble gas temperatures are more consistent with the pre-Holocene recharge. Similarly, the 4He excess and 40Ar/36Ar ratio support the hypothesis of a pre-Holecene age. The constant 3He/4He ratio of 26 × 10−8 for highly different helium contents indicates crustal origin of helium. For the pre-Holocene age of water its volume is calculated at >- 109m3 (stagnant water in micropores and mobile water in fractures) and the hydraulic conductivity of the host granite massif is estimated at about 7 × 10−8 ms−1. Two outflows from this subsystem have different and variable fractions of a modern water component (bomb age), most probably originating from the bank infiltration of a nearby stream.  相似文献   

12.
Geochemical variations in mid-ocean ridge basalts have been attributed to differing proportions of compositionally distinct mantle components in their sources, some of which may be recycled crust. Oxygen isotopes are strongly fractionated by near-surface interactions of rocks with the hydrosphere, and thus provide a tracer of near-surface materials that have been recycled into the mantle. We present here oxygen isotope analyses of basaltic glasses from the mid-Atlantic ridge south of and across the Azores platform. Variations in δ18O in these samples are subtle (range of 0.47‰) and may partly reflect shallow fractional crystallization; we present a method to correct for these effects. Relatively high fractionation-corrected δ18O in these samples is associated with geochemical indices of enrichment, including high La/Sm, Ce/Pb, and 87Sr/86Sr and low 143Nd/144Nd. Our results suggest two first-order conclusions about these enriched materials: (1) they are derived (directly or indirectly) from recycled upper oceanic crustal rocks and/or sediments; and (2) these materials are present in the north Atlantic MORB sources in abundances of less than 10% (average 2–5%). Modeling of variations of δ18O with other geochemical variables further indicates that the enriched component is not derived from incorporation of sediment or bulk altered oceanic crust, from metasomatism of the mantle by hydrous or carbonate-rich fluids, or from partial melting of subducted sediment. Instead, the data appear to require a model in which the enriched component is depleted mantle that has been metasomatized by small-degree partial melts of subducted, dehydrated, altered oceanic crust. The age of this partial melting is broadly constrained to 250 Ma. Reconstructed plate motions suggest that the enriched component in the north Atlantic mantle may have originated by subduction along the western margin of Pangea.  相似文献   

13.
Laboratory culturing experiments with living Globigerina bulloides indicate that Mg/Ca is primarily a function of seawater temperature and suggest that Mg/Ca of fossil specimens is an effective paleotemperature proxy. Using culturing results and a core-top Neogloboquadrina pachyderma calibration, we have estimated glacial–interglacial changes in sea surface temperature (SST) using planktonic Mg/Ca records from core RC11-120 in the Subantarctic Indian Ocean (43°S, 80°E) and core E11-2 in the Subantarctic Pacific Ocean (56°S, 115°W). Our results suggest that glacial SST was about 4°C cooler in the Subantarctic Indian Ocean and 2.5°C cooler in the Subantarctic Pacific. Comparison of SST and planktonic δ18O records indicates that changes in SST lead changes in δ18O by on average 1–3 kyr. The glacial–interglacial temperature change indicated by the Subantarctic Mg/Ca records suggests that temperature accounts for 40–60% of the foraminiferal δ18O change. We have used the Mg/Ca-based SST estimates and δ18O determinations to generate site-specific seawater δ18O records, which suggest that seawater δ18O was on average 1‰ more positive during glacial episodes compared with interglacial episodes.  相似文献   

14.
Groundwater flow-paths through shallow-perch and deep-regional basaltic aquifers at the Golan Heights, Israel, are reconstructed by using groundwater chemical and isotopic compositions. Groundwater chemical composition, which changes gradually along flow-paths due to mineral dissolution and water–rock interaction, is used to distinguish between shallow-perched and deep-regional aquifers. Groundwater replenishment areas of several springs are identified based on the regional depletion in rainwater δ18O values as a function of elevation (−0.25‰ per 100 m). Tritium concentrations assist in distinguishing between pre-bomb and post-bomb recharged rainwater.

It was found that waters emerging through the larger springs are lower in δ18O than surrounding meteoric water and poor in tritium; thus, they are inferred to originate in high-elevation regions up to 20 km away from their discharge points and at least several decades ago. These results verify the numerically simulated groundwater flow field proposed in a previous study, which considered the geological configuration, water mass balance and hydraulic head spatial distribution.  相似文献   


15.
Stable isotope values of Costa Rican surface waters   总被引:3,自引:0,他引:3  
Stable isotope data of surface waters from the humid tropics in general, and Costa Rica in particular, are scarce. To improve our understanding of the spatial distribution of stable isotopes in surface waters, we measured δ18O and δD in river and lake (n=63) and precipitation (n=3) samples from Costa Rica. We also present data from the IAEA/WMO isotopes in precipitation network as context for our study. Surface water isotope values do not strongly correlate with elevation, stream head elevation, stream length, distance from Caribbean Sea, or estimated mean annual precipitation for the country as a whole. However, the data show distinct regional trends. The δ18O and δD values downwind of mountain ranges are inversely related to the altitude of the ranges the air masses traverse. In the lee of the high Talamanca Range, δ18O values are 6–8‰ lower, while in the lee of the lower Tilarán Range δ18O values are 2–3‰ lower than upwind sites along the Caribbean Slope. An altitude effect of −1.4‰ δ18O/km is present on the Pacific slope of southern Costa Rica, equivalent to a temperature effect of −0.3‰/°C. The Nicoya and Osa Peninsulas have higher values than upwind sites, suggesting input of Pacific-sourced moisture, evaporative enrichment, or decreased condensation temperatures. Elevated and increasing d-excess values inland along the Nicaragua Trough suggest a recycled component may be an important contributor to the water budget. These data provide preliminary stable isotope information for Costa Rica, and will benefit paleoclimatic research in the region. More detailed studies would be beneficial to our understanding of the controls on stable isotope composition of tropical waters.  相似文献   

16.
New oxygen isotope data are presented for submarine lavas erupted close to the transition between the oceanic Kermadec island arc and the continental Taupo Volcanic Zone, New Zealand. Volcanic glasses display δ18O values ranging from +5.65‰ to +5.83‰, clinopyroxenes range from +5.23‰ to +5.78‰ and olivines range from +4.83‰ to +5.47‰. Coexisting glass and phenocrysts in the lavas are in isotopic equilibrium, with one exception. Oxygen isotope ratios of back-arc lavas erupted through oceanic crust are indistinguishable from mid-ocean ridge basalts or lavas erupted in nearby back-arc settings. Although lavas from the arc front display elevated oxygen isotope ratios, the magnitude of 18O-enrichment is too great to result from recycling of subducted material alone. A single back-arc lava erupted through continental crust is also relatively 18O-rich suggesting that the most likely origin for the high δ18O signature is limited amounts of interaction between continental crust and melts derived from a mantle wedge that has been variably fluxed by recycled oxygen. The results of modelling open system behaviour in this volcanic system highlight the need for strong controls on the composition of local contaminants. Application of ‘average' crustal lithologies, as in other volcanic provinces, may lead to erroneous conclusions regarding the involvement of local basement.  相似文献   

17.
We assessed short-term ecological and potential human health effects of wastewater treatment plant (WTP) effluent by measuring δ15N‰ and microbial concentrations in oysters and suspended particulate matter (SPM). We also tested male-specific bacteriophage (MSB) as an alternative to fecal coliforms, to assess potential influence of wastewater contamination on shellfish. WTP effluent did not affect oyster growth or survival, but SPM and oysters acquired wastewater-specific δ15N‰. δ15N values were depleted near the WTP, typical of low-level processed wastewater. Fecal coliform and MSB concentrations were higher in samples taken closest to the WTP, and MSB values were significantly correlated with δ15N‰ in oyster tissues. Overall, oysters demonstrated relatively rapid integration and accumulation of wastewater-specific δ15N‰ and indicator microorganisms compared to water samples. These data suggest oysters were superior sentinels compared to water, and MSB was a more reliable indicator of wastewater influence on shellfish than fecal coliforms.  相似文献   

18.
High-precision in-situ ion microprobe (SIMS) oxygen isotope analysis of zircons from two diorite intrusions associated with the late Caledonian Lochnagar pluton in Scotland has revealed large differences in the degree of heterogeneity in zircon δ18O between the diorites. Zircon crystals from the Cul nan Gad diorite (CnG) show a unimodal distribution of oxygen isotope values (δ18O = 6.0 ± 0.6‰ (2σ)) and no or only minor grain-scale variation. Those from the Allt Darrarie diorite (AD1) show a large range in δ18O and an apparent bimodal distribution with modes of 6.6 ± 0.4‰ and 7.3 ± 0.4‰. Variations of up to 1.2‰ occur between and within grains; both an increase and decrease in δ18O with zircon growth has been observed. The δ18O composition of growing zircon can only change if open-system processes affect the magma composition, i.e. if material of contrasting δ18O composition is added to the magma. The variability in AD1 is interpreted to represent a cryptic record of magma mixing. A ‘deep crustal hot zone’ is a likely site for generation of the dioritic magmas which developed by mixing of residual melts and crustal partial melts or by melting of mafic lower crustal rocks. The overall small number of zircons with mantle-like δ18O values (5.3 ± 0.6‰ (2σ)) in the Lochnagar diorites is largely the product of crustal differentiation rather than crustal growth.

The δ18O of quartz from the CnG and AD1 diorites shows only minor variation (CnG: 10.9 ± 0.5‰ (2σ), AD1: 11.7 ± 0.6‰ (2σ)) within single populations, with no evidence of mixing. Quartz–zircon isotopic disequilibrium is consistent with later crystallisation of quartz from late magmatic fluids, and in case of the AD1 diorite after the inferred magma mixing from a homogenised, higher δ18O melt.

High-precision SIMS oxygen isotope analysis of zircon provides a new approach to identifying and resolving previously undetected early-stage magma mixing and constraining the compositions and origins of the component magmas. A combination of zircon, quartz and whole-rock data has proven to be a powerful tool in reconstructing the petrogenetic evolution of diorite from early crystallisation to late alteration.  相似文献   


19.
We present the first sulfur and oxygen isotopic data for tephra from the catastrophic 1883 eruption of Krakatau. Sulfur isotopic ratios in unaltered Krakatau tephra erupted August 26–27, 1883 are markedly enriched in 34S relative to mantle sulfur. High δ34S values of +6.3 to +16.4‰ can best be explained by open-system or multi-stage degassing of SO2 from the oxidized rhyodacitic and gray dacitic magmas with 34S enrichment of SO2−4 remaining in the melt. Lower whole-rock δ34S values of +2.6‰ and +4.0‰ in two oxidized gray dacitic samples indicate more primitive subarc mantle sulfur in the 1883 magma chamber. Initial δ34S of the rhyodacitic magma was probably in the +1.5‰ to +4.0‰ range and similar to δ34S values measured in arc volcanic rocks from the Mariana Arc.  相似文献   

20.
The much contrasted orographic and climatic characters of southeastern France serve to establish a hydrological balance of the porous aquifers in the region. Comparing a regional average gradient of 18O content versus elevation, which was calculated on low-water period karst waters content, with a −10.5‰ average δ of Alpine rivers, an estimate of the percentages brought to these aquifers is proposed under the form of an abacus. It appears that the main groundwaters of the Var, the Durance and the Rhône are fed by an average of 20–30% of Provençal underground contribution, and 70–80% shallow contribution from the Alpine rivers. These figures reveal that local supplies range between 25 and 10% of the average yearly discharge flowing in the porous and shallow aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号