首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
In 1820, the lower Canadian River meandered through a densely forested floodplain. By 1898, most of the floodplain had been cleared for agriculture and changes in channel geometry and specific stream power followed, particularly channel widening and straightening with a lower potential specific stream power. In 1964, a large upstream hydropower dam was constructed, which changed the flow regime in the lower Canadian River and consequently the channel geometry. Without destructive overbank floods, the channel narrowed rapidly and considerably due to encroachment by floodplain vegetation. The lower Canadian River, which was once a highly dynamic floodplain‐river system, has now been transformed into a relatively static river channel. These changes over the past 200 years have not been linear or independent. In this article, we use a variety of data sources to assess these historical changes along the lower Canadian River floodplain and identify feedbacks among floodplain cultivation, dam construction, specific stream power, and channel width, slope, and sinuosity. Finally, we combine the results of our study with others in the region to present a biogeomorphic response model for large Great Plains rivers that characterizes channel width changes in response to climate variability and anthropogenic disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Hydrological connectivity between floodplain wetlands and rivers is one of the principal driving mechanisms for the diversity, productivity and interactions of the major biota in river–floodplain systems. This article describes a method of quantifying flood‐induced overbank connectivity using a hydrodynamic model (MIKE 21) to calculate the timing, the duration and the spatial extent of the connections between several floodplain wetlands and rivers in the Tully–Murray catchment, north Queensland, Australia. Areal photogrammetry and field surveyed stream cross data were used to reproduce floodplain topography and rivers in the model. Laser altimetry (LiDAR)–derived fine resolution elevation data, for the central floodplain, were added to the topography model to improve the resolution of key features including wetlands, flow pathways and natural and artificial flow barriers. The hydrodynamic model was calibrated using a combination of in‐stream and floodplain gauge records. A range of off‐stream wetlands including natural and artificial, small and large were investigated for their connectivity with two main rivers (Tully and Murray) flowing over the floodplain for flood events of 1‐, 20‐ and 50‐year recurrence intervals. The duration of the connection of individual wetlands varied from 1 to 12 days, depending on flood magnitude and location in the floodplain, with some wetlands only connected during large floods. All of the wetlands studied were connected to the Tully River for shorter periods than they were to the Murray River because of the higher bank heights and levees on the Tully River and wetland proximity to the Murray River. Other than hydrology, land relief, riverbank elevation and levee banks along the river were found key factors controlling the degree of connectivity. These variations in wetland connectivity could have important implications for aquatic biota that move between rivers and off‐stream habitats during floods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Stream power can be an extremely useful index of fluvial sediment transport, channel pattern, river channel erosion and riparian habitat development. However, most previous studies of downstream changes in stream power have relied on field measurements at selected cross‐sections, which are time consuming, and typically based on limited data, which cannot fully represent important spatial variations in stream power. We present here, therefore, a novel methodology we call CAFES (combined automated flood, elevation and stream power), to quantify downstream change in river flood power, based on integrating in a GIS framework Flood Estimation Handbook systems with the 5 m grid NEXTMap Britain digital elevation model derived from IFSAR (interferometric synthetic aperture radar). This provides a useful modelling platform to quantify at unprecedented resolution longitudinal distributions of flood discharge, elevation, floodplain slope and flood power at reach and basin scales. Values can be resolved to a 50 m grid. CAFES approaches have distinct advantages over current methodologies for reach‐ and basin‐scale stream power assessments and therefore for the interpretation and prediction of fluvial processes. The methodology has significant international applicability for understanding basin‐scale hydraulics, sediment transport, erosion and sedimentation processes and river basin management. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The ecological condition and biodiversity values of floodplain wetlands are highly dependent on the hydrological connectivity of wetlands to adjacent rivers. This paper describes a method for quantifying connectivity between floodplain wetlands and the main rivers in a wet tropical catchment of northern Australia. We used a one‐dimensional hydrodynamic model to simulate time‐varying water depths across the stream network (i.e. rivers, streams and man‐made drains). The timing and duration of connectivity of seven wetlands (four natural and three artificial) with the two main rivers in the catchment were then calculated for different hydrological conditions. Location and areal extent of the wetlands and the stream network were identified using high‐resolution laser altimetry, and these data formed key inputs to the hydrodynamic model. The model was calibrated using measured water depths and discharges across the floodplain. An algorithm was developed to identify contiguous water bodies at daily time steps, and this gave the temporal history of connection and disconnection between wetlands and the rivers. Simulation results show that connectivity of individual wetlands to both rivers varies from 26 to 365 days during an average hydrological condition. Location, especially proximity to a main river, and wetland type (natural stream or artificial drain) were identified as key factors influencing these levels of connectivity. Some natural wetlands maintain connection with the river for most or all of the year, whereas the connectivity of some artificial wetlands varies from 26 to 36 days according to their patterns of network connection to adjacent rivers – a result that has important implications for the accessibility of these types of wetland to aquatic biota. Using readily available river gauge data, we also show how connectivity modelling can be used to identify periods when connectivity has fallen below critical thresholds for fish movement. These connectivity patterns within the floodplain network are central to the setting of river flows that will meet environmental requirements for biota that use floodplain wetlands during their life history. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The capability of a simple kinematic‐storage model (KSM) is analysed to be used as a tool for a Decision Support System for the evaluation of probability inundation maps in near real time in poorly gauged areas. KSM simulates the floodplain as a storage and assumes no exchange of momentum with the channel. For the in‐bank flow, the storage is modified through a coefficient for taking the variations of channel cross sections into account. The generalized likelihood uncertainty estimation approach is used for addressing the probability flood maps along with their associated uncertainties. The model is tested on two river reaches along the Tiber River in Central Italy where observed inundation maps are available for two recent flood events. Despite the inherent uncertainties present in the input data and in the model structure, the results show that the model reproduces reasonably well, in terms of both precision and accuracy, the observed inundated areas. Tests were performed at different digital elevation model resolutions, showing a small effect of the geometry on the maximum performance obtained. The very low computational times, the parsimony of the model and its low sensitivity to the quality of the geometry representation of the channel and the floodplain makes KSM very appealing for flood forecasting and early warning system applications in poorly gauged and inaccessible areas. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The potential for geomorphological mapping and quantitative calculations of light detection and ranging (LiDAR) data within fluvial geomorphology was studied for two river catchments within Belgium (Dijle and Amblève), which differ in physical settings and floodplain morphology. Two commercial, of‐the‐shelf LiDAR datasets with different specifications (horizontal resolution and vertical accuracy) were available for parts of the floodplains of both catchments. Real‐time kinematic (RTK) Global Positioning System (GPS) data were used as ground truth for error calculations. Qualitative analysis of LiDAR data allowed the identification of former channel patterns, levees, colluvial hillslope and fan deposits. These results were confirmed by field data, topographic surveys and historical maps. The pixel resolution proved to be an important factor in the identification of small landforms: only features with a width equal to or larger than LiDAR resolution can be detected. This poses limits on the usability of regionally available LiDAR data, which often have a horizontal resolution of several metres. The LiDAR data were also used in a quantitative analysis of channel dynamics. In the study area, the width of the Dijle River channel increased 3 m on average between 1969 and 2003. A sediment budget of channel processes for the period 1969–2003 indicated a total river bank erosion of 16·1 103 m3 and a total within channel deposition of 7·1 103 m3, resulting in a net river erosion of 9·0 103 m3 or c. 0·4 Mg year?1 per metre river length. Sequential LiDAR data can in theory be used to calculate vertical sedimentation rates, as long as there is control on the error of the reference levels used. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

10.
Channel avulsion occurred on the Thomson River in Victoria, Australia, in 1952 along a 12 km length of the valley. A comparison of the old and new channels reveals considerable differences in channel characteristics. The old channel was perched above the floodplain on an alluvial ridge such that when bankfull capacity was exceeded, floodwaters concentrated on the lowest part of the floodplain some distance away. This is where the new channel formed. It is an incised channel with larger capacity and longer meander wavelength than the old channel and is also shorter and steeper. The new channel is subject to larger floodflows and a more variable flood regime than the old course because of the differences in the channel/floodplain relationship and channel capacity. The resulting concentration of stream power along the new course is responsible for the contrast in channel characteristics and for the more rapid meander migration. This example shows that river metamorphosis can occur without major environmental changes. Measures of channel geometry such as gradient, sinuosity, and meander wavelength therefore cannot be used in palaeohydrological work to infer climatic or other environmental changes without independent supporting evidence. Differences in channel geometry can arise simply from changes in the relationship between the channel and its loodplain.  相似文献   

11.
Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, digital surface models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub‐metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. This paper describes the development of a LiDAR post‐processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post‐processing produces a digital terrain model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR‐derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1 m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a two‐dimensional finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features (such as buildings and roads) and taller vegetation features (such as trees and hedges). This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Terraces and floodplains are important indicators of near‐channel sediment dynamics, serving as potential sediment sources and sinks. Increasing availability of high resolution topography data over large areas calls for development of semi‐automated techniques for identification and measurement of these features. In this study we introduce a novel tool that accommodates user‐defined parameters including, a local‐relief threshold selected by a variable‐size moving window, minimum area threshold, and maximum distance from the channel to identify and map discrete terrace and floodplain surfaces. Each of the parameters can easily be calibrated for a given watershed or reach. Subsequently, the tool automatically measures planform area, absolute elevation, and height relative to the local river channel for each terrace polygon. We validate the tool in two locations where terrace maps were previously developed via manual digitization from lidar and extensive field mapping campaigns. The tool is also tested on six different types of rivers to provide examples of starting selection parameters, and to test effectiveness of the tool across a wide range of landscapes. Generally, the tool provides a high quality draft map of terrace and floodplain surfaces across the wide range of environmental conditions for which it has been tested. We find that the tool functions best in catchments where the terraces are spatially extensive, with distinct differences between the terrace and floodplain. The most challenging environments for semi‐automated terrace and floodplain mapping include steep catchments with dense riparian vegetation, and very small terraces (~10 m2 in areal extent). We then apply the tool to map terraces and floodplains in the Root River watershed, southeastern Minnesota and generate exceedance plots for terrace heights. These plots provide a first pass analysis to indicate the tributaries and reaches of the river where terraces constitute a significant source of sediment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
At watershed extents, our understanding of river form, process and function is largely based on locally intensive mapping of river reaches, or on spatially extensive but low density data scattered throughout a watershed (e.g. cross sections). The net effect has been to characterize streams as discontinuous systems. Recent advances in optical remote sensing of rivers indicate that it should now be possible to generate accurate and continuous maps of in‐stream habitats, depths, algae, wood, stream power and other features at sub‐meter resolutions across entire watersheds so long as the water is clear and the aerial view is unobstructed. Such maps would transform river science and management by providing improved data, better models and explanation, and enhanced applications. Obstacles to achieving this vision include variations in optics associated with shadows, water clarity, variable substrates and target–sun angle geometry. Logistical obstacles are primarily due to the reliance of existing ground validation procedures on time‐of‐flight field measurements, which are impossible to accomplish at watershed extents, particularly in large and difficult to access river basins. Philosophical issues must also be addressed that relate to the expectations around accuracy assessment, the need for and utility of physically based models to evaluate remote sensing results and the ethics of revealing information about river resources at fine spatial resolutions. Despite these obstacles and issues, catchment extent remote river mapping is now feasible, as is demonstrated by a proof‐of‐concept example for the Nueces River, Texas, and examples of how different image types (radar, lidar, thermal) could be merged with optical imagery. The greatest obstacle to development and implementation of more remote sensing, catchment scale ‘river observatories’ is the absence of broadly based funding initiatives to support collaborative research by multiple investigators in different river settings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Hydrological alteration within an ice-marginal valley is analysed in relation to flooding by the River Vistula flowing within that valley. Specifically, the analysis covers the period of the last two centuries (up to the present day), making reference to human impacts and natural disasters. Seven topographic maps, as well as digital terrain model (DTM) analysis of the extent of flooded areas are used to evaluate the linkage with historical flood events. Within the ice-marginal valley, flooding processes are found to still play an important role on the floodplain, although human activities have limited these significantly through the construction of embankments. The changing characteristics of floods generated by different mechanisms (e.g. heavy rainfall and ice jams) are also discussed.
Editor D. Koutsoyiannis  相似文献   

16.
The morphological active width, defined as the lateral extent of bed material displacement over time, is a fundamental parameter in multi‐threaded gravel‐bed rivers, linking complex channel dynamics to bedload transport. Here, results are presented from five constant discharge experiments, and three event hydrographs, covering a range of flow strengths and channel configurations for which morphological change, bedload transport rates, and stream power were measured in a physical model. Changes in channel morphology were determined via differencing of photogrammetrically‐derived digital elevation models (DEMs) of the model surface generated at regular intervals over the course of ~115 h of experimental runs. Independent measures of total bedload output were made using downstream sediment baskets. Results indicate that the morphological active width increases with total and dimensionless stream power and is strongly and positively correlated with bulk change (total volume of bed material displaced over time) and active braiding intensity (ABI). Although there is considerable scatter due to the inherent variability in braided river morphodynamics, the active width is positively correlated with independent measurements of bedload transport rate. Active width, bulk change, and bedload transport rates were all negligible below a dimensionless stream power threshold value of ~ 0.09, above which all increase with flow strength. Therefore, the active width could be used as a general predictor of bulk change and bedload transport rates, which in turn could be approximated from total and dimensionless stream power or ABI in gravel‐bed braided rivers. Furthermore, results highlight the importance of the active width, rather than the morphological active depth, in predicting volumes of change and bedload transport rates. The results contribute to the larger goals of better understanding braided river morphodynamics, creating large high‐resolution datasets of channel change for model calibration and validation, and developing morphological methods for predicting bedload transport rates in braiding river systems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

17.
Dynamic interaction between river morphodynamics and vegetation affects river channel patterns and populations of riparian species. A range of numerical models exists to investigate the interaction between vegetation and morphodynamics. However, many of these models oversimplify either the morphodynamics or the vegetation dynamics, which hampers the development of predictive models for river management. We have developed a model coupling advanced morphodynamics and dynamic vegetation, which is innovative because it includes dynamic ecological processes and progressing vegetation characteristics as opposed to commonly used static vegetation without growth and mortality. Our objective is to understand and quantify the effects of vegetation‐type dependent settling, growth and mortality on the river pattern and morphodynamics of a meandering river. We compared several dynamic vegetation scenarios with different functional trait sets to reference scenarios without vegetation and with static vegetation without growth and mortality. We find distinct differences in morphodynamics and river morphology. The default dynamic vegetation scenario, based on two Salicaceae species, shows an active meandering behaviour, while the static vegetation scenario develops into a static, vegetation‐dominated state. The diverse vegetation patterns in the dynamic scenario reduce lateral migration, increase meander migration rate and create a smoother floodplain compared to the static scenario. Dynamic vegetation results in typical vegetation patterns, vegetation age distribution and river patterns as observed in the field. We show a quantitative interaction between vegetation and morphodynamics, where increasing vegetation cover decreases sediment transport rates. Furthermore, differences in vegetation colonization, density and survival create distinct patterns in river morphology, showing that vegetation properties and dynamics drive the formation of different river morphologies. Our model demonstrates the high sensitivity of channel morphodynamics to various species traits, an understanding which is required for floodplain and stream restoration and more realistic modelling of long‐term river development. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The advent of 2D hydraulic modelling has improved our understanding of flood hydraulics, thresholds, and dynamic effects on floodplain geomorphology and riparian vegetation at the morphological-unit scale. Hydraulic concepts of bed shear stress, stream power maxima, and energy (cumulative stream power) have been used to characterize floods and define their geomorphic effectiveness. These hydraulic concepts were developed in the context of reach-averaged, 1D hydraulic analyses, but their application to 2D model results is problematic due to differences in the treatment of energy losses in 1D and 2D analyses. Here we present methods for estimating total and boundary resistance from 2D modelling of an extreme flood on a subtropical river. Hydraulic model results are correlated with observations of the flood impacts on floodplain geomorphology and the riparian vegetation to identify thresholds and compute variants of flood energy. Comparison of LiDAR data in 2011 and 2014 shows that the 2011 flood produced 2–4 m of erosion on floodplain bars that were previously forested or grass-covered. Deposition on flood levees, dunes, and chute bars was up to 3.4 m thick. Various hydraulic metrics were trialled as candidates for thresholds of vegetation disturbance. The accuracy of thresholds using metrics extracted at the flood peak (i.e. boundary resistance and stream power maxima) was similar to that using energy as a threshold. Disturbance to forest and grass on vegetated bars was associated with stream powers of >834 W/m2 and unit flows of >26 m2/s, respectively. Correlation of the hydraulic metrics with erosion and deposition depths showed no substantial improvement in using flood energy compared to metrics extracted at the flood peak for describing erosion and deposition. The extent of vegetation disturbances and morphological adjustments was limited for this extreme flood, and further 2D studies are needed to compare disturbance thresholds across different environments.  相似文献   

19.
River channel patterns are thought to form a morphological continuum. This continuum is two-dimensional, defined by plan features of which there are three (straight, meandering, branching), and structural levels of fluvial relief of which there are also three (floodplain, flood channel, low-water channel). Combinations of these three categories define the diversity of patterns. One of the most important factors in channel development is stream power, defined by water discharge and river slope. The greater the stream power, the stronger the branching tendency, but threshold values of stream power are different for the three different hierarchical levels of channel relief. The critical stream power values and hydrological regime together define the channel pattern, and analysis of the pattern type can be undertaken using effective discharge curves. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
River classifications provide useful frameworks to understand complex fluvial landscapes and to manage freshwater ecosystems. Alluvial floodplains for rivers in low‐relief glacially conditioned catchments of southern Ontario (Canada) are classified and tested using a sequence of multivariate statistical analyses. An original dataset of 109 floodplain sites is investigated using k‐means clustering, principal component analysis, and discriminant analysis statistical approaches. Four primary floodplain types are proposed representing basic morphological, stratigraphical, and sedimentological characteristics. Classifications are successfully discriminated by two principal dimensions: (1) stream power‐resistance; and (2) floodplain sedimentology. The latter is most efficiently represented by the availability of alluvial sand, and specifically a new variable defined as floodplain sand equivalent (FSE). Floodplain types are generally consistent with previous river classifications, however the glacial legacy requires refined classifications which account for inherited cobble bed materials and patterns of sand supply. Representing the residual variability of stream power‐resistance correlations, a third explanatory dimension of sediment transport is suggested, and may explain some within‐class variability in channel morphology. Balancing the opposing concepts of fluvial process domains and landform continuums, the potential for transitional floodplain types is also explored. The proposed first‐order alluvial floodplain classifications provide a basis from which to further investigate geomorphological diversity within the context of complex glacial legacy effects in low‐relief settings. Future research to reveal the spatial arrangement and linkages of distinct morphological groups within a regional landscape mosaic is expected to provide insights into patterns of post‐glacial fluvial adjustment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号