首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
郯庐断裂带是中国东部重要的活动断裂带和边界构造带,其鲁苏段全新世活动断层的空间展布和古地震序列是地学关注的焦点问题,也是准确评价区域地震危险性的重要参数.以往研究工作多集中在郯庐断裂带地表地貌现象明显且有强震记录的山东段,而江苏段则研究程度相对较低,有关郯庐断裂带江苏段全新世活动断层范围和古地震序列问题存在争议.本文利用野外地质地貌调查、浅层地震勘探、钻孔联合剖面以及古地震探槽等多层次综合方法,重点开展郯庐断裂带江苏段全新世活动断层的分布和古地震序列研究.结果显示全新世时期,安丘-莒县断裂是郯庐断裂带江苏段的主要活动断层,且江苏全段该断层都是全新世活动断层.通过对比宿迁闸-皂河镇断裂南北安丘-莒县断裂的断层地貌和断层最新活动时间,并结合宿迁闸-皂河镇断裂在第四纪没有活动过等证据,推测该断层在全新世时期并不是区域阻碍破裂的断层.探槽揭示郯庐断裂带江苏段全新世两次古地震事件,事件Ⅰ限定在(6.2±0.3)-(13.4±0.7)ka B.P.之间,而事件Ⅱ限定在(2.5±0.1)ka B.P.到现今,全新世两次古地震间隔较长.基于构造类比法,安丘-莒县断裂具有深部孕震的构造特点,是区域未来强震的潜在发震构造.  相似文献   

2.
The Nankou-Sunhe Fault is a buried active normal fault that traverses the urban area of Beijing.Its seismic risks have caused considerable concerns.This paper studies paleoearthquakes along this fault by analyzing and correlating bore-hole cores obtained from triple-tube coring,incorporating experience acquired from trenching.As a result,a model for identifying earthquake-derived colluvium by sediment-core analysis is proposed.Triple-tube coring technique is useful to collect continuous undis-turbed soil core near the Nankou-Sunhe Fault.By identifying fault-scarp colluviums,determining cumulative displacement,and analysing stratum thickening on the hanging wall,we are able to establish a preliminary paleoearthquake sequence consisting of 13 surface-rupturing events since 60 ka.The seismic history can be divided into three periods based on different recurrence intervals.Between 60 and 40 ka,three earthquakes occurred with recurrence interval of ~10 ka.From 40 to 25 ka,there were six earthquakes with the recurrence interval of about 2.5 ka.In the last 25 ka,four earthquakes have taken place with the recurrence interval varying considerably.The recurrence interval between the last three events is ~5 ka.Smaller recurrence intervals correspond to stages of faster fault slip.The coseismic displacement of a single event is 0.8 to 2.2 m,average 1.4 m,largely equivalent to moment magnitudes 6.7-7.1.This study demonstrates the feasibility of bore-hole drilling in investigating paleoearthquakes along normal faults.It also suggests that closely spaced boreholes with continuous undisturbed cores are essential for reconstructing the complete paleoearthquake sequence.  相似文献   

3.
灵武断裂晚第四纪古地震及其破裂特征   总被引:11,自引:0,他引:11       下载免费PDF全文
在地质地貌调查基础上 ,对灵武断裂进行了古地震槽探揭露。结果显示 ,距今 2 8ka以来 ,灵武断裂上发生过 5期地表破裂型地震事件 ,时间大约分别在距今 ( 2 7 15± 0 778) ,2 0 0 ,( 13 0 7± 0 0 6) ,( 10 586± 0 0 5)和 6 0ka。根据 5期古地震事件的综合对比分析 ,发现断裂有分段组合破裂的特征 ,由此并结合槽探揭示的古地震同震位移等估计了古地震的震级  相似文献   

4.
龙首山北缘断裂带是潮水盆地与龙首山地的地貌分界线,展布于龙首山隆起的北麓。前期曾在龙首山北缘断裂带东段的白家嘴、中段包代河、西段斜坡山开挖了三个探槽,均揭露出多期古地震。本文通过三个探槽古地震事件的对比分析认为,龙首山北缘断裂带第1次古地震(11 ka)到最后1次古地震(1.6 ka)间隔9.4 ka,约1万年时间里有6次古地震发生。如果取算术平均(9.4 ka/6=1.57 ka),则每隔1 500年左右,龙首山北缘断裂带就有一次强地震事件,即古地震平均重复间隔约1.57 ka。这和其它各大断裂带得出的古地震优势重现周期(1~2 ka)并不矛盾。①5 ka年以前龙首山北缘断裂带仅有2次古地震事件,重复间隔5.3 ka,明显偏长,可能有古地震的遗漏问题;②5 ka年以后该断裂地震活动明显丛集,最短间隔0.7 ka,最长间隔1.5 ka,平均重复间隔约0.8 ka。无论是最短、最长或平均重复间隔,均与山丹-张掖地区历史地震的最长重复间隔0.79 ka接近。  相似文献   

5.
The Fodongmiao-Hongyazi Fault is a Holocene active thrust fault, belonging to the middle segment of northern Qilianshan overthrust fault zone, located in the northeastern edge of the Tibet plateau. The Hongyapu M7(1/4) earthquake in 1609 AD occurred on it. A few paleo-seismology studies were carried out on this fault zone. It was considered that four paleoearthquakes occurred on the Fodongmiao-Hongyazi Fault between(6.3±0.6) ka BP and(7.4±0.4) ka BP, in(4.3±0.3) ka BP, in(2.1±0.1) ka BP and in 1609 AD. The occurrences of the earthquakes suggested the quasi-periodic characteristic with a quasi-periodic recurrence interval between 1 600~2 500a(Institute of Geology, State Seismological Bureau, Lanzhou Institute of Seismology, State Seismological Bureau. 1993; Liu et al., 2014). There was no direct evidence for the Hongyapu M7(1/4) earthquake in 1609 AD from trench research in the previous studies. Great uncertainty exists because of the small number of the chronology data, as a few TL and OSL measurement data and several14 C data, and it was insufficient to deduce the exact recurrence interval for the paleoearthquakes. Five trenches were excavated and cleared up respectively in the eastern segment, middle segment and western segment along the Fodongmiao-Hongyazi Fault. After detail study on the trench profiles, the sedimentary characteristics, sequence relationship of the stratigraphical units, and fault-cuts in different stratigraphical units were revealed in these five trenches. Four paleoearthquakes in Holocene were distinguished from the five trenches, and geology evidences of the Hongyapu M7(1/4) earthquake in 1609 AD were also found. More accurate constraint of the occurring time of the paleo-earthquakes since Holocene on the Fodongmiao-Hongyazi Fault is provided by the progressive constraining method(Mao and Zhang, 1995), according to amounts of 14 C measurement data and OLS measurement data of the chronology samples from different stratigraphical units in the trenches. The first paleoevent, E4 occurred 10.6ka BP. The next event, E3 occurred about 7.1ka BP. The E2 occurred about 3.4ka BP. The last event, E1 is the Hongyapu M7(1/4) earthquake in 1609 AD. Abounds of proofs for the occurrences of the events of E1, E2 and E3 were found in the trench Tc1, trench Tc2, trench Tc4 and trench Tc3, located in the eastern, middle and western segments of the Fodongmiao-Hongyazi Fault accordingly. It's considered that the events E1, E2 and E3 may cause whole segment rupturing according to the proofs for these three events found together in individual trenches. The event E4 was only found in the trench Tc5 profile in the west of the Xiaoquan village in the eastern segment of the Fodongmiao-Hongyazi Fault. The earthquake rupture characteristics of this event can't be revealed before more detailed subsequent research. The time intervals among the four paleoearthquakes are ca 3.5ka, ca 3.7ka, and ca 3.0ka. The four events are characterized by ca 3.4ka quasi-periodic recurrence interval.  相似文献   

6.
兰州马衔山北缘断裂带古地震初步研究   总被引:4,自引:0,他引:4       下载免费PDF全文
兰州马衔山北缘断裂带为一条全新世活动断裂 ,大致由 4条次级断裂段组成 .沿断裂带发现了多期古地震事件 ,其活动具有时空不均匀性 .其中东段的马衔山段可以确定 2次古地震事件 ,距今 5850± 50 0aB .P .,2 0 60± 42 0aB .P .,复发间隔约 380 0a ;震级 7~ 7.5级左右 .中段的七道梁段发现 2次古地震事件 ,距今 1 682 0± 80aB .P .,1 0 80 0± 1 40aB .P ..西段的雾宿山咸水沟段可以确定一次古地震事件 ,其年代为 1 2 45± 560aB .P .,结合史料考证结果 ,认为就是 1 1 2 5年兰州 7级地震 .从古地震活动年代及复发间隔分析 ,马衔山北缘断裂带未来的强震危险段应为东段的马衔山段和西段的雾宿山咸水沟段 .  相似文献   

7.
Geomorphic study on Wjiahe segment of Serteng piedmont fault,Inner Mongolia is made.Throuth analysis of the available data in combination with the results of predecessors‘studies it can be obtained that average vertical displacement rate is 0.48-0.75mm/a along the Wujiahe segment since the late Pleistocene(14.450-22.340ka BP)and 0.56-0.88mm/s since the early-middle Holocene(5.570-8.830ka BP).Analyzing paleoseismic phenomena revealed in the excavated 5trenches in combination with the results of predecessors‘studies of paleoearthquakes on the fault,we determine five paleoseismic events on the Wujiahe segment of Serteng piedmont fault since 27.0ka BP and the recurrence interval to be about 4.300-4.400ka,A cluster of paleoearthquakes occurred probably during 8.000-9.000ka BP and two paleoeismic events in 10.000-20.000ka BP may be missed.A comparison between height of fault scarps and sum of displacement caused by paleoseismic events revealed in trenches,and recurrence interval of paleoseismic events obtained from average displacement rate along the fault and the disloca-tion by one event suggest that three paleoseismic events are absent in Alagaitu trench.Two paleoseismic events may be absent on the whole active fault segment.  相似文献   

8.
Because of the significance to the formation and evolution of the Tibetan plateau, the displacement and slip rate of the Altyn Tagh fault have been topics full of disputation. Scientists who hold different opinions on the evolution of Tibet insist on different slip rates and displacements of the fault zone. In the article, study is focused on the late Quaternary slip rate of the Altyn Tagh fault west of the Cherchen River (between 85°E and 85°45'E). On the basis of high resolution SPOT images of the region, three sites, namely Koramlik, Aqqan pasture and Dalakuansay, were chosen for field investigation. To calculate the slip rate of the fault, displacement of terraces was measured on SPOT satellite images or in situ during fieldwork and thermo-luminescence (TL) dating method was used. To get the ages of terraces, samples of sand were collected from the uppermost sand beds that lie just under loess. The method for calculating slip rate of fault is to divide the displacement of terrace risers by the age of its neighboring lower terrace. The displacement of rivers is not considered in this article because of its uncertainties. At Koramlik, the slip rate of the Altyn Tagh fault is 11.6±2.6mm/a since 6.02±0.47ka B.P and 9.6±2.6mm/a since 15.76±1.19ka B.P. At Aqqan pasture, about 30km west of Koramlik, the slip rate is 12.1±1.9mm/a since 2.06±0.16 ka B.P. At Dalakuansayi, the slip rate of the fault is 12.2±3.0mm/a since 4.91±0.39ka B.P. Hence, we get the average slip rate of 11.4±2.5mm/a for the western part of the Altyn Tagh Fault since Holocene. This result is close to the latest results from GPS research.  相似文献   

9.
The Gunzhin system of NE-trending active faults is described on the basis of results of special seis-motectonic studies carried out for the first time around Ulan Bator, Mongolia. This system crosses watershed parts of stream valley. It is named after one of them. The total length of the fault segment traced on aerial photos is 15–20 km. In valleys of some temporary stream flows there are considerable visible horizontal displacements attaining 20–25 m, which testify to the right lateral slip (Khundullun River). Revealed structural parageneses of thrusts and overthrusts, divergent as a fan-shaped system to the both sides from the axial sub-vertical shift zone, are reliably confirmed by the data of geophysical investigations. Taking into account the known correlation relationships between seismodislocation parameters (length and maximum displacement amplitude) and earthquake magnitudes, it is possible to suggest that the Gunzhin Fault generated two paleoearthquakes with the magnitude of about 7.0 in the Late Holocene. It means that displacements along that fault could attain the intensity of 9–10 degrees in the Ulan Bator territory according to the MSK-64 scale. This result must be taken into account in estimation of seismic hazard in the territory discussed.  相似文献   

10.
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8. Foundation item: Chinese Joint Seismological Science Foundation (201017). Contribution No. 2003A004, Institute of Crust Dynamics, China Earthquake Administration.  相似文献   

11.
Vertical coseismic deformation on non-causative fault caused by remote strong earthquakes(epicentral distance≥1500 km,MS≥7.0)are observed by fault-monitoring instruments of new type during recent two years.The monitor-ing result shows,delay time,maximum amplitude and duration of vertical deformation on the non-causative faulthave remarkable close relationship with earthquakes magnitude and epicentral distance.The delay time of verticalcoseismic deformation have positive linear relationship with epicentral distance.The velocity of coseismic defor-mation is 5.5 km/s,close to the velocity of surface wave in granite.The logarithms of maximum amplitude of co-seismic deformation and epicentral distance have remarkable linear relationship with magnitude.The greater themagnitude and the closer the epicentral distance are,the bigger the maximum amplitude of coseismic deformationon non-causative fault will be.Relative to the epicentral distance,the magnitude is the most important factor to theduration of coseismic vertical deformation on the non-causative fault.Stronger earthquake causes longer vibrationduration of coseismic deformation.The experiential equation of co-seismic deformation faults obtained by thiswork is significant on the coseismic deformation research.  相似文献   

12.
前人在山西交城断裂带上开挖过多个探槽,揭露出全新世3次古地震事件,但其研究结果尚不能确定该断裂带全新世活动段的北部边界.近期在该断裂带北端和中段又开挖了3个大型探槽,其中在阳曲县泥屯盆地西界开挖的龙王沟探槽,是一个由多个探槽组合成的大探槽,该探槽揭示的地层断错信息,将交城断裂带全新世活动的范围向北延伸了20km.另外2个大型探槽分别为交城断裂带中段瓦窑沟东侧台地前缘的瓦窑探槽与市儿口沟西侧T1阶地前缘的新民探槽.这3个大探槽均揭示出全新世中期(14C测年值为距今5 ~ 6ka)的垆土和淤泥层,以及多组平行分布的断面,所揭示的全新世3次古地震事件具有断错事件活动的同步性,可与前人探槽揭示的全新世断层活动事件相对比.3次断错活动时间分别距今3.06 ~3.53ka、5.32ka左右或6.14ka左右、8.36ka左右;3次事件的时间间隔分别为2.02 ~ 2.84ka和2.22 ~ 3.04ka.这些断错事件的同震垂直位移为1.5~4.7m,显示了7级以上地表破裂型的强震活动.最后讨论了探槽中14C测年样品的影响因素.  相似文献   

13.
The Xiaojiang fault zone is located in the southeastern margin of the Tibetan plateau, the boundary faults of Sichuan-Yunnan block and South China block. The largest historical earthquake in Yunnan Province, with magnitude 8 occurred on the western branch of the Xiaojiang Fault in Songming County, 1833. Research on the Late Quaternary surface deformation and strong earthquake rupture behavior on the Xiaojiang Fault is crucial to understand the future seismic risk of the fault zone and the Sichuan-Yunnan region, even crucial for the study of tectonic evolution of the southeastern margin of Tibetan plateau. We have some new understanding through several large trenches excavated on the western branch of the Xiaojiang fault zone. We excavated a large trench at Caohaizi and identified six paleoseismic events, named U through Z from the oldest to the youngest. Ages of these six events are constrained at 40000-36300BC, 35400-24800BC, 9500BC-500AD, 390-720AD, 1120-1620AD and 1750AD-present. The Ganhaizi trench revealed three paleoearthquakes, named GHZ-E1 to GHZ-E3 from the oldest to the youngest. Ages of the three events are constrained at 3300BC-400AD, 770-1120AD, 1460AD-present. The Dafendi trench revealed three paleoearthquakes, named E1 to E3 from the oldest to the youngest, and their ages are constrained at 22300-19600BC, 18820-18400BC, and 18250-present. Caohaizi and Ganhaizi trenches are excavated on the western branch of the Xiaojiang Fault, the distance between them is 400m. We constrained four late Holocene paleoearthquakes with progressive constraining method, which are respectively at 500-720AD, 770-1120AD, AD 1460-1620 and 1833AD, with an average recurrence interval of 370~440a. Large earthquake recurrence in the late Holocene is less than the recurrence interval of~900a as proposed in the previous studies. Thus, the seismic hazard on the Xiaojiang Fault should be reevaluated. We excavated a large trench at Dafendi, about 30km away south of Caohaizi trench. Combining with previous paleoseismological research, it is found that the western branch of Xiaojiang Fault was likely to be dominated by segmented rupturing in the period from late of Late Pleistocene to early and middle Holocene, while it was characterized by large earthquakes clustering and whole segment rupturing since late Holocene.  相似文献   

14.
2017年8月8日四川省九寨沟县发生了7.0级地震,中国大陆构造环境网络与北斗地基增强系统的GNSS连续观测共同监测到了此次地震的同震位移(坐标:东向为正,北向为正),结果显示:3个站点记录到了明显的同震位移,距离震中43 km的九寨沟台站(SCJZ)在东西向的位移为-9.8±1.5 mm,在南北向的位移为3.3±0.7 mm;距离震中65 km的松潘站(SCSP)在东西向的位移为-1.8±0.7 mm,在南北向的位移为-7.7±0.6 mm;距离震中77 km的舟曲站(GSZQ)在东西向的位移为0.4±1.2 mm,在南北向的位移为3.6±0.8 mm.通过同震位移分布特征,可以推测此次地震为一次左旋走滑型事件,引起水平向同震位移大致不超过150 km范围,地震对东南侧的龙门山断裂带影响非常小,对北侧的塔藏断裂和西侧的岷江断裂处引起的同震位移为厘米级.同震位移的反演结果显示:断层面上滑动量主要集中在7 km深度,最大量值约为0.4 m,平均滑动角为-15°,利用滑动分布计算的相应矩震级为MW6.4,与地震波反演结果相当.结合同震滑动分布、同震主应变分布、余震分布和震源机制解等特征,推测此次地震破裂极值区累积的能量得到较充分释放,进一步分析得出此次地震在塔藏断裂、岷江断裂和虎牙断裂处产生了一定的应力变化,值得持续关注.  相似文献   

15.
刘兴旺  袁道阳  邵延秀  张波  柳煜 《地震》2019,39(3):1-10
玉门—北大河断裂是酒西盆地南侧的一条重要的活动断裂, 断裂西起青草湾, 向东经老玉门市、 青头山、 大红泉, 止于北大河以东骨头泉一带, 长约80 km, 走向北西西, 倾向南, 倾角20°~60°。 玉门—北大河断裂为一条全新世活动的逆冲断裂, 断裂东段保留了地震破裂带遗迹, 通过野外断错地貌调查和探槽开挖, 揭示该破裂带形成于距今1.7±0.3 ka, 此前断裂在4.1±0.3~5.4±0.3 ka及8.4±1.0 ka还有过2次古地震事件, 利用经验公式和已有震例估算, 每次地震震级约为M7。  相似文献   

16.
酒西盆地白杨河断裂古地震特征研究   总被引:3,自引:2,他引:1       下载免费PDF全文
白杨河断裂是酒西盆地内部一条重要的活动断裂,断裂长约25 km,整体走向近EW,倾向N,倾角约25°。以往的研究认为白杨河断裂为一条全新世活动的隐伏断裂,其持续的活动造成了上覆阶地变形,形成白杨河背斜。通过卫星影像解译和野外实地考察,在断裂西段和中段发现连续发育的低断层陡坎,表明断裂活动已至地表。古地震探槽揭露白杨河断裂全新世以来至少发生过2次地震事件,年代分别为距今(8.7±0.6)ka和(3.9±0.5)ka,每次地震事件的垂直断距都在约0.6 m,利用经验公式,估算震级约为6.8级。  相似文献   

17.
Daliangshan fault zone (DFZ) constitutes an indispensable part of Xianshuihe-Xiaojiang fault system which is one of the main large continental strong earthquake faults in China.Puxiong Fault,the east branch of middle segment of DFZ,is the longest secondary fault.Its paleoseismic activity plays an important role in evaluating regional seismic activity level and building countermeasures of preventing and reducing the earthquake damage.The active fault mapping as well as the study of paleoseismological trench in recent years illustrates that Puxiong Fault is a slightly west-dipping high-angle left-lateral strike-slip fault with strong activity since late Pleistocene.Two trenches excavated across this fault reveal 2 and 3 paleoearthquakes that ruptured the fault at 8206 BC-1172 AD,1084-1549 AD,and 17434-7557 BC,1577-959 BC and 927-1360 AD,respectively.The OxCal model combining the results from both trenches and the another one in previous study across the fault with the historical earthquake record yields the elapsed time of~0.7ka of the latest paleoearthquake event,and the interval time is~2.3ka between the last two events.In the model,the penultimate event is considered to be recorded in all trenches.As all the three trenches are located at north part of the Puxiong Fault whose strike is apparently different from the south part,the~57km long north secondary segment is supposed to be the seismogenic structure of the paleoearthquake.According to the empirical scaling laws between magnitude and rupture length,the magnitude of the surface ruptured paleoearthquake is estimated to be more than M7 with the coseismic displacement~3.5m.However,the difference between the time of the paleoearthquake events on the middle and south segments of DFZ illustrates their independence as earthquake fracture units,and furthermore,the lower connectivity and the new generation of DFZ.  相似文献   

18.
滇西南打洛断裂位于青藏高原向SE方向物质挤出的最前端,其构造活动记录了青藏高原东南缘最新构造活动信息。通过卫星影像分析、现场追踪调查、探槽开挖、年代样品测试、断错微地貌高精度测绘等工作,对打洛断裂晚第四纪活动特征进行深入研究。结果表明,打洛断裂是一条全新世活动的左旋走滑断裂,晚第四纪水平滑动速率上限值为(2.5±0.1)mm/a,下限值为(0.8±0.1)mm/a,平均约(1.7±0.9)mm/a。假定断裂滑动速率基本保持恒定,根据沿断裂地质体最大位错约(11.2±0.5)km,估算其走滑活动构造转换时代应为(4.4~14.9)Ma B.P.。断裂最近一次构造活动时间为(360±30)a850±30a B.P.。  相似文献   

19.
Fractal research of fault gouge   总被引:1,自引:0,他引:1  
FractalresearchoffaultgougeSHUN-MEISHAO(邵顺妹)andJIN-CHANGZOU(邹瑾敞)EarthquakeResearchInstituteofLanzhou,StateSeismologicalBurea...  相似文献   

20.
Coseismic displacement plays a role in earthquake surface rupture, which not only reflects the magnitude scale but also has effect on estimates of fault slip rate and earthquake recurrence intervals. A great historical earthquake occurred in Huaxian County on the 23rd January 1556, however, there was lack of surface rupture records and precise coseismic vertical displacements. It's known that the 1556 Huaxian earthquake was caused by Huashan front fault and Weinan plateau front fault, which are large normal faults in the east part of the southern boundary faults in Weihe Basin controlling the development of the basin in Quaternary. Here, we made a study on three drilling sites in order to unveil the coseismic vertical displacements. It is for the first time to get the accurate coseismic vertical displacements, which is 6m at Lijiapo site of Huashan front fault, 7m at Caiguocun site, and 6m at Guadicun site of Weinan plateau front fault. These coseismic displacements measured based on same layers of drilling profiles both at footwall and hanging wall are different from the results measured by former geomorphological fault scarps. It's estimated that some scarps are related with the nature reformation and the human beings' activities, for example, fluviation or terracing field, instead of earthquake acticity, which leads to some misjudgment on earthquake displacements. Moreover, the vertical displacements from the measurement of geomorphological scarps alone do not always agree with the virtual ones. Hence, we assume that the inconsistency between the results from drilling profiles and geomorphological scarps in this case demonstrates that the fault scarp surface may have been demolished and rebuilt by erosion or human activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号