首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
本文利用较为完备的球体位错理论,结合4.5年的震后位移数据,优化了2011年日本MW9.0地震震源区岩石圈弹性层厚度与地幔黏滞性因子,更新了该强震断层余滑时空演化过程.首先,基于日本列岛215个均匀分布的GPS连续观测站震前2年与震后4.5年的观测数据,提取了2011年日本MW9.0地震引起的震后位移时空变化;接着,依据断层余滑衰减相对较快的特点,利用黏弹性球体位错理论对震后3~4.5年的GPS观测数据进行反复拟合,确定2011年日本MW9.0地震震源区地幔黏滞性系数和岩石圈弹性层厚度的最优解分别为6×1018 Pa·s和30 km;然后,从震后3年内GPS观测数据中剔除地幔黏滞性松弛效应,获取了断层余滑对应的震后位移场;最后,利用基于球体位错理论的反演算法,反演了2011年日本MW9.0地震断层余滑的时空演化过程.结果表明,2011年日本MW9.0地震引起的断层余滑在震后半年内变化显著,震后2年主震区域余滑基本停止,断层的两端存在一定的余滑效应,断层余滑的累计矩震级达到8.59;地震后4年,地幔黏滞性松弛效应对震后位移场的贡献在总体上超过断层余滑的贡献.  相似文献   

2.
梁明  王武星  张晶 《地球物理学报》2018,61(7):2691-2704
利用GPS和GRACE观测数据研究了日本MW9.0地震的震后变形特征.GPS观测显示,区域震后位移呈现随指数函数变化特征,变化速率符合大森公式的衰减特性;近五年的震后水平位移累积已达到东向60~165 cm,南向20~65 cm的量值,距震中较远站点已超过同震变化量,且震后变形仍然持续.GRACE观测到显著的震后重力变化,地震破裂两侧的重力变化总体均呈上升趋势,但海洋侧的变化速率较快.联合震后余滑和黏弹性位错理论对震后变形进行了模拟,探索了GPS和GRACE观测的综合应用方法.研究发现,综合考虑震后余滑和黏滞性松弛效应可以对日本地震的震后变形做出较合理的解释,震后初期余滑起主要作用,1至2年以后逐渐减弱,黏滞性松弛作用逐渐增强.在震后变形模拟和区域黏滞性结构反演中形成GPS和GRACE观测结合应用的方法,先基于震后GPS形变估算区域黏滞性结构,而后利用GRACE观测修正深部的黏滞系数,并综合利用这两种观测微调浅层黏滞系数,最终确定区域黏滞性结构.基于该方法反演了日本震源区的地幔黏滞性结构,地震断层破裂两侧的流变参数存在差异,大陆侧的地幔顶层黏滞系数在1.0×1019 Pa·s量级,而海洋侧的则略小于大陆的,在6.0×1018 Pa·s量级.  相似文献   

3.
陈伟  刘泰  佘雅文  付广裕 《地震》2021,41(4):121-135
基于黏弹性球体位错理论, 联合陆地和海底同震GPS数据以及日本本岛330个陆地GPS站点5~10年的震后数据, 反演了日本MW9.0地震的断层滑动模型, 提升了断层滑动分布在细节上的合理性。 首先, 基于日本本岛330个陆地GPS站点震前2年和震后10年的连续观测数据, 获取了日本MW9.0地震震后5~10年的年平均位移, 该时段的位移几乎完全由地幔黏弹性松弛效应引起; 接着, 利用黏弹性球体位错理论对震后5~10年的位移进行反复拟合, 确定了日本MW9.0地震震源及周边地区的地幔黏滞性系数最优解(9.0×1018 Pa·s)。 然后, 联合同震和震后位移数据, 引入黏弹性位错格林函数, 反演了2011年日本MW9.0地震的断层滑动分布。 结果表明, 该地震同震破裂的最大值达到了62.72 m, 同震滑动的总地震矩为4.48×1022 Nm, 相应的矩震级为MW9.03。 由于黏弹性松弛效应引起的震后位移中包含了同震破裂的信息, 基于黏弹性球体地震位错理论, 联合同震和震后位移数据反演断层同震破裂, 有效提高了日本MW9.0地震断层滑动分布的可靠性。 最后, 本文提出的反演方法为同震观测结果缺乏的大地震震后科考提供了理论支撑: 在大地震发生之后, 即使在同震期间没有足够的观测数据, 也可以在震后通过对震源区的加密观测积累的震后数据, 使用本文提出的反演方法优化同震断层滑动模型。  相似文献   

4.
本文利用2003—2011年的GRACE RL05数据提取了苏门答腊地震(Mw9.3)引起的震后重力变化,发现断层两侧震后重力变化速率存在明显差异,断层下盘总体变化率为0.55μGal/yr,断层上盘为0.16μGal/yr.基于子断层叠加的编程思想,本文将Tanaka的黏弹球体位错理论配套计算程序(简称黏弹位错程序)加以改造,克服了其近场计算精度不足(甚至错误)的缺陷,可用来研究大地震引起的近场震后位移与重力变化.本文利用改造后的黏弹位错程序计算了2004年苏门答腊地震(Mw9.3)产生的同震重力变化,计算结果在空间分布和量级上均与利用弹性位错程序计算获得的结果一致,验证了我们对黏弹位错程序进行改造的正确性.最后,结合GRACE卫星观测数据,本文利用Tanaka的黏弹位错理论研究了苏门答腊地区的地幔黏性因子.结果表明,该地区地幔黏滞性具有显著的横向差异,当发震断层上下两盘的地幔黏滞性系数分别取8×1018 Pa·s和1×1018 Pa·s时,模拟的震后重力变化在总体空间分布和变化趋势上与GRACE卫星观测结果更接近.  相似文献   

5.
黏滞分层地幔中密度异常驱动对流模型的研究   总被引:8,自引:3,他引:5       下载免费PDF全文
在地震层析成像计算的地幔密度异常直接驱动地幔对流的新方法的基础上,发展了在上、下地幔不同黏性结构框架下,密度异常驱动地幔对流的物理模型.利用 Grands和S12 WM13等地震层析成像模型推得的地幔密度异常分布,设置板块绝对运动极型场为运动上边界,考虑深度660km地震波不连续面为界的上、下地幔之间存在黏滞性的差异,直接反演了不同黏滞系数的双层地幔结构下地幔对流的模式.研究中选取地幔平均密度为ρ=5500kg/m3, 上层地幔平均黏滞系数为μ=1021Pa·s,计算了上、下地幔黏滞系数之比为1∶1, 1∶10, 1∶100和1∶1000时地幔大圆剖面、以及区域剖面上的流场.结果表明,两种模型在球谐展开1~13阶的范围内其对流的基本格局相似.当下地幔黏滞性超过上地幔的100倍时,下地幔流场速度与上地幔的流场速度相比显著减小,但是对流仍然表现出单层对流环的基本格局.论文还用 240km深度球面上的对流格局讨论了对流和全球构造之间的关系.  相似文献   

6.
利用GPS观测的时间序列资料反演地壳地幔黏性结构   总被引:9,自引:3,他引:9       下载免费PDF全文
地球介质的黏度是地球动力学研究中的重要参数. 在考虑震后震源区介质物性变化的情况下,本文提出利用GPS观测的时间序列资料反演地壳、地幔黏度的方法. 计算中,将遗传算法与Marquardt法相结合,利用遗传算法搜索结果作为Marquardt法反演的初始模型,运用微扰法形成Jacobian矩阵. 根据余震分布及地震波速度变化确定震源区的范围及介质的物性变化情况,利用黏弹性有限单元模型(Maxwell体)及台湾集集地震后GPS观测的时间序列数据,反演了台湾地区地壳、地幔的黏性系数. 反演计算及数值实验表明,该方法反演黏度的效率高,稳定性好. 反演结果初步显示台湾地区的地壳、地幔的黏度分别为12×1018Pa·s和36×1019 Pa·s.  相似文献   

7.
Yabuki & Matsu'ura反演方法是利用ABIC最佳模型参数选取方法和平滑的滑动分布作为约束条件,由形变观测数据计算发震断层滑动分布.本文基于日本列岛同震GPS观测数据和发震断层曲面构造模型,利用Yabuki&Matsu'ura反演方法计算2011年日本东北地区太平洋海域Mw9.0级地震的发震断层同震滑动分布.反演结果表明,断层面上的最大滑动量为35 m,较大滑动分布在浅于30 km的震源中心上部,最大破裂集中在20 km深度的地方,其地震矩约为3.63×1022N·m,对应的矩震级为Mw9.0.模拟结果显示Yabuki&Matsu'ura反演方法更适用于倾角低于40°的断层模型反演.最后,本文基于上述方法获得的发震断层滑动模型,利用地球体位错理论正演计算该地震在中国及其邻区产生的远场形变,正演计算结果基本可以解释由中国GPS陆态网络观测到的同震形变.  相似文献   

8.
利用2009—2011年汶川震区GPS水平速度场数据,综合考虑汶川震后的余滑模型、黏弹性松弛模型及用于描述地壳长期运动的弹性块体模型,采用格网搜索法反演了汶川震区中下地壳的有效黏滞系数.地壳介质黏滞系数不同是造成震后断层两侧地壳水平运动差异的主要因素.研究发现,龙门山断裂带两侧中下地壳介质的黏滞系数差别很大.龙门山断裂以西川西块体中下地壳(16—40km)的有效黏滞系数约为7×1019Pa·s,而龙门山断裂以西、岷江断裂以东的岷江地块中下地壳(16—40km)的有效黏滞系数约为1020Pa·s,比川西地块大.龙门山断裂以东的四川盆地中下地壳(16—40km)的有效黏滞系数约为7×1022Pa·s,比岷江地块和川西地块均大,呈现极强的刚性运动特点.此外,由于同震破裂滑脱面的存在,震中附近的余滑效应比较显著.  相似文献   

9.
Yabuki & Matsu'ura反演方法是利用ABIC最佳模型参数选取方法和平滑的滑动分布作为约束条件,由形变观测数据计算发震断层滑动分布.本文基于日本列岛同震GPS观测数据和发震断层曲面构造模型,利用Yabuki & Matsu'ura反演方法计算2011年日本东北地区太平洋海域Mw9.0级地震的发震断层同震滑动分布.反演结果表明,断层面上的最大滑动量为35 m,较大滑动分布在浅于30 km的震源中心上部,最大破裂集中在20 km深度的地方.其地震矩约为3.63×1022N·m,对应的矩震级为Mw9.0.模拟结果显示Yabuki & Matsu'ura反演方法更适用于倾角低于40°的断层模型反演.最后,本文基于上述方法获得的发震断层滑动模型,利用地球体位错理论正演计算该地震在中国及其邻区产生的远场形变,正演计算结果基本可以解释由中国GPS陆态网络观测到的同震形变.  相似文献   

10.
强震后地表变形的动力学机制是地球动力学研究的重要方面,现在普遍认为震后变形主要由断层的震后余滑或由介质的黏弹性松弛所至。1999年台湾集集地震GPS观测系统记录到了空前的资料,为研究震后变形的动力学机制提供了难得的机会。本研究认为集集地震后地表变形由震后断层余滑、下地壳/上地幔的黏弹性松弛、震源区介质的破裂、孔隙弹性回跳、地下流体的运移、介质孔隙度及孔隙压的变化等多种因素共同影响决定。为抓住重点,研究中将介质的破裂、地下流体的运移和孔隙弹性回跳等因素等效为震源区介质的物性变化。文中运用黏弹性有限单元模型(麦克斯威尔体)、利用GPS观测的时间序列资料对震后余滑、地壳/地幔黏度以及等效的震源区介质物性变化进行了反演。反演模型给出了震后余滑的分布及变化特征,反演结果初步显示台湾地区的下地壳/上地幔的黏度分别为2.7×10^18,4.2×10^20Pa·s。此外,反演结果还给出每种影响因素对地表变形的贡献大小,在集集地震后的450d时间里,断层的震后余滑引起的地表变形占总变形的44.6%,下地壳/上地幔的黏性松弛占34.7%,等效的震源区介质的物性变化占20.7%。  相似文献   

11.
2008年10月6日西藏当雄发生MW6.3地震.本文利用震后2008年10月26日至2010年8月22日的16期ENVISAT ASAR数据,通过小基线集干涉测量、误差校正与MInTS(Multiscale InSAR Time Series)技术提取高精度的震后形变场,利用SDM(Steepest Descent Method)方法反演断层震后余滑演化过程,并分析震后余滑与同震滑动的关系.结果表明:当雄MW6.3地震的近场震后形变场主要位于断层西侧,在时间演化上具有明显的对数函数衰减规律;震后余滑主要集中于断层中南段深0~15 km区间,最大的余滑量约0.07 m,位于断层深约9.28 km处,滑动角约-103°;震后余滑引起的地震矩能量M0与矩震级MW在时间演化上具有指数函数递增规律;当剪切模量μ=32 GPa,震后665天余滑释放的地震矩能量约为1.92×1017N·m,约占同震滑动释放地震矩的4.8%,相当于矩震级MW5.46;虽然震后余滑已经延伸到断层浅部0~5 km区间,但由于余滑量相对较小,没有改变同震滑动在断层浅部区域的滑动亏损现象,这可能是2010年11月30日该区域又发生MW5.3级余震的主要原因之一.  相似文献   

12.
王武星  梁明 《地震》2018,38(2):84-94
利用GRACE重力卫星观测资料, 系统地分析了喜马拉雅俯冲带及周边几次7级以上大地震前后的区域重力场变化特征。 研究发现, 2005年巴基斯坦MS7.8、 2008年汶川MS8.0、 2011年缅甸MS7.2、 2013年芦山MS7.0和2015年尼泊尔MS8.1等大地震都发生在重力显著变化区域及周边, 地震前几年开始区域重力在原变化趋势下呈现快速减小特征, 而后, 减小后的重力恢复增加, 大地震均发生在这种重力变化过程中。 大地震前的这种重力变化过程与苏门答腊MW9.3和东日本MW9.0地震的同震和震后区域重力变化过程类似, 只是幅度要远远小于这两个地震的同震和震后变化, 而且重力减小恢复较快。 综合分析认为喜马拉雅俯冲带及周边区域几次7级以上大地震前后的区域重力变化, 都与巨大地震过程中, 板块活动调整的弹性变形、 区域地下深部地幔物质运移和热引起的区域气候改变有关。 据此, 为区域重力变化的共同特征提出一种物理过程模式解释。 苏门答腊MW9.3及其巨大余震过程中, 喜马拉雅俯冲带局部区域出现地壳的拉伸、 下沉, 一段时间后, 转变为挤压、 抬升。  相似文献   

13.
2011年日本MW9.0地震(简称日本地震)后沂沭断裂带及其两侧地区地震活动显著增强,研究日本地震对该地区地壳运动及地震潜势的影响十分必要.为此,本文通过112个连续GPS观测站获取了研究区高空间分辨率的日本地震同震形变场并得到如下认识:(1)8个定点地球物理观测的同震响应验证了本文同震形变场的可靠性;日本地震的东向拉张使研究区整体上处于张性同震应变状态,但存在局部挤压区域,其中莱州湾至海州湾的挤压条带穿过沂沭断裂带并对断裂带南北两段产生了不同的同震作用,对南段具有拉张作用,对北段产生挤压作用;(2)同震形变场在鲁东隆起和鲁西断块产生了显著的剪应变,地震b值显示上述区域的构造应力在日本地震后增强,因此同震形变场可能改变了这些区域的应力特征;(3)地震矩张量叠加分析显示,同震形变场短期内对鲁西断块、鲁东隆起区和沂沭断裂带南段累积了地震矩,可能有助于上述区域在日本地震以后的地震活动增强;日本地震对沂沭断裂带北段的地震矩具有释放作用,或许是该区域地震活动减弱的原因.  相似文献   

14.
强震震前(preseismic)动力学过程的研究对于地震预测具有十分重要的意义,但由于观测资料的限制,目前对强震前孕震区力学状态及其演化过程的认识还非常有限.2011年日本东北9.0特大地震(Tohoku-Oki)发生在GPS观测台站最为密集的地区,为研究特大地震震间(interseismic)与震前的变形状态提供了难得的机会.文中将利用日本东北大地震之前连续的GPS观测资料,分别计算震间与震前的速度场与变形场.通过对比分析发现,日本东北地区(Tohoku)震前的应变状态与震间的有很大的不同,震间的变形主要受到太平洋板块向日本海沟北西西向的俯冲挤压作用所控制,其主压应变以近东西向压缩为主,日本东北地区的运动方向与太平洋板块的运动方向大体一致.但是,临近地震前(震前)日本东北地区的运动方向发生了很大变化,震前30天的连续GPS观测结果显示,速度场的优势方向经常变换,间歇性地出现与太平洋板块运动方向相反的情况.这意味着震前孕震区的力学状态发生了很大的改变.这种变化可能与震前破裂成核或慢滑移及慢地震等过程有关,这些过程将加速或促进大地震的发生,从而为大地震的发生准备了力学条件.值得特别强调的是,这些现象都是可以通过直接观测能够发现的大地震之前的异常现象.由此可见,加密GPS站点进行连续观测,寻找震前变形异常区以及探索异常的物理机制对于地震预测预报有重要的科学意义.  相似文献   

15.
模拟2015年尼泊尔地震(主震MW7.8及最大余震MW7.3) GPS/InSAR同震位移、远震体波、高频GPS位移波形和强震加速度记录,构建统一震源模型.统一模型分布特征主要由InSAR观测决定,地震矩释放过程则与P波模型相似,静态与高频GPS观测增加了对破裂时空特征的约束强度;各种比对表明,该模型对各基于单一类型反演模型具有很好的兼容性,棋盘测试展现其具有更优空间分辨率,最小可恢复20 km×20 km尺度的空间特征,压缩了非同震信号或误差导致的零散瑕疵,主、余震破裂具有更好的空间对应关系.主震展布范围为140 km×80 km;4 m以上破裂集中在加德满都以北30 km、深度15 km的狭长区域内,最大滑动量为7.4 m;破裂持续总时长为60 s,破裂速度为3.3 km·s-1,子断层上升时间在10 s内.MW7.3余震破裂区域位于主震东侧边缘,滑动量围绕震中扩散,扩展范围为30 km×20 km,最大滑动量约为4.4 m,总破裂持续时间为35 s.本次地震中静态和高频的GPS观测亦具备独立约束主震破裂扩展过程的能力.  相似文献   

16.
青藏高原岩石圈的流变学结构和形变机制是地学界长期争论的重大科学问题.2001年发生在东昆仑断裂带的MW7.8可可西里地震造成青藏高原北部地区岩石圈构造应力场的很大改变,引起下地壳与上地幔的快速弛豫形变,从而为研究这一问题提供了难得的机会.本研究采用该区域的GPS震后观测,反演这一地区岩石圈的流变学参数并探讨其形变机制.反演所采用的数据来自45个GPS观测点,其中包括一个中国地壳运动观测网络的基准站,数据最长时间跨度达6.4年.大地震震后形变场主要来源于地壳、上地幔的黏弹性松弛与断层面上的震后余滑,因此本研究同时反演介质的黏滞系数和断层的震后余滑.考虑到东昆仑断层南侧的巴颜喀拉-羌塘地区与北侧的柴达木盆地地区具有明显不同的地壳结构,断层南北两侧采用不同的Burgers体流变学结构,其下地壳-上地幔的短期和长期黏滞系数采用网格搜索法获得;断层震后余滑反演则同时施加近似正比于库仑应力的约束.最终结果显示:东昆仑断层北侧柴达木盆地地区下地壳-上地幔短期和长期黏滞系数分别为5×1018 Pa·s和1.5×1020 Pa·s;东昆仑断层南侧巴颜喀拉-羌塘地区下地壳-上地幔短期和长期黏滞系数分别为1.5×1018 Pa·s和1.5×1019 Pa·s.这一结果表明:巴颜喀拉-羌塘地区下地壳-上地幔黏滞系数显著低于柴达木盆地,意味着巴颜喀拉-羌塘地区下地壳可能存在部分熔融,其地壳形变模式更趋近于连续形变,而柴达木盆地形变模式更趋近于块体运动.研究区下地壳长期黏滞系数比下地壳流模型所主张的黏滞系数高2~3个数量级,表明下地壳流在本地区可能不存在.  相似文献   

17.
2010年4月14日青海玉树MS7.1地震发生在青藏高原东南部甘孜-玉树地震带,在震后7~10天内,我们快速建立了由15个GPS测站组成的跨地震破裂带观测剖面,包括1个连续站,3个半连续站和11个流动站,对所有站进行了240多天的观测,获取了该次地震的震后形变时空特征.采用欧拉矢量和位错模型解算了背景速度场,并从GPS观测的形变场中扣除该分量.采用分层黏弹性位错模型计算余震引起的地表形变,结果表明余震对部分测站的位移造成不可忽视的影响.采用对数模型拟合位移时间序列,表明特征衰减时间为6.7±1.2天.利用最速下降法反演震后余滑时空分布,反演结果表明震后断层活动以左旋滑动为主,断层南盘具有少量的抬升.在空间分布上,余滑主要位于同震破裂区的两侧,西北侧的余滑几乎达到地表,而东南区的余滑基本在同震破裂区的下方,余滑最大的区域位于结古镇东南下方10~20 km的深度范围.随着震后离逝时间的增加,2个余滑区在空间上保持不变,余滑区的面积逐渐扩大.余滑的矩释放为(1.5~5.1)×1018Nm,相当于1个MW6.1~6.4地震释放的能量.分层岩石圈黏弹性模型计算的地壳孔隙弹性反弹形变与地表观测值相差较大,不能解释观测到的震后变形.采用麦克斯维尔流变体模型计算下地壳和上地幔松弛引起的地表形变,显示出其对地表形变的贡献较小.GPS观测得到的震后形变所具有的快速衰减特征,以及余滑模型能够较好地拟合GPS地表形变,表明2010年玉树MS7.1地震后早期阶段的地壳形变主要是由余滑机制决定的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号