首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
5.12汶川地震同震地表破裂带在虹口八角-深溪沟一带主要出露于三叠系须家河组的炭质泥岩中,同震断层泥在颜色、结构上与老断层泥和围岩类似。通过开挖探槽,系统采样,采用粉晶X射线衍射定量分析方法,研究了同震地表破裂带的围岩、断层角砾岩、老断层泥和新断层泥的矿物成分特征。同震断层泥的主要成分为石英和黏土矿物,含微量长石和白云石;断层泥的显著特征为高黏土矿物含量,从同震断层泥、老断层泥、角砾岩到围岩黏土矿物含量依次降低,黏土矿物以伊利石和伊蒙混层为主,含微量绿泥石和高岭石,矿物组成明显比地表破裂带北段同震断层泥简单。不同颜色的同震断层泥成分略有不同,黑色断层泥中伊利石含量明显高于白色断层泥;老断层泥中含有方解石和白云石,而同震断层泥不含方解石,只含微量白云石。同震断层泥中伊蒙混层高含量表明,在本次地震错动中有富含K的流体参与。  相似文献   

2.
在2008年汶川5.12大地震同震主地表破裂带—北川-映秀破裂带中,多处断层滑动面上可见到具有强烈变形特征的薄层断层泥.在地表垂直位移量较大的西南段和东北段,选取八角庙、和尚坪和沙坝探槽中的断层泥为研究对象,利用立体镜和扫描电镜对断层泥的组构特征和Y剪切面上的微-纳米级颗粒进行形态和结构研究.观测研究结果显示,汶川5.12大地震的同震断层泥发育有明显的Y和R剪切和平直擦痕.断层滑动摩擦面磨损、研磨、粉末化则是汶川同震断层泥中微-纳米级颗粒形成的主要途径.地震断层滑动会产生摩擦热,但并不排除热分解在断层泥滑动面上纳米粒子形成过程中的重要作用.断层摩擦滑动面上普遍存有微-纳米单体及其复合体两类颗粒,微-纳米颗粒形态有球状、蚕虫状、饼状和块状等.其主要结构是散布状和堆积状结构,但也有少量条带状和层状结构,而结构单元之间常有空隙,显现松散接触.在条带状和层状结构中,仅有异化的单体颗粒,而在散布状和堆积状结构中除了主要是由单体颗粒异化形成的蚕虫状,块状和圆饼状形态的复体颗粒外,还有未变形的单体球状颗粒.Y剪切面上微-纳米颗粒的散布状、堆积状、条带状和层状结构都是在相同的地震快速变形过程中极端不平衡条件下形成的.条带状和层状结构是塑性变形,而散布状和堆积状则是脆性变形,不连续的动态摩擦(断层粘滑)是松散结构形成的主要机制.汶川地震同震断层滑动面微-纳米级颗粒的结构是地震断层滑动留下的地质形迹(不是假玄武玻璃),是地震断层滑动的记录,它可作为判定古地震断层的一种标准.  相似文献   

3.
汶川地震断层岩的矿物学和地球化学特征揭示出地震断层经历了漫长时间演化和复杂的水岩相互作用.间震期水岩相互作用导致断层岩中的破碎矿物蚀变,尤其是长石等矿物含量渐渐减少甚至消失,而黏土矿物(蒙脱石、伊利石、伊/蒙混层、绿泥石等)含量逐渐增高,以及如黄铁矿、石膏、重晶石、坡缕石等热液系统中常见的矿物大量出现;Mg、P、Ti、Mn、Fe等元素倾向富集在断层带中,而Si、K和Na等出现明显的亏损;元素的大量迁移导致断层带的体积巨量亏损.实验结果表明,黏土矿物的亲水性引起水渗透率比干燥气体渗透率明显偏低,并且二者偏差无法通过Klinkenberg校正消除.蒙脱石吸水膨胀和黏土矿物颗粒表面吸附孔隙流体造成孔隙度降低是导致水渗透率偏低的重要原因.断层岩碎屑结构使得其中的孔隙可能在600 MPa围压下得以保存,从而有助于流体沿断层带下渗,并在断层带深部形成高流体孔隙压.地震断层的主要矿物学及粒度分布特征并非在地震破裂过程中形成,因此利用断层岩粒度分布资料估算地震破裂能并不合适.  相似文献   

4.
文中总结了基岩断层带黏滑与蠕滑的地质标志与岩石力学实验证据,分析了控制黏滑与蠕滑的物理机制。断层带内的矿物组成、矿物变形机制、流体作用和断层带变形方式等是控制黏滑与蠕滑的主要因素。富含黏土矿物的断层泥具有速度强化型摩擦滑动,控制着断层蠕滑,而以方解石、石英、长石及辉石等造岩矿物为主的断层泥在大陆浅源地震的震源深度条件下具备黏滑条件。脆性破裂伴随的扩容过程是断层黏滑的必要条件,而压实、碎裂和塑性剪切变形形成的叶理和小褶皱对应于蠕滑。在流体作用下,压溶使孔隙和微裂隙愈合,有利于断层强度的恢复和断层闭锁,既是断层发生不稳定滑动的根源,也是断层带局部存在高压流体的条件,而在流体作用下的退变质反应与水解反应生成黏土矿物和层状及环状硅酸盐矿物,不仅降低了断层带的强度,还导致断层向蠕滑转变。断层带内均匀分布多个剪切面和较宽的变形带对应于蠕滑,局部化的R剪切及Y剪切、窄变形带和摩擦镜面对应于黏滑。  相似文献   

5.
汶川M_S 8.0地震基岩中的地表破裂   总被引:3,自引:0,他引:3  
在汶川MS8.0地震中,地表破裂变形带多表现为挠曲坎或断层坎,地表基岩破裂少见,作者在安县肖家桥附近基岩中发现了出露完整的地震地表破裂带。在仔细分析该破裂带变形特征和内部结构构造的基础上,结合区域上地震地表破裂特点,认为:这次地震的地表破裂主要沿先存的映秀-北川断裂发生和扩展,地震断层作用形式以右旋斜冲运动为主,安县肖家桥附近映秀-北川断裂的最大垂直同震位错为5.4m,与通过挠曲坎或断层坎测量的结果基本一致  相似文献   

6.
2008年5月12日四川汶川发生MS8.0地震,发震断裂在地表形成以逆断为主的破裂变形带。同震地表变形带的定量分析对理解地震的构造行为具有重要意义。文中以汶川地震典型调查点为例探讨了逆断型同震地表破裂变形带测量分析中值得重视并容易误解的几个问题,分析了地貌面标志和线性标志等测量数据与构造变形参数的几何关系,给出了变形参数的求解方法和相互关系。同时,就多观测点的定量数据在区域断裂几何结构变化和运动学分析中的运用进行了讨论  相似文献   

7.
汶川地震是有地震历史记载以来首次发生在大陆内部的高角度8级逆冲强震,给板内逆冲强震研究提供了许多新的课题。论文主要开展了以下两方面的研究:(1)近地表陡倾角铲形逆断层的破裂特征研究。基于龙门山断裂带中段动力学背景建立有限元模型,系统地研究近地表陡倾角铲形逆断层(本文所称近地表陡倾角铲形断层,要求近地表倾角至少≥65°)的破裂特征,并探讨了汶川地震逆冲滑动量随深度分布形态所可能蕴含的地壳信息。对于近地表陡倾角铲形断层,在断层倾向的高强度挤压下,断层近地表部分对逆冲破裂和滑动有一定的阻碍作用;铲形断层的近地表倾角越陡,陡倾角部分的深度范围越大,断层近地表部分对逆冲破裂和滑动的阻碍作用会越明显;近地表陡倾角的铲形断层形态和巴颜喀拉块体的高强度挤压很可能是形成汶川地震逆冲滑动量随深度分布形态的重要原因,无地表破裂的前期地震并不是造成汶川地震滑动量随深度分布特征的必要条件。(2)平行逆断层体系中断层活动之间的相互影响研究。讨论了分布距离对平行逆断层地震活动规律的影响,并定量地评估了汶川地震中前山断裂同震逆冲破裂对中央断裂逆冲破裂释放的影响。同震破裂实验结果显示:在同震逆冲破裂中,前山断裂和中央断裂的破裂释放之间有一定的替代关系;汶川地震中,由于前山断裂发生同震逆冲破裂,中央断裂相应段落逆冲破裂释放很可能降低了约10%,减少的标量地震矩约为9.54×1018 N·m。平行逆断层长期挤压破裂实验结果显示:在龙门山断裂带的动力学环境和浅层构造背景下,当平行逆断层之间的距离在20km以下时,两条平行逆断层会在破裂释放上形成主次关系,距离越短,主次关系越显著;两条平行逆断层之间发生同步逆冲破裂的比例很低,受平行逆断层之间距离的影响也很小;两条平行逆断层之间发生同步地表逆冲破裂的比例更低,在龙门山动力学机制和浅层构造背景下,距离在10~20km左右时,平行逆断层之间最容易发生同步地表逆冲破裂。结合龙门山断裂带中段的实验结果显示:后山断裂的地震活动很可能相对独立;12km的距离使得中央断裂和前山断裂之间发生同步地表逆冲破裂的风险相对较高,这很可能是导致汶川地震中出现同震地表破裂的一个重要原因。  相似文献   

8.
如何在相对稳定的基岩区开展断裂活动性调查与发震构造判定是一项具有挑战性的研究工作。江西中北部瑞昌-铜鼓断裂和宜丰-景德镇断裂主要发育在前新生代基岩区,但存在第四纪有过活动的地质和年代学证据,是2条重要的中强地震构造带。在这2条断裂露头剖面上均发育断层泥条带,断层泥显微构造图像揭示了丰富的构造变形现象,构造成因机制明确。在变形方式上,断层泥显微构造中既发育Y剪切、R剪切以及棱角状、次棱角状碎斑等等局部化脆性变形特征,又有P叶理和碎屑颗粒拖尾构造等韧性变形特征。在中强地震发生过程中,沿着发震构造的近地表滑动面很可能存在微观尺度的构造变形。在缺少第四纪活动证据的湖口-新干断裂南段露头剖面上采集的松软物质的显微构造研究结果,反映了断裂构造带上泥状松软物质也可以是后期雨水淋滤充填或风化的产物。在野外现场观察中,断裂滑动面上构造成因与非构造成因的泥状松软物质有时很难进行区分;而在室内磨制的薄片显微构造观察中,两者之间的显微构造差异明显。华南相对稳定的基岩区常常是中国重大工程(如核电厂)选址中优先考虑的地区,同时也是中国经济发达、人口密集的城市群主要分布区;在这些地区的地震构造环境评价中,断层泥显微构造研究为鉴定断裂活动性、判定中强地震发震构造提供了可以借鉴的技术途径。  相似文献   

9.
本文利用GPS观测的1999-2007年汶川震前3期地表变形数据和2008年汶川同震地表变形数据,结合地震位错理论,通过高斯变换和坐标旋转建立断层模型,运用遗传算法,反演了龙门山断裂带断层震前3期和同震滑动参数。结果表明龙门山断层震前3期平均走滑位移为-5.39mm,倾向位移为2.66mm,与同震断层滑移相比较,发现震前断层的滑移趋势与同震断层滑移一致,均为逆冲兼右旋的挤压运动。比较震前3期逆冲方向的滑移量,发现逆冲滑移有加速的现象。并根据震前和同震的断层滑动量估算了汶川地震复发周期。  相似文献   

10.
汶川8.0级地震地表破裂带与岩性关系   总被引:14,自引:4,他引:10       下载免费PDF全文
2008年汶川8.0级地震沿龙门山断裂带内的映秀—北川断裂和灌县—安县断裂分别形成约230 km和70 km的地表破裂带.震后地质考察研究表明,伴随地震断层出露地表的滑动面大多沿炭质泥岩和煤层发育.与1∶5万区域地质图进行对照,显示映秀—北川地震破裂带的西南段(虹口—清平段)和灌县—安县地震地表破裂带的展布与龙门山地区上三叠统须家河组煤系地层的出露范围相一致.龙门山地区的上三叠统须家河组地层中的薄煤层、炭质泥岩层以及志留系、寒武系的炭质页岩层是易于产生滑动的柔性岩层,易形成滑脱面或成岩片夹于断层带中.汶川地震产生的复杂地表破裂带是龙门山逆冲推覆构造带沿地表构造层中夹有煤层等柔性岩层的断层产生B型滑动的结果.  相似文献   

11.
逆冲滑动是汶川地震的初始和主要震源过程,其破裂滑动量随断层深度的分布形态与多数板内逆冲强震不一致.本文用摩压比值来表征断层沿线的局部破裂危险程度,通过数值实验讨论了底部破裂源、近地表倾角和无地表破裂的前期地震等对铲形逆冲断层的破裂危险分布和破裂滑动分布的影响.有限元数值模拟结果显示,在巴颜喀拉块体对龙门山断裂带的高强度挤压下,上陡下缓近地表陡倾角的铲形断层形态使得汶川发震断层近地表对逆冲破裂和滑动有一定的阻碍作用;破裂滑动量集中于发震断层中部的前期逆冲地震是造成汶川MS8.0地震逆冲滑动分布异于板内逆冲强震滑动分布现象的一个可行解释.  相似文献   

12.
遥感影像数据在2008年汶川地震抗震救灾和灾后恢复重建中发挥了重要的作用,充分利用遥感技术进行同震地表变形的快速识别与地震地质研究具有重要的现实意义。通过分析震后光学遥感影像的阴影、纹理等特征,以及野外获得的地表破裂变形的地质与地貌特征,总结了汶川地震同震地表变形的光学遥感影像识别特点。从遥感成像的光学原理深入解析了汶川地震断层陡坎在遥感影像上的阴影形成与识别特征,明确了成像时刻和断坎产状对影像阴影的形成和断层陡坎识别能力的约束。结合影像成像特征与汶川地震同震地表破裂特征的应用分析,客观地认识了现有遥感影像在同震地表变形应用中的局限性,可为今后的应急航空遥感方案设计提供参考  相似文献   

13.
为了认识龙门山断裂带在汶川地震中的同震滑动力学性质,我们对龙门山断裂带地表断层带露头上的断层泥及少量WFSD-1断层泥开展了中速-高速摩擦实验研究。主要关注的问题包括:龙门山断裂带高速摩擦性质及其不均匀性、震后断层强度恢复问题、高速滑动可能的主导弱化机制问题和宽速度域内摩擦滑动速度依赖性问题。  相似文献   

14.
北京时间2014年8月3日16时30分,云南省鲁甸县发生了MS 6.5地震,本次地震的发震构造为包谷垴-小河断裂。野外调查发现,王家坡不稳定斜坡上的地表破裂在整个破裂带中比较具有代表性,其地表破裂带整体走向N45°W-N50°W,并且由剪切破裂、张剪切破裂、压剪切破裂、张性破裂以及鼓包等典型地表破裂组成。其中左、右地表破裂边界与发震断层的出露位置一致,由断层错动造成;而部分地表破裂与断层的位置不重合,其成因分为2种,一种是发震断层导致的一些次级地表破裂,另一种是地震引发的滑坡后缘破裂。地表破裂类型和基本组合特征显示出王家坡潜在不稳定斜坡上的地表破裂带具有左旋走滑的性质。  相似文献   

15.
地震后在断层两侧的强变形与破裂带是地震灾害最严重的区域.为系统、定量研究同震地表变形带特征及其影响因素,本研究建立了走滑断层的三维有限元模型,分别探讨了断层位错量、断层倾角、错动方式、上覆松散层厚度、沉积层土性等因素的影响规律.模拟结果显示:走滑断层同震地表变形表现为以断层为中心的近似对称单峰分布,强地表变形集中在断层两侧各50 m宽度范围,地表变形量峰值随位错量增加而增大,破裂带宽度也随位错量增加而增大,但增量逐渐减小,并趋于一个渐近值;断层倾角对地表变形与破裂带宽度影响表现为随倾角减小变形量峰值点向上盘小距离偏移;走滑兼正断位错引起的变形量峰值最大,但地表破裂带宽度最小,走滑兼逆断引起的变形量峰值最小,但地表破裂带宽度最大,直立纯走滑断层的两参量都居中;走滑断层地表变形量峰值随上覆松散层厚度增大而减小,但随厚度减小的速率逐渐变小,松散层厚度从5 m增加到20 m时,破裂带宽度随厚度增加而缓慢增加,但自厚度大于20 m时,破裂带宽度开始随厚度增加而逐渐下降;当不同土性覆盖层(粗砂、粉砂、黏土)厚度相同时,地震引起的地表变形量峰值自粗砂、粉砂、黏土逐次增大,当粗砂厚度为60 m以上时,3.6 m的同震水平位错已不能形成地表破裂,而粉砂的厚度为70 m以上,黏土的厚度则为75 m以上.  相似文献   

16.
四川汶川8.0级地震震源过程   总被引:167,自引:70,他引:97       下载免费PDF全文
2008年5月12日在青藏高原与四川盆地交界的龙门山山脉发生了Ms8.0级强烈地震,引发山体滑坡等地质灾害,造成了巨大的人员伤亡和经济损失.本文利用远场体波波形记录结合近场同震位移数据,根据地质资料和地震形成的地表破裂轨迹,构造了一个双“铲状”有限地震断层模型,利用反演技术重建地震的破裂过程.结果显示汶川大地震主要是沿龙门山构造带的映秀-北川断裂和灌县-江油断裂发生的逆冲兼右旋走滑破裂事件.断层面上的滑动分布显示两个高滑动区先后发生在地震破坏最为严重的映秀和北川地区,最大滑动量高达1200~1250 cm,且破裂过程也显示一定的复杂性.地震破裂的平均走滑量略大于平均倾滑量,与多种观测资料获得的震前龙门山断裂带构造变形相一致,推断是由于长期区域应力场作用和龙门山地区特殊的物质组成和结构孕育了这次千年尺度的强烈地震.  相似文献   

17.
岩石高速摩擦实验的进展   总被引:1,自引:1,他引:0       下载免费PDF全文
文中简述了地震动力学国家重点实验室近年来在岩石高速摩擦实验方面的进展。为了深化断层与地震力学研究,实验室建设了一套旋转剪切低速-高速摩擦实验装置,可开展滑动速率介于板块运动速率(cm/a量级)至地震滑动速率(m/s量级)的岩石摩擦实验,其中高速摩擦性能填补了实验室的技术空白。以此为依托,围绕汶川地震断层带力学性质研究,开展了一系列高速摩擦实验。结果表明,龙门山断裂带断层泥的高速摩擦性质具有一致性,其高速滑动下显著的滑动弱化必定在汶川地震中极大地促进了破裂的扩展;断层弱化的主导机制是与摩擦生热相关的过程,包括凹凸体急速加热弱化和热压作用;断层泥在经历高速滑动弱化之后摩擦系数可在5~10s内恢复0.4,断层强度的快速恢复是同震主破裂带余震减少的原因之一。基于对实验装置现状和现有成果的分析,展望了近期实验室岩石高速摩擦的发展方向。  相似文献   

18.
青藏高原东缘龙门山构造隆升一直存在挤压造山模式和下地壳层流模式之争.下地壳层流模型认为,龙门山隆升与水平缩短关系不大,山前断层只是高原、盆地间差异性垂直运动的结果,高原之下无需挤压模式中的大规模水平滑脱层.本文利用近场密集的同震形变数据,约束汶川地震破裂几何特征及同震滑动分布.反演结果显示汶川地震撕裂龙门山中南段近水平滑脱层, 宽度达到60~80 km,释放能量约占总标量地震矩的12%,在16~21 km深度出现两三个滑动量高达6~7 m的破裂区.深部低角度破裂往上转为高角度逆冲,沿龙门山中央断裂以约55°倾角出露地表.汶川地震破裂的几何产状和滑移幅度表明龙门山冲断带发育大规模的近水平滑脱层,是青藏高原东缘地壳缩短增厚、龙门山挤压隆升的重要证据.  相似文献   

19.
张鹏  李丽梅 《地震学刊》2010,(2):229-234
2008年5月12日的汶川8.0级地震使龙门山断裂带形成了3条同震地表破裂带,这表明有多条活动断层同时参与地震破裂,其过程复杂,现象丰富。本文对小鱼洞地表破裂带及其与另2条地表破裂带的交汇区域进行了野外调查,并对小鱼洞地表破裂带的活动性质和展布特征进行了分析。小鱼洞地表破裂带位于彭州市小鱼洞镇附近,是汶川8.0级地震形成的一条走向NW的逆冲并具有左旋走滑分量的同震地表变形带。调查结果显示,小鱼洞地表破裂带表现出明显的分段性特征:小鱼洞镇一带的中段,逆冲量和走滑量最大;小鱼洞镇向东南方向延伸的南段,逆冲量和走滑量逐渐变小;小鱼洞镇向西北方向进入山区的北段,则表现为以逆冲为主的活动性质。  相似文献   

20.
地震地表破裂是地壳弹性应变转化为永久性构造变形的表现形式.2001年昆仑山地震在东昆仑断裂带库赛湖段产生的地表破裂带整体长426km,由西部剪切走滑破裂段、中部张剪切破裂段和东部剪切走滑破裂段等3个相对独立的地表破裂段组成,即昆仑山地震由震级为Mw=6.8,Mw=6.2和Mw≤7.8的3次地震破裂事件组成,其中东段Mw≤7.8级地震为昆仑山地震主震,由4次更次级地震事件组成.野外测量表明,不同段落上单条地表破裂宽度一般介于数米至15m,最大不超过30m;组合地表破裂带的宽度主要取决于几何结构,特别是次级地表破裂带斜列区的宽度,具有变形局部化的基本特征.结合东昆仑断裂带第四纪地质速率与GPS监测应变速率一致性,2001年昆仑山地震地表破裂局部化特征说明,青藏高原北部巴颜喀拉与祁连-柴达木两大块体间的构造变形主要表现为东昆仑断裂带宽度有限的剪切走滑错动,东昆仑山断裂带南北两侧块体具有整体运动特征.地震破裂局部化特征对确定重大工程、居民住宅和生命线工程等免遭走滑断层同震地表错动引起直接破坏的避让带宽度具有十分重要现实意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号