首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
An energy-based methodology for the assessment of seismic demand   总被引:4,自引:0,他引:4  
A methodology for the assessment of the seismic energy demands imposed on structures is proposed. The research was carried out through two consecutive phases. Inelastic design input energy spectra for systems with a prescribed displacement ductility ratio were first developed. The study of the inelastic behavior of energy factors and the evaluation of the response modification in comparison with the elastic case were performed by introducing two new parameters, namely: (1) the Response Modification Factor of the earthquake input energy (RE), representing the ratio of the elastic to inelastic input energy spectral values and (2) the ratio α of the area enclosed by the inelastic input energy spectrum in the range of periods between 0.05 and 4.0 s to the corresponding elastic value. The proposed design inelastic energy spectra, resulting from the study of a large set of strong motion records, were obtained as a function of ductility, soil type, source-to-site distance and magnitude.Subsequently, with reference to single degree of freedom systems, the spectra of the hysteretic to input energy ratio were evaluated, for different soil types and target ductility ratios. These spectra, defined to evaluate the hysteretic energy demand of structures, were described by a piecewise linear idealization that allows to distinguish three distinct regions as a function of the vibration period. In this manner, once the inelastic design input energy spectra were determined, the definition of the energy dissipated by means of inelastic deformations followed directly from the knowledge of hysteretic to input energy ratio.The design spectra of both input energy and hysteretic to input energy ratio were defined considering an elasto-plastic behavior. Nevertheless, other constitutive models were taken into account for comparison purposes.  相似文献   

2.
This paper summarizes the results of a comprehensive statistical study aimed at evaluating peak lateral inelastic displacement demands of structures with known lateral strength and stiffness built on soft soil site conditions. For that purpose, empirical information on inelastic displacement ratios which are defined as the ratio of peak lateral inelastic displacement demands to peak elastic displacement demands are investigated. Inelastic displacement ratios were computed from the response of single‐degree‐of‐freedom systems having 6 levels of relative lateral strength when subjected to 118 earthquake ground motions recorded on bay‐mud sites of the San Francisco Bay Area and on soft soil sites located in the former lake‐bed zone of Mexico City. Mean inelastic displacement ratios and their corresponding scatter are presented for both ground motion ensembles. The influence of period of vibration normalized by the predominant period of the ground motion, the level of lateral strength, earthquake magnitude, and distance to the source are evaluated and discussed. In addition, the effects of post‐yield stiffness and of stiffness and strength degradation on inelastic displacement ratios are also investigated. It is concluded that magnitude and distance to the source have negligible effects on constant‐strength inelastic displacement ratios. Results also indicate that weak and stiffness‐degrading structures in the short spectral region could experience inelastic displacement demands larger than those corresponding to non‐degrading structures. Finally, a simplified equation obtained using regression analyses aimed at estimating mean inelastic displacement ratios is proposed for assisting structural engineers in performance‐based assessment of structures built on soft soil sites. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Elastic and inelastic displacement spectra (for periods up to 4.0 s) are derived, using a representative sample of acceleration records from Greece, carefully selected based on magnitude, distance and peak ground acceleration criteria, and grouped into three ground type categories according to the Eurocode 8 (EC8) provisions. The modification factor for the elastic design spectrum adopted in EC8 for accounting for damping is verified herein and is found to be satisfactory in the short to medium period range and less so in the long period range. The equivalent viscous damping ratio concept is also evaluated and is found to lead to underestimation of inelastic displacement spectra. Finally, based on the previously derived elastic and inelastic spectra, equations suitable for design and/or assessment purposes, are proposed for the corresponding displacement modification factors.  相似文献   

4.
Results of a detailed statistical study of constant relative strength inelastic displacement ratios to estimate maximum lateral inelastic displacement demands on existing structures from maximum lateral elastic displacement demands are presented. These ratios were computed for single‐degree‐of‐freedom systems with different levels of lateral strength normalized to the strength required to remain elastic when subjected to a relatively large ensemble of recorded earthquake ground motions. Three groups of soil conditions with shear wave velocities higher than 180m/s are considered. The influence of period of vibration, level of lateral yielding strength, site conditions, earthquake magnitude, distance to the source, and strain‐hardening ratio are evaluated and discussed. Mean inelastic displacement ratios and those associated with various percentiles are presented. A special emphasis is given to the dispersion of these ratios. It is concluded that distance to the source has a negligible influence on constant relative strength inelastic displacement ratios. However, for periods smaller than 1s earthquake magnitude and soil conditions have a moderate influence on these ratios. Strain hardening decreases maximum inelastic displacement at a fairly constant rate depending on the level of relative strength for periods of vibration longer than about 1.0s while it decreases maximum inelastic displacement non‐linearly as the period of vibration shortens and as the relative‐strength ratio increases for periods of vibration shorter than 1.0s. Finally, results from non‐linear regression analyses are presented that provide a simplified expression to be used to approximate mean inelastic displacement ratios during the evaluation of existing structures built on firm sites. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A probabilistic approach to estimate maximum inelastic displacement demands of single‐degree‐of‐freedom (SDOF) systems is presented. By making use of the probability of exceedance of maximum inelastic displacement demands for given maximum elastic spectral displacement and the mean annual frequency of exceedance of elastic spectral ordinates, a simplified procedure is proposed to estimate mean annual frequencies of exceedance of maximum inelastic displacement demands. Simplifying assumptions are thoroughly examined and discussed. Using readily available elastic seismic hazard curves the procedure can be used to compute maximum inelastic displacement seismic hazard curves and uniform hazard spectra of maximum inelastic displacement demands. The resulting maximum inelastic displacement demand spectra provide a more rational way of establishing seismic demands for new and existing structures when performance‐based approaches are used. The proposed procedure is illustrated for elastoplastic SDOF systems having known‐lateral strength located in a region of high seismicity in California. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Elastic and inelastic spectra are derived, based on a representative sample of acceleration records from Greece, carefully selected based on magnitude, distance and peak ground acceleration criteria, and grouped into three ground condition categories according to the 2004 Eurocode 8 (EC8) provisions. Using software developed in-house, elastic (pseudoacceleration, pseudovelocity and displacement), as well as inelastic (strength and displacement) spectra are computed for various critical damping ratios and ductility levels. After appropriate scaling, mean spectra are computed both irrespective of, as well as for each different, ground condition, and comparisons with EC8 provisions are made. As a further evaluation of the code spectra, three additional earthquake scenarios are considered representing ground-motion characteristics not reflected in the compiled dataset of records. Subsequently, modification factors for strength (qμ) are derived from statistical analysis of constant ductility spectra, and corresponding empirical relationships, suitable for design purposes, are proposed.  相似文献   

7.
Structures undergoing inelastic displacements during earthquake ground motions are known to sustain some amount of residual displacements, which may make those unusable or unsafe. In this study an attempt is made to estimate residual displacements for elastic-perfectly-plastic single-degree-of-freedom oscillators with a given ductility ratio. Such oscillators belong to the class of bilinear hysteresis models applicable to steel structures, with post-yield-stiffness ratio taken as zero, and may be used for the conservative estimates of residual displacements when the post-yield-stiffness ratio is unlikely to become negative. Statistical estimation of residual displacement spectrum via normalization with respect to inelastic or elastic spectral displacements is considered and expressions are proposed for both types of normalizations. The statistical dependence of residual displacement on the seismological and site parameters and strong motion duration is also studied and a simple scaling model is proposed in terms of earthquake magnitude, epicentral distance, and geologic site condition parameter for the seismic region of western U.S.A. According to this model, the variation of residual displacement with period primarily depends on the site conditions, and the residual displacements are more sensitive to ductility ratio at low ductility ratios.  相似文献   

8.
Near‐source pulse‐like records resulting from rupture's directivity have been found to depart from so‐called ordinary ground motions in terms of both elastic and inelastic structural seismic demands. In fact, response spectra may be strong if compared with what is expected from common ground motion prediction equations. Moreover, because not all spectral ordinates are affected uniformly, a peculiar spectral shape, with an especially amplified region depending on the pulse period, may follow. Consequently, inelastic seismic demand may show trends different to records not identified as pulse‐like (i.e., ordinary). This latter aspect is addressed in the study reported in this short communication, where a relatively large dataset of identified impulsive near‐source records is used to derive an analytical‐form relationship for the inelastic displacement ratio. It is found that, similar to what was proposed in literature for soft soil sites, a double‐opposite‐bumps form is required to match the empirical data as a function of the structural period over the pulse period ratio. The relationship builds consistently on previous studies on the topic, yet displays different shape with respect to the most common equations for static structural assessment procedures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The objective of this paper is to present ground-motion prediction equations for ductility demand and inelastic spectral displacement of constant-strength perfectly elasto-plastic single-degree-of-freedom (SDOF) oscillators. Empirical equations have been developed to compute the ductility demand as a function of two earthquake parameters; moment magnitude, and source-to-site distance; one site parameter, the ground type; and three oscillator parameters, an undamped natural period, critical damping ratio, and the mass-normalized yield strength. In addition, a comparative study of the proposed model with selected previous studies and recommendations of Eurocode 8 is presented. Proposed equations can easily be incorporated in existing probabilistic seismic hazard analysis (PSHA) software packages with the introduction of an additional parameter. This leads to hazard curves for inelastic spectral displacement, which can provide better estimates of target displacement for nonlinear static procedures and an efficient intensity measure for probabilistic seismic demand analysis (PSDA). Proposed equations will be useful in performance evaluation of existing structures.  相似文献   

10.
弹塑性地震反应谱的长周期特性研究   总被引:3,自引:1,他引:3  
在基于性能抗震设计中弹塑性反应谱在计算结构地震位移反应方面越来越受到重视。利用统计分析方法研究了等强度的延性需求谱和等延性的强度折减系数谱的长周期(至5 s)区段的特性,关注的重点是等位移准则和场地条件影响。给出了若干具有工程价值的结论:一是周期介于1.5Tg(地震动特征周期)和2.5 s之间的结构可近似认为等位移准则成立且与场地条件关系不大,这样确定的强度折减系数当位移延性系数小于等于4时结果将是偏于安全的;二是结构周期大于2.5 s后以硬土场地等延性强度折减系数谱或等强度延性需求谱代替软土场地谱求解系统强度需求或延性需求,将会得到偏于安全的结果。  相似文献   

11.
In this paper, a stochastic approach for obtaining damage-based inelastic seismic spectra is proposed. The Park and Ang damage model, which includes displacement ductility and hysteretic energy, is adopted to take into account the cumulative damage phenomenon in structural systems under strong ground motions. Differently from previous studies in this field, damage-based seismic spectra are obtained by means of peak theory of stochastic processes. The following stochastic inelastic seismic spectra are constructed and then analyzed: damage-based displacement and acceleration inelastic spectra, damage-based response modification factor spectra, damage-based yield strength demand spectra and damage-based inelastic displacement ratio spectra.  相似文献   

12.
This paper presents a statistical study of the kinematic soil-foundation-structure interaction effects on the maximum inelastic deformation demands of structures. Discussed here is the inelastic displacement ratio defined as the maximum inelastic displacement demands of structures subjected to foundation input motions divide by those of structures subjected to free-field ground motions. The displacement ratio is computed for a wide period range of elasto-plastic single-degree-of-freedom (SDOF) systems with various levels of lateral strength ratios and with different sizes of foundations. Seventy-two earthquake ground motions recorded on firm soil with average shear wave velocities between 180 m/s and 360 m/s are adopted. The effects of period of vibration, level of lateral yielding strength and dimension of foundations are investigated. The results show that kinematic interaction will reduce the maximum inelastic displacement demands of structures, especially for systems with short periods of vibration, and the larger the foundation size the smaller the maximum inelastic displacement becomes. In addition, the inelastic displacement ratio is nearly not affected by the strength ratio of structures for systems with periods of vibration greater than about 0.3 s and with strength ratios smaller than about 3.0. Expressions obtained from nonlinear regression analyses are also proposed for estimating the effects of kinematic soil-foundation-structure interaction from the maximum deformation demand of the inelastic system subjected to free-field ground motions.  相似文献   

13.
This short communication presents the assessment of seismic inelastic and elastic displacement demands computed from earthquake ground motions (EQGMs) recorded in Mexico City during the intermediate‐depth intraslab Puebla‐Morelos earthquake on 19 September 2017 (Mw = 7.1). Evaluation is conducted by means of peak elastic and inelastic displacement demand spectra, inelastic displacement ratio, CR, spectra, and generalized interstory drift spectra computed for selected recording stations located in different soil sites of Mexico City, including those located in areas of reported collapsed buildings. Results of this study confirm previous observations made from interplate (subduction) EQGMs that peak inelastic displacement demands are greater than corresponding elastic counterparts for short‐to‐medium period structures, while the opposite is true for medium‐to‐long period structures. Possible basin site effects were identified from generalized interstory drift spectra. It is also shown that an equation introduced in the literature to obtain estimates of CR developed from interplate EQGMs provides also a good estimate for mean CR computed from the intermediate‐depth intraslab EQGMs.  相似文献   

14.
根据特定震源机制、震级、断层距和场地条件选取69条地震动记录并进行分组,利用Nspectra软件计算隔震结构的弹塑性位移反应谱,分析断层距、场地条件、震级、阻尼比对弹塑性位移谱的影响,探讨隔震层的力学参数对地震能量耗散的影响。研究结果表明:相较于远场,处于近场的隔震结构最为不利,隔震层位移谱值受场地条件、地震加速度和速度大小影响较大;随着断层距的增大,位移谱值衰减较快,且在软土场地中隔震层的位移谱值衰减幅度大于硬土场地;地震震级大小对位移谱形状的影响不明显,但能够使隔震层的位移谱值产生整体缩放效应;阻尼比在小于0.4的范围内,隔震层在不同地震动特性作用下位移谱值差别较大,但在大于0.4以后,位移谱值及谱形基本趋于一致;屈服力较小(恢复力/重力小于等于1)的隔震层随自振周期增大其耗能性能更加突出。  相似文献   

15.
This paper focuses on constant-ductility inelastic displacement ratios of self-centering single-degree-of-freedom (SDF) systems with two different levels of energy dissipation capacity, in the presence of 5% viscous damping ratio. A statistical analysis is developed considering an earthquake database composed of 228 ground motions recorded in California with magnitudes greater than six and organized for NEHRP soil class, ground motion duration, and peak ground acceleration. The response of self-centering SDF systems with large variability of initial periods, ductility levels, and postyield stiffness ratios is investigated and compared with the responses of SDF systems with bilinear plastic, Clough, and Takeda hysteresis. The inelastic demand variation with soil class, initial period, postyield stiffness ratio, unloading stiffness degradation, ductility level, and hysteretic behavior is highlighted. Simple and conservative analytical estimates of constant-ductility inelastic displacement ratios for mean and 90th percentile values in terms of initial period, ductility level, and postyield stiffness ratio are proposed to allow the extension of the Displacement-Based Design via Inelastic Displacement Ratio (CμDBD) to self-centering structural systems.  相似文献   

16.
Our previous studies show that site effects (amplification of rock motions), source and path effects are coupled when response spectra are used to characterize the amplification ratios for a soil site modelled as nonlinear or elastic. The coupling is referred to as a “side effect” of using response spectral amplification ratios. In the present study we use a suite of rock site records, well distributed with respect to magnitude and source distance, from crustal, subduction interface and slab earthquakes to evaluate the response spectral amplification ratio for soft soil sites. We compare these side-effects for ground motions generated by three types of earthquakes, and we find that, at periods much shorter or much longer than the natural period of a soil site modelled as elastic, the average amplification ratios with respect to rock site ground motions from three types of earthquakes are moderately different and are very similar for other spectral periods. These differences are not statistically significant because of the moderately large scatter of the amplification ratios. However, the extent of magnitude- and source-distance-dependence of amplification ratios differs significantly. After the effects of magnitude and source distance on the amplification ratios are accounted for, the differences in amplification ratios between crustal and subduction earthquake records are very large in some particular combinations of source distance and magnitude range. These findings may have potential impact in establishing design spectra for soft soil sites using strong motion attenuation models or numerical modelling.  相似文献   

17.
Results of an analytical study aimed at evaluating residual displacement ratios, Cr, which allow the estimation of residual displacement demands from maximum elastic displacement demands is presented. Residual displacement ratios were computed using response time‐history analyses of single‐degree‐of‐freedom systems having 6 levels of relative lateral strength when subjected to an ensemble of 240 earthquake ground motions recorded in stations placed on firm sites. The results were statistically organized to evaluate the influence of the following parameters: period of vibration, level of relative lateral strength, site conditions, earthquake magnitude, and distance to the source. In addition, the influence of post‐yield stiffness ratio in bilinear systems and of the unloading stiffness in stiffness‐degrading systems was also investigated. A special emphasis is given to the uncertainty of these ratios. From this study, it is concluded that mean residual displacement ratios are more sensitive to changes in local site conditions, earthquake magnitude, distance to the source range and hysteretic behaviour than mean inelastic displacement ratios. In particular, residual displacement ratios exhibit large levels of record‐to‐record variability and, therefore, this dispersion should be taken into account when estimating residual displacements. A simplified expression is presented to estimate mean residual displacements ratios for elastoplastic systems during the evaluation of existing structures built on firm soil sites. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility demand, on the eff ective periods, is investigated, and inelastic site amplifi cation is shown to be strongly correlated to the normalized eff ective period. Two non-dimensional parameters, analogous to the conventional site amplifi cation factors in codes, are defi ned to quantify the inelastic site amplifi cation. It is shown that the inelastic site amplifi cation factor (i.e. ratio of constant ductility spectral ordinates at soil site to those at rock outcrop) is able to represent the site eff ects more clearly, as compared to the inelastic site amplifi cation ratio (i.e. ratio of inelastic spectral ordinates at soil site to the corresponding elastic spectral ordinates at rock outcrop). Further, the peak in the amplifi cation factor corresponding to the eff ective site period diminishes rapidly with increasing ductility demand.  相似文献   

19.
The next generation of seismic design codes, especially those adopting the framework of performance‐based design, will include the option of design based on displacements rather than forces. For direct displacement‐based design using the substitute structure approach, the spectral ordinates of displacement need to be specified for a wide range of response periods and for several levels of damping. The code displacement spectra for damping values higher than the nominal value of 5% of critical will generally be obtained, as is the case in Eurocode 8 and other design codes, by applying scaling factors to the 5% damped ordinates. These scaling factors are defined as functions of the damping ratio and, in some cases, the response period, but are independent of the nature of the expected ground shaking. Using both predictive equations for spectral ordinates at several damping levels and stochastic simulations, it is shown that the scaling factors for different damping levels vary with magnitude and distance, reflecting a dependence of the scaling on the duration of shaking that increases with the damping ratio. The options for incorporating the influence of this factor into design code specifications of displacement response spectra are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A procedure for incorporating record‐to‐record variability into the simplified seismic assessment of RC wall buildings is presented. The procedure relies on the use of the conditional spectrum to randomly sample spectral ordinates at relevant periods of vibration. For inelastic response, displacement reduction factors are then used to relate inelastic displacement demand to the spectral displacement at the effective period for single‐degree‐of‐freedom systems. Simple equations are used to convert back and forth between multi‐degree‐of‐freedom RC wall buildings and equivalent single‐degree‐of‐systems so that relevant engineering demand parameters can be obtained. Consideration is also given to higher‐mode effects by adapting existing modal combination rules. The proposed method is applied to several case study buildings, showing promising results in the examination of inter‐storey drift ratio and shear forces. The proposed method captures the variation in the distribution of structural response parameters that occurs with variations in structural configuration, intensity, engineering demand parameter of interest and site characteristics. Discussion is provided on possible ways to improve the accuracy of the procedure and suggestions for additional future work. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号