首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coastal areas are usually the preferred place of habitation for human beings. Anthropogenic activities such as the construction of high‐rise buildings and underground transport systems usually require extensive deep foundations and ground engineering works, which may unintentionally modify the coastal groundwater system because the construction materials of foundations are usually of low hydraulic conductivity. In this paper, the impact of these building foundations on the groundwater regime is studied using hypothetical flow and transport models. Various possible realizations of foundation distributions are generated using stochastic parameters derived from a topographical map of an actual coastal area in Hong Kong. The effective hydraulic conductivity is first calculated for different realizations and the results show that the effective hydraulic conductivity can be reduced significantly. Then a hypothetical numerical model based on FEFLOW is set up to study the change of hydraulic head, groundwater discharge, and saltwater‐fresh water interface. The groundwater level and flow are modified to various degrees, depending on the foundations percentage and the distribution pattern of the buildings. When the foundations percentage is high and the building foundations are aggregated, the hydraulic head is raised significantly and the originally one‐dimensional groundwater flow field becomes complicated. Seaward groundwater discharge will be reduced and some groundwater may become seepage through the ground surface. The transport model shows that, after foundations are added, overall the seawater and fresh groundwater interface moves landward, so extensive foundations may induce seawater intrusion. It is believed that the modification of the coastal groundwater system by building foundations may have engineering and environmental implications, such as submarine groundwater discharge, foundation corrosion, and slope stability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Analytical models have been exhaustively used to study simple seawater intrusion problems and the sustainable management of groundwater resources in coastal aquifers because of its simplicity, easy implementation, and low computational cost. Most of these models are based on the sharp‐interface approximation and the Ghyben–Herzberg relation, and their governing equations are expressed in terms of a single potential theory to calculate critical pumping rates in a coastal pumping scenario. The Ghyben–Herzberg approach neglects mixing of fresh water and seawater and implicitly assumes that salt water remains static. Therefore, the results of the analytical solutions may be inaccurate and unacceptable for some real‐complex case studies. This paper provides insight into the validity of sharp‐interface models to deal with seawater intrusion in coastal aquifers, i.e. when they can be applied to obtain accurate enough results. For that purpose, this work compares sharp‐interface solutions, based on the Ghyben–Herzberg approach, with numerical three‐dimensional variable‐density flow simulations for a set of heterogeneous groundwater flow and mass transport parameters, and different scenarios of spatially distributed recharge values and spatial wells placement. The numerical experiment has been carried out in a 3D unconfined synthetic aquifer using the finite difference numerical code SEAWAT for solving the coupled partial differential equations of flow and density‐dependent transport. This paper finds under which situations the sharp‐interface solution gives good predictions in terms of seawater penetration, transition zone width and critical pumping rates. Additionally, the simulation runs indicate to which parameters and scenarios the results are more sensitive. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Lu C  Chen Y  Luo J 《Ground water》2012,50(3):386-393
Prevention of sea water intrusion in coastal aquifers subject to groundwater withdrawal requires optimization of well pumping rates to maximize the water supply while avoiding sea water intrusion. Boundary conditions and the aquifer domain size have significant influences on simulating flow and concentration fields and estimating maximum pumping rates. In this study, an analytical solution is derived based on the potential-flow theory for evaluating maximum groundwater pumping rates in a domain with a constant hydraulic head landward boundary. An empirical correction factor, which was introduced by Pool and Carrera (2011) to account for mixing in the case with a constant recharge rate boundary condition, is found also applicable for the case with a constant hydraulic head boundary condition, and therefore greatly improves the usefulness of the sharp-interface analytical solution. Comparing with the solution for a constant recharge rate boundary, we find that a constant hydraulic head boundary often yields larger estimations of the maximum pumping rate and when the domain size is five times greater than the distance between the well and the coastline, the effect of setting different landward boundary conditions becomes insignificant with a relative difference between two solutions less than 2.5%. These findings can serve as a preliminary guidance for conducting numerical simulations and designing tank-scale laboratory experiments for studying groundwater withdrawal problems in coastal aquifers with minimized boundary condition effects.  相似文献   

4.
Marine intrusion is the most serious problem facing the coastal Jorf shallow aquifer, located in south‐eastern Tunisia on the Mediterranean Sea. Jorf Aquifer is intensively exploited to supply the growing needs of agriculture and domestic sectors. This work proposes a multidisciplinary investigation, involving hydro‐geochemical, geoelectrical survey and geostatistical techniques for modelling the saltwater intrusion. For this purpose, 36 water samples were conducted and analysed. Electric conductivity, pH, total dissolved solids and major ions were measured and analysed. Pie and Durov Diagrams, Q‐mode hierarchical cluster and geostatistical analysis were considered to identify the main groundwater mineralization processes. Results revealed that the Na‐Cl‐Ca‐SO4 is the dominant water type suggesting that dissolution of halite and gypsum was the main mineralization source of groundwater in the central and southern part of study area. However, saltwater intrusion was shown to control groundwater quality essentially in coastal areas. Variographic analyses were used to select the variographic model that best fits the spatial development of apparent resistivity. Kriged apparent resistivity profiles showed an abnormal decrease of resistivity values in the coastal zone, implying highly saline water because of seawater intrusion. Apparent resistivity values also decrease considerably in the faulted areas, suggesting a contribution of faults to seawater intrusion. Finally, saltwater mixing ratio was computed for each sample, and a refined seawater intrusion map was developed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Sea water intrusion into aquifers is problematic in many coastal areas. The physics and chemistry of this issue are complex, and sea water intrusion remains challenging to quantify. Simple assessment tools like analytical models offer advantages of rapid application, but their applicability to field situations is unclear. This study examines the reliability of a popular sharp‐interface analytical approach for estimating the extent of sea water in a homogeneous coastal aquifer subjected to pumping and regional flow effects and under steady‐state conditions. The analytical model is tested against observations from Canada, the United States, and Australia to assess its utility as an initial approximation of sea water extent for the purposes of rapid groundwater management decision making. The occurrence of sea water intrusion resulting in increased salinity at pumping wells was correctly predicted in approximately 60% of cases. Application of a correction to account for dispersion did not markedly improve the results. Failure of the analytical model to provide correct predictions can be attributed to mismatches between its simplifying assumptions and more complex field settings. The best results occurred where the toe of the salt water wedge is expected to be the closest to the coast under predevelopment conditions. Predictions were the poorest for aquifers where the salt water wedge was expected to extend further inland under predevelopment conditions and was therefore more dispersive prior to pumping. Sharp‐interface solutions remain useful tools to screen for the vulnerability of coastal aquifers to sea water intrusion, although the significant sources of uncertainty identified in this study require careful consideration to avoid misinterpreting sharp‐interface results.  相似文献   

6.
The prediction of groundwater levels in a basin is of immense importance for the management of groundwater resources, especially in coastal regions where the water table fluctuations are to be limited to avoid seawater intrusion. In this paper, an Artificial Neural Network (ANN) methodology is presented to predict groundwater levels in individual wells with one month lead. Groundwater levels were also predicted in neighboring wells using model parameters from the best network of a well. This methodology is applied to an urban coastal aquifer in Andhra Pradesh state, India. The results suggest that the feed forward neural network with Levenberg Marquardt (LM) algorithm is a good choice for predicting groundwater levels in individual wells. Bayesian Regularization (BR) model parameters of Balaji Nagar well are also used successfully to predict groundwater levels in the study area. It was observed that the ANN‐based algorithms were a better choice for the prediction of groundwater levels with limited hydrological parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Several investigations have recently considered the possible impacts of climate change and seawater level rise on seawater intrusion in coastal aquifers. All have revealed the severity of the problem and the significance of the landward movement of the dispersion zone under the condition of seawater level rise. Most of the studies did not consider the possible effects of the seawater rise on the inland movement of the shoreline and the associate changes in the boundary conditions at the seaside and the domain geometry. Such effects become more evident in flat, low land, coastal alluvial plans where large areas might be submerged with seawater under a relatively small increase in the seawater level. None of the studies combined the effect of increased groundwater pumping, due to the possible decline in precipitation and shortage in surface water resources, with the expected landward shift of the shore line. In this article, the possible effects of seawater level rise in the Mediterranean Sea on the seawater intrusion problem in the Nile Delta Aquifer are investigated using FEFLOW. The simulations are conducted in horizontal view while considering the effect of the shoreline landward shift using digital elevation models. In addition to the basic run (current conditions), six different scenarios are considered. Scenarios one, two, and three assume a 0.5 m seawater rise while the total pumping is reduced by 50%, maintained as per the current conditions and doubled, respectively. Scenarios four, five, and six assume a 1.0 m seawater rise and the total pumping is changed as in the first three scenarios. The shoreline is moved to account for the seawater rise and hence the study domain and the seaside boundary are modified accordingly. It is concluded that, large areas in the coastal zone of the Nile Delta will be submerged by seawater and the coast line will shift landward by several kilometers in the eastern and western sides of the Delta. Scenario six represents the worst case under which the volume of freshwater will be reduced to about 513 km3 (billion m3).  相似文献   

8.
The groundwater of the Korba plain represents major water resources in Tunisia. The Plio‐Quaternary unconfined aquifer of the Cap‐Bon (north‐east Tunisia) is subject to the intensive agricultural activities and high groundwater pumping rates due to the increasing of the groundwater extraction. The degradation of the groundwater quality is characterized by the salinization phenomena. Groundwater were sampled and analysed for physic‐chemical parameters: Ca2+, Mg2+, Na+, K+, Cl, SO42‐, HCO3, NO3, pH, electrical conductivity (EC), and the temperature (T°). The hydrochemical analysis is coupled with the calculation of the saturation indexes (SI gypsum, SI halite, SI calcite and SI dolomite), ionic derivation and with the ion correlations compared to chloride concentrations: Na+/ Cl, Ca2+/ Cl and Mg2+/ Cl ratios. Seawater fractions in the groundwater were calculated using the chloride concentration. Those processes can be used as indicators of seawater intrusion progression. EC methods were also conducted to obtain new informations on the spatial scales and dynamics of the fresh water–seawater interface of coastal groundwater exchange. The mixing zone between freshwater and saltwater was clearly observed from the EC profile in the investigated area where a strong increase in EC with depth was observed, corresponding to the freshwater and saltwater interface. Results of hydrochemical study revealed the presence of direct cation exchange linked to seawater intrusion and dissolution processes associated with cations exchange. These results, together with EC investigation, indicated that the groundwater is affected by seawater intrusion and is still major actor as a source of salinization of the groundwater in Korba coastal plain. Further isotopic and hydrological investigations will be necessary to identify and more understood the underlying mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Optimal and sustainable extraction of groundwater in coastal aquifers   总被引:1,自引:0,他引:1  
Four examples are investigated for the optimal and sustainable extraction of groundwater from a coastal aquifer under the threat of seawater intrusion. The objectives and constraints of these management scenarios include maximizing the total volume of water pumped, maximizing the profit of selling water, minimizing the operational and water treatment costs, minimizing the salt concentration of the pumped water, and controlling the drawdown limits. The physical model is based on the density-dependent advective-dispersive solute transport model. Genetic algorithm is used as the optimization tool. The models are tested on a hypothetical confined aquifer with four pumping wells located at various depths. These solutions establish the feasibility of simulating various management scenarios under complex three-dimensional flow and transport processes in coastal aquifers for the optimal and sustainable use of groundwater.  相似文献   

10.
The Motooka region in the Fukuoka prefecture in western Japan is a coastal area, where groundwater is utilized as the main water resource for greenhouse agriculture and domestic use. Over-exploitation of groundwater has resulted in seawater intrusion and thus in the contamination of the freshwater aquifer. Fluctuations in electric conductivities caused by such intrusion are a crucial problem, since even slight changes in electric conductivities of the water used for agricultural purposes significantly affect the crops’ growth and yield. However, no study has thus far been conducted on the electric conductivity fluctuations caused by groundwater pumping and seasonal recharge of groundwater in the Motooka region. To this end, an attempt is made in the present study to develop a numerical variable-density solute transport model and then apply it to simulate the electric conductivity fluctuations with groundwater pumping and rainwater recharge. This model is developed under a finite difference scheme, and the method of characteristics is used as the numerical technique for solving the advection term of the advection–dispersion solute transport equation. The results from this numerical model are compared with the field measurements.  相似文献   

11.
This article studies the effect of drought and pumping discharge on groundwater supplies and marine intrusion in the Korba aquifer (Cap‐Bon peninsula, Tunisia). The Groundwater Modelling System has been used to model the groundwater flow and to simulate the seawater intrusion. The calibration is based on the groundwater levels in the steady state from 1963, and in the transient state from the groundwater levels from 1963 to 2005. The main objective is to quantify the components of the groundwater mass balance and to estimate the hydraulic conductivity distribution. The impact of pumping discharge on the groundwater level evolution has been examined by two pumping scenarios P1 (no. 8420) and P2 (no. 8862) wells. The hydrodynamic modelling shows the increasing drawdowns after 14 years of pumping: 4 m in P1 well and about 5 m in P2 well below sea level. The drawdowns are accompanied by the inverse hydraulic gradient. The numerical model was used to discuss the management of the groundwater resources of Cap‐Bon. As the population continues to grow and the demand for groundwater pumping intensifies beyond the 1963 level, it can be expected that the actual extent of seawater intrusion in the future would be more severe than the model prediction. Better strategies for groundwater development and management will be necessary to protect the freshwater aquifers to the marine intrusion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

Saltwater intrusion is a naturally occurring phenomenon that is exacerbated significantly by excessive groundwater exploitation in coastal aquifers. In order to determine the extent of saltwater intrusion in a karstified coastal aquifer in Crete, Greece, a three-dimensional, density-dependent groundwater flow and transport model was developed and compared to the more traditional sharp-interface approach. The karstified medium was modelled using a combination of the equivalent porous medium approach (for lower-order fractures) and a discrete fracture approach (for the main fractures/faults). The model takes into consideration the geomorphologic characteristics of the karstic system, such as the depth and orientation of the fault network, and the diffusion phenomena associated with the variable densities of freshwater and saltwater—parameters that create a complex system, inducing uncertainty in the model. The model results showed that the orientation of the fractures, the pumping activity and the fluid density effects drive the seawater intrusion front asymmetrically inland.

Editor Z.W. Kundzewicz

Citation Dokou, Z. and Karatzas, G.P., 2012. Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach. Hydrological Sciences Journal, 57 (5), 985–999.  相似文献   

13.
ABSTRACT

The hydrological response of shallow ponds to groundwater withdrawal has been of growing concern in the Doñana National Park (southern Spain) in recent decades. This study examines the role of groundwater in maintaining the hydroperiod (i.e. the hydrological regime) in the park’s main dune ponds, by quantifying the groundwater fluxes to/from them. The hydrological characterization was performed by applying different methodologies. Daily hydrological balances registered in the ponds revealed groundwater contributions ranging from 80% of the total water inflows (i.e. groundwater discharge) to a net groundwater recharge from the ponds to the aquifer, and enabled the studied water bodies to be classified as discharge or recharge systems. The recharge systems must have been influenced by the lowering of piezometric levels due to groundwater extraction for urban supply in a nearby coastal resort.  相似文献   

14.
The desert of eastern Libya forms one of the most arid regions of the Sahara. The Great Man‐Made River Project (GMRP) was established. It transports millions of cubic meters of water a day from desert wellfields to the coastal cities, where over 80% of the population lives. The Tazerbo Wellfield is one of the wellfields designed within the GMRP, delivering water to the eastern coast of Libya through an underground pipe network. Tazerbo Wellfield consists of 108 production wells; each well was designed to pump 100 L/s. The planned total groundwater withdrawal from all wells is 1 million m3/d. The deep sandstone aquifer (Nubian sandstone) is covered by a thick mudstone‐siltstone aquitard and is being heavily pumped. The aquifer and fine‐grained sediments of the aquitard may be compacted resulting in land subsidence as a result of high exploitation. Local sinkholes have developed in the area of Tazerbo since the start of the pumping from the wellfield in 2004. These sinkholes have been caused mainly by lowering of the piezometric heads due to the withdrawal of groundwater. In this study, a hydrogeological investigation is presented about the effect of large groundwater pumping from the Nubian sandstone aquifer in Tazerbo Wellfield, SE Libya, based on physical parameters for 108 production wells and 23 observation wells.  相似文献   

15.
Hydrological effects of groundwater abstraction near a Danish river valley have been assessed by integrated hydrological modelling. The study site contains groundwater‐dependent terrestrial ecosystems in terms of fen and spring habitats that are highly dependent on regional and local scale hydrology. Fens are rare and threatened worldwide due to pressures from agriculture, to lack of appropriate management and to altered catchment hydrology. A solid foundation for hydrological modelling was established based on intensive monitoring at the site, combined with full‐scale pumping tests in the area. A regional groundwater model was used to describe the dynamics in groundwater recharge and the large‐scale discharge to streams. A local grid refinement approach was then applied in a detailed assessment of damage in order to balance the computational effort and the need for a high spatial resolution. A considerable flow reduction in the natural spring was monitored during a full‐scale pumping test while no significant effects on the water table in the fen habitats were observed. A modelled abstraction scenario predicted a lowering of 2–3 cm in the centre of the main fen area during summer periods. The predicted change in water table conditions in the fen habitat is compared to the variability found in 35 Danish fens, and the ecological response is discussed based on statistical water‐level vegetation relations. The results provide a rare quantitative foundation for decision making in relation to management of groundwater‐dependent terrestrial ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Estimation of hydraulic parameters is essential to understand the interaction between groundwater flow and seawater intrusion. Though several studies have addressed hydraulic parameter estimation, based on pumping tests as well as geophysical methods, not many studies have addressed the problem with clayey formations being present. In this study, a methodology is proposed to estimate anisotropic hydraulic conductivity and porosity values for the coastal aquifer with unconsolidated formations. For this purpose, the one-dimensional resistivity of the aquifer and the groundwater conductivity data are used to estimate porosity at discrete points. The hydraulic conductivity values are estimated by its mutual dependence with porosity and petrophysical parameters. From these estimated values, the bilinear relationship between hydraulic conductivity and aquifer resistivity is established based on the clay content of the sampled formation. The methodology is applied on a coastal aquifer along with the coastal Karnataka, India, which has significant clayey formations embedded in unconsolidated rock. The estimation of hydraulic conductivity values from the established correlations has a correlation coefficient of 0.83 with pumping test data, indicating good reliability of the methodology. The established correlations also enable the estimation of horizontal hydraulic conductivity on two-dimensional resistivity sections, which was not addressed by earlier studies. The inventive approach of using the established bilinear correlations at one-dimensional to two-dimensional resistivity sections is verified by the comparison method. The horizontal hydraulic conductivity agrees with previous findings from inverse modelling. Additionally, this study provides critical insights into the estimation of vertical hydraulic conductivity and an equation is formulated which relates vertical hydraulic conductivity with horizontal. Based on the approach presented, the anisotropic hydraulic conductivity of any type aquifer with embedded clayey formations can be estimated. The anisotropic hydraulic conductivity has the potential to be used as an important input to the groundwater models.  相似文献   

17.
The lower Apalachicola–Chattahoochee–Flint River Basin in the Southeast United States represents a major agricultural area underlain by the highly productive karstic Upper Floridan aquifer (UFA). During El Niño Southern Oscillation‐induced droughts, intense groundwater withdrawal for irrigation lowers streamflow in the Flint River due to its hydraulic connectivity with the UFA and threatens the habitat of the federally listed and endangered aquatic biota. This study assessed the compounding hydrologic effects of increased irrigation pumping during drought years (2010–2012) on stream–aquifer water exchange (stream–aquifer flux) between the Flint River and UFA using the United States Geological Survey modular finite element groundwater flow model. Principal component and K‐means clustering analyses were used to identify critical stream reaches and tributaries that are adversely affected by irrigation pumping. Additionally, the effectiveness of possible water restriction scenarios on stream–aquifer flux was also analysed. Moreover, a cost–benefit analysis of acreage buyout procedure was conducted for various water restriction scenarios. Results indicate that increased groundwater withdrawal in Water Year 2011 decreased baseflow in the lower Apalachicola–Chattahoochee–Flint River Basin, particularly, in Spring Creek, where irrigation pumping during April, June, and July changed the creek condition from a gaining to losing stream. Results from sensitivity analysis and simulated water restrictions suggest that reducing pumping in selected sensitive areas is more effective in streamflow recovery (approximately 78%) than is reducing irrigation intensity by a prescribed percentage of current pumping rates, such as 15% or 30%, throughout the basin. Moreover, analysis of acreage buyout indicates that restrictions on irrigation withdrawal can have significant impacts on stream–aquifer flux in the Basin, especially in critical watersheds such as Spring and Ichawaynochaway Creeks. The proposed procedure for ranking of stream reaches (sensitivity analysis) in this study can be replicated in other study areas/models. This study provides useful information to policymakers for devising alternate irrigation water withdrawal policies during droughts for maintaining flow levels in the study area.  相似文献   

18.
Saltwater intrusion problems have been usually tackled through analytical models because of its simplicity, easy implementation and low computational cost. Most of these models are based on the sharp‐interface approximation and the Ghyben–Herzberg relation, which neglects mixing of fresh water and seawater and implicitly assumes that salt water remains static. This paper provides insight into the validity of a sharp‐interface approximation defined from a steady state solution when applied to transient seawater intrusion problems. The validation tests have been performed on a 3D unconfined synthetic aquifer, which include spatial and temporal distribution of recharge and pumping wells. Using a change of variable, the governing equation of the steady state sharp‐interface problem can be written with the same structure of the steady confined groundwater flow equation as a function of a single potential variable (?). We propose to approach also the transient problem solving a single potential equation (using also the ? variable) with the same structure of the confined groundwater flow equation. It will allow solving the problem by using the classical MODFLOW code. We have used the parameter estimation model PEST to calibrate the parameters of the transient sharp‐interface equation. We show how after the calibration process, the sharp‐interface approach may provide accurate enough results when applied to transient problems and improve the steady state results, thus avoiding the need of implementing a density‐dependent model and reducing the computational cost. This has been proved by comparing results with those obtained using the finite difference numerical code SEAWAT for solving the coupled partial differential equations of flow and density‐dependent transport. The comparison was performed in terms of piezometric heads, seawater penetration, transition zone width and critical pumping rates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Seawater intrusion into fresh groundwater formations generally results inadvertently from human activities, such as over‐abstraction from coastal aquifers. This article describes the data analysis to quantify drain–aquifer interactions in a low‐lying pump‐drained coastal aquifer, which is subject to saline intrusion due to widespread land drainage, and the resulting development and application of a numerical groundwater model to understand the spatial groundwater system behaviour (including groundwater salinity fluxes). Without measured flow data in this pump‐drained catchment, a novel groundwater head‐dependent approach to hydrograph separation is described. Time‐variant and time‐invariant MODFLOW analyses are utilised to examine the flow processes. A new approach to calculate drain coefficients, which represent the extensive network of drainage ditches in the regional model, using field information, is described; the sum of the drainage coefficients are close to the values independently estimated from the head‐dependent hydrograph separation. Results show that (1) the groundwater flows into the drainage systems are well reproduced using the new drain coefficients, (2) particle tracking of fresh and saline water can explain observed spatial salinity distribution within drainage networks and (3) the modelled flow of seawater across the coast is approximately 25% greater than that discharged by the pumps, demonstrating the need for drainage management to be aware of the slow response of groundwater systems to past drainage system changes. The article demonstrates that numerical groundwater modelling can produce the improved understanding needed to inform management decisions in such complex environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
《Marine pollution bulletin》2014,78(1-2):118-129
There is a growing concern of seawater intrusion to freshwater aquifers due to groundwater overexploitation in the eastern coastal belt of Southern India. The problem becomes complex in the regions where industrial effluents are also contaminating the freshwater aquifers. In order to understand the hydrochemical complexity of the system, topographic elevation, static water level measurements, major ion chemistry, ionic cross plots, water type contours and factor analysis were applied for 144 groundwater samples of shallow and deep sources from Quaternary and Tertiary coastal aquifers, located within the industrial zone of 25 km2 area near Cuddalore, Southern India. The ionic cross plots indicates dissolution of halite minerals from marine sources and seawater mixing into inland aquifers up to the level of 9.3%. The factor analysis explains three significant factors totaling 86.3% of cumulative sample variance which includes varying contribution from marine, industrial effluent and freshwater sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号