首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
太湖河蚬时空格局   总被引:14,自引:6,他引:8  
2006年12月-2007年11月对太湖河蚬种群进行了周年逐月调查.河蚬在分布区的年均密度和生物量分别为265.7ind./m2和100.9g/m2,在夏、秋季均达到高值.根据壳长频数分布的周年变化,太湖河蚬一年一代,繁殖期主要在5-7月份.河蚬主要分布在贡湖湾、马迹山以南区域、西南湖区和小梅港沿岸区域.分析表明,太湖中河蚬的空间分布表现出明显的差异性,这种差异性受到多种因素的综合影响.在北部梅梁湾和竺山湾湖区湖泊中的低溶氧量是限制河蚬生长的最重要因素;在贡湖湾、马迹山以南湖区和西南部湖区,各种生境条件和底质性质适合河蚬的生长繁殖,其密度和生物量的最高值出现在贡湖湾的中心区域(820.0ind./m2,522.9g/m2);在东太湖湖区浮游植物密度较低,底质中有机质较少,食物来源是影响河蚬分布的较重要因素.  相似文献   

2.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We have investigated the contributions of three dominant macrophyte species, Deyeuxia angustifolia, Carex lasiocarpa, and Carex pseudocuraica (covering about 10 304 km2), to carbon (C), nitrogen (N), and phosphorus (P) stocks in the largest freshwater marsh (17 300 km2) in China for a 3‐year period (from 2002 to 2004). The monthly biomass, seasonal, and annual net primary productivity (NPP), and nutrient concentrations of three species were measured. All three plant species showed rapid growth in the rainy season. The maximum and minimum production rates in the freshwater marsh were ~36.19 and ~9.92 g m?2 day?1, respectively. The total NPP accounts 1900–2700 g m?2 year?1 in the studied area. Total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) concentrations in roots were higher than those in stem and leaf tissues. The vast beds of the three studied species comprise 80% of the grass covered marsh of Sanjiang plain, contributing annual nutrient stocks of ~10.99 × 106, ~788.36 × 103, and ~18.10 × 103 t (tonnes) for TOC, TN, and TP, respectively. Our results suggest that the nutrient bioaccumulation capacity in freshwater marshes depend mainly on plant species, which are decided by hydrological conditions. The nutrient stocks in the Sanjiang plain marsh have been greatly reduced because some of the area occupied by C. lasiocarpa was replaced by D. angustifolia as a result of succession caused by the changes of water table.  相似文献   

4.
From December 1997 to December 1998, benthic algal biomass and the input of allochthonous coarse particulate organic matter (CPOM) were investigated in bi-weekly intervals at two sampling stations (shaded and sunny) of the Weidlingbach, a fourth order sandstone stream in the Wienerwald. A total of 41 benthic algal taxa was collected, belonging to the groups Cyanobacteria (4 taxa), Bacillariophyceae (33), Rhodophyta (1), Chrysophyceae (1) and Chlorophyta (2). At the shaded site, periphyton dry mass ranged from 13 g m−2 in April to 440 g m−2 in August (annual mean = 93 g m−2), at the sunny site from 3 g m−2 in May to 512 g m−2 in late fall (annual mean = 70 g m−2). Based on the algal carotenoid pattern, Bacillariophyceae were most abundant in fall and winter while Chlorophyceae dominated during summer. Mean annual standing stock of chlorophyll-a was 8.65 μg cm−2 at the shaded station and 7.53 μg cm−2 at the sunny site. Annual allochthonous CPOM input rates ranged from 382 to 665 g dry mass m−2 for aerial input and from 1006 to 1062 g DM m−1 of stream length for lateral input. Lateral input rates were influenced by the bank inclination; the temporal distribution of aerial input showed an autumnal maximum (61-65% of the total). Direct CPOM input was significantly highest (P<0.05) during the period of defoliation from October to November. In the course of this period, 61.1% (shaded) to 64.9% (sunny) of the annual CPOM dropped into the brook, yielding daily input rates of 6.6 to 4.0 g DM m−2. From December to September, daily direct input rates decreased to 0.84 g DM m−2 (shaded) and 0.44 g DM m−2 (sunny). At both sites, retention capacity was high; 70% of marked leaves released along transects were retained by coarse sediment particles within 40 m from the starting point. The annual mean of periphyton dry mass made up 52% of CPOM standing stock at the shaded site and 39% at the sunny site.  相似文献   

5.
In the dimict lake Arend (5.1 km2, 146 hm3, 49.5 m zmax), nitrogen is production-limiting with concentrations below the detection limit during the production period. Phytoplankton achieves biomasses of up to 18 mg/l fresh matter, essential contributions being made by Aphanizomenon with 2 mg/l and Anabaena with up to 10 mg/l. Nitrogen fixation was measured by the ethine reduction technique (acetylene reduction) during periods of the occurrence of heterocystforming Cyanophyceae and achieved peak values up to 6.59 μg N2 · h?1 · l?1 or 14.87 m?2 · h?1 g N2 · m?2 · h?1. The rates of fixation show a safe correlation with the biomass of heterocyst-containing Cyanophyceae (r = 0.88), their development beginning at values below the N : P-ratio of 2.66.  相似文献   

6.
Litterfall was measured in a dry schlerophyll eucalypt forest and a nearby Pinus radiata plantation of similar tree density and basal area near Canberra in south-eastern Australia. Total annual litterfall for the eucalypts was 329 g m−2, compared with 180 g m−2 for the pines, with the bark component being 52 g m−2 for eucalypts and zero for pines. Barkfall did not occur for the eucalypts during the drought of 1982–1983 but complete bark shedding occurred during the subsequent very wet year when barkfall was 177 g m−2 for Eucalyptus rossii and 146 g m−2 for Eucalyptus mannifera (9·3 and 7·6 g m−2 of basal area, respectively). Barkfall of E. rossii responded to rainfall in the period autumn to early summer, whereas E. mannifera responded to summer rainfall. In the eucalypt forest floor-litter was stratified into a surface layer where the components were substantially intact, and a cohesive layer where the components were fragmented and bound together by fungal hyphae. The amount and residence times of loose and cohesive floor-litter were 1056 g m−2 and 3·2 years, respectively, for the loose litter layer; and 1164 g m−2 and 3·5 years for the cohesive layer. The litter biomass represented 17% of the estimated total above-ground biomass of 127 tonnes ha−1. A previous study showed roots to be 25% of total biomass, suggesting a total biomass of 167 tonnes ha−1. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Chlorophyll a-concentrations, AFWD (ash-free-dry-weight) and photosynthesis rates were estimated for periphyton assemblages in Amazonian black-and white-water habitats over 14 months. Cellulose-acetate strips were incubated in situ and showed few major differences in periphyton quality as compared to natural substrata. The only exceptions were submersed Igapó forest leaves, which exhibited higher proportions of green algae and cyanobacteria though not producing differences in total periphyton biomass. Enclosure experiments showed a considerable nutrient release by inundated non-senescent Igapó forest leaves. Periphyton biomass and productivity were found to be highest in black-and white water mixing zones, where biomass peaked at 41.6 mg Chla/m2 and 19.8 g/m2 AFDW. Production was estimated to be 380 gC/m2·a. Maximum biomass of periphyton in floating meadows was 46 mg Chla/m2 and 10.6 g/m2 AFDW, with an annual production of 170 gC/m2·a. Solimões main channel periphyton values were low: maximum Chla was 7.1 mg/m2, AFDW 0.8 g/m2 and annual production was estimated to be 30 gC/m2. Blackwater periphyton values were lower compared to whitewater and mixed water values but an enlarged trophogenic zone has to be taken into account. Highest Chla content reached 30.9 mg/m2, AFDW 1.43 g/m2. Estimated annual production was 110 gC/m2. Observed mean periphyton productivity of Amazonian blackwater habitats approximately corresponded to mesotrophic attached algae productivity in temperate zones, whereas productivity of whitewater periphyton approached those of temperate eutrophic lakes. The role of periphyton in the Amazon food web is discussed.  相似文献   

8.
Sediment cores and sediment traps were collected twice a month in two 35 m deep stations of Lake Geneva (Switzerland). The organic input sedimenting to the bottom is equal to 157 g C m−2y−1 in station 1, to 214 g C in station 2. In spite of this difference, the oxygen uptake by the sediment (OUS) is similar in both locations (46–47 g C m−2y−1). The oxygen uptake by the matter sedimenting to the bottom (OUSM) is respectively 45 g C m−2y−1 and 41 g C in stations 1 and 2. The equivalence between OUS and OUSM implies that most of the sedimented matter arriving to the bottom is directly oxidized at the sediment surface. In station 1, OUS is positively correlated to OUSM, and OUSM is positively correlated to chlorophyll-a concentrations in the water column (0–20 m) one week before sediment sampling. In location 2, OUS is positively correlated to the percentage of organic carbon and nitrogen in the sedimented matter, negatively to its C:N ratio. Increasing allochthonous inputs have a negative influence on benthic respiration. At both sites, OUS is not directly related to macrobenthic biomass or to temperature of bottom water.  相似文献   

9.
冷季不同植物人工湿地处理生活污水的工程实例分析   总被引:2,自引:0,他引:2  
本实验以亚热带地区福建省永春县农村生活污水作为处理对象,选取10种湿地植物,构建具有不同植物类型的表面流人工湿地的实例工程,比较不同植物配置人工湿地的处理能力,以及湿地植物的生物量和植物体内氮、磷累积能力.研究结果表明,水龙和美人蕉人工湿地具有较高的铵态氮去除能力,去除率可分别达到76.7%和87.7%;两者同时也对总氮表现出较好的去除效果,尤其是美人蕉人工湿地在冬季节对总氮的去除率可维持在80.3%以上;2014年初冬季节实验结果表明,水龙还具有一定的总磷去除能力,去除率可达到69.0%.水龙和美人蕉具有较大的生物量,其单位面积干重可分别达到0.46和0.30 kg/m~2,又能较好地积累氮、磷元素,其体内氮含量可分别达到6.43和4.60 g/m~2,磷含量可分别达到0.50和1.01 g/m~2.综上所述,种植水龙和美人蕉的人工湿地总体处理效果较好,同时又能更多地积累氮、磷元素,且具有更大的生物量,可选为相对适宜用于处理生活污水的适合亚热带地区应用的人工湿地植物.  相似文献   

10.
苏北骆马湖大型底栖动物群落结构及水质评价   总被引:2,自引:1,他引:1  
邹伟  李太民  刘利  蔡永久  许浩  彭凯  龚志军 《湖泊科学》2017,29(5):1177-1187
2014年1-12月,对苏北骆马湖水质和大型底栖动物进行了逐月调查.根据湖区的生境特征将骆马湖划分为3个区域:采砂区域、植被区域和其他区域.对比分析不同区域水质参数和底栖动物群落结构,并利用《地表水环境质量标准》(GB 3838-2002)、综合营养状态指数和生物学指数对水质进行评价.结果表明,采砂区域的水深显著高于植被区域,而透明度显著低于另外两个区域;采砂区域的总氮、总磷、硝态氮和正磷酸盐浓度均显著高于植被区域,生物多样性显著低于另外两个区域.骆马湖内共采集到大型底栖动物41种,其中环节动物8种,软体动物15种,节肢动物18种.铜锈环棱螺(Bellamya aeruginosa)、苏氏尾鳃蚓(Branchiura sowerbyi)、霍甫水丝蚓(Limnodrilus hoffmeisteri)、长角涵螺(Alocinma longicornis)是现阶段的优势种.10个监测点底栖动物的年均密度和年均生物量分别为77.19±43.59 ind./m~2和37.62±28.31 g/m~2,呈现出较高的空间异质性.生物量较密度空间差异更大,生物量在湖泊四周的监测点较高,而在湖心开阔水域较低.水质评价结果表明骆马湖水质处于中营养状态,总体属于中度污染,作为南水北调东线工程重要的调蓄湖泊以及饮用水源地和水产养殖基地,加强水环境保护不容懈怠.  相似文献   

11.
采集柱状芯样,室内静态模拟不同温度下太湖沉积物铵态氮释放.结果表明,经面积加权,5℃、15℃和25℃下氮的交换速率分别为-16.0±17.6mg/穴m2·d雪、12.6±6.9mg/穴m2·d雪和34.1±20.8mg/穴m2·d雪,不同湖区其释放速率差异极大.受外源污染影响较大的水域,氮释放量随温度的升高而增加;受死亡残体沉降和分解影响明显的草藻型湖区,氮的年释放通量较大.全太湖沉积物-水界面NH4 -N的年净通量为9960.3±4960.0t,其中成汇的通量值约为-911±637.9t/a,大部分泥区在一年中至少经过了一次的源-汇转换过程.  相似文献   

12.
2006年4月至2007年3月对长江支流清江二级支流———胡家溪的大型底栖动物群落结构和生产量进行为期一周年的调查和研究.结果表明,主要蜉蝣优势种小裳蜉(Leptophlebia sp.)、扁蜉(Electrogena sp.)、四节蜉(Indobaetis sp.)的生活史为一年三代,细蜉(Caenis sp.)为一年两代;小裳蜉的年均密度和年均生物量分别为407 ind./m2、1.00 g/m2;扁蜉为150 ind./m2、0.37 g/m2,四节蜉为232 ind./m2、0.30 g/m2,细蜉为91 ind./m2、0.17 g/m2.采用龄期频率法测算的周年生产量和P/B分别为:小裳蜉为441.42 g/m2(WW),14.3;扁蜉为434.88 g/m2(WW),7.6;四节蜉为747.21 g/m2(WW),15.0;细蜉为40.52 g/m2(WW),7.2.四种蜉蝣生产量的时间重叠比例相似系数较高,均大于0.55,这可能与四种蜉蝣的生境及食物资源较为相似有关.  相似文献   

13.
乌伦古湖是我国十大内陆淡水湖之一,同时也是新疆维吾尔自治区的第二大湖泊和主要渔业基地.近年来,随着气候变化和人为因素的影响,湖区水体营养状况、生物群落组成等均发生了较大变化.为揭示该湖大型底栖无脊椎动物的群落结构特征及其对生态系统变化的响应,2006年11月至2008年7月设28个采样点对大型无脊椎底栖动物的群落结构特...  相似文献   

14.
Based on the stem analysis of 59 individuals of Pinus elliottii in combination with tree biomass models, we calculated annual biomass increment of forest plots at Qianyanzhou Ecological Station, Chinese Academy of Sciences in subtropical China. In addition, canopy layer and community NPP were calculated based on 12 years’ litter fall data. NPP of the 21-year-old forest was estimated by using the BIOME BGC model; and both measured NPP and estimated NPP were compared with flux data. Community biomass was 10574 g · m−2; its distribution patterns in tree layer, shrub layer, herbaceous layer, tree root, herbaceous and shrub roots and fine roots were 7542, 480, 239, 1810, 230, 274 and 239 g · m−2, respectively. From 1999 to 2004, the average annual growth rate and litter fall were 741 g · m−2 · a−1 (381.31 gC · m−2 · a−1) and 849 g · m−2 · a−1 (463 gC · m−2 · a−1), respectively. There was a significant correlation between annual litter fall and annual biomass increment; and the litter fall was 1.19 times the biomass increment of living trees. From 1985 to 2005, average NPP and GPP values based on BGC modeling were 630.88 (343.31–906.42 gC · m−2 · a−1) and 1 800 gC · m−2 · a−1 (1351.62–2318.26 gC · m−2 · a−1). Regression analysis showed a linear relationship (R 2=0.48) between the measured and simulated tree layer NPP values. NPP accounted for 30.2% (25.6%–32.9%) of GPP, while NEP accounted for 57.5% (48.1%–66.5%) of tree-layer NPP and 41.74% (37%–52%) of stand NPP. Soil respiration accounted for 77.0% of measured tree NPP and 55.9% of the measured stand NPP. NEE based on eddy covariance method was 12.97% higher than the observed NEP. Supported by the National Key Basic Research Special Foundation of China (Grant No. 2002CB4125), International Joint Research Project under Ministry of Science and Technology of China (Grant No. 2006DFB91920)  相似文献   

15.
The algae were cultivated in an outdoor cultivation unit in waste water from sewage treatment plant processing city sewage and largescale hoggery effluent. The cultivation area (2m2) had a slant of 3% and the suspension layer thickness was about 5 cm. The total suspension volume in the cultivation device was 150 I. Mass balance served us for derivation of formulas for the average rate of algal biomass production and for the extent of nutrient removal from waste water. Experiments showed a considerable effect of dilution rate on individual parameters in these formulas. The removal of nitrogen and phosphorus is optimal at a dilution rate of 0.3 day?1 whereas optimum biomass production lies at about 0.1 day?1. The nitrogen and phosphorus yield coefficient Y (g biomass/g element) are practically identical, both of them depending on dilution rate. The effect of the dilution rate on other characteristics of the effluent water has not yet been unambiguously proved. The results are shown of bacteriological and mycological examinations, in addition, of the chemical analysis of resulting algal biomass.  相似文献   

16.
Due to serious degradation of typical Stipa bungeana steppe community on the Loess Plateau, a 26‐year (1982–2007) experiment has been carried out by methods of forbidden grazing, cutting, and rotational grazing. Our results show that the process of succession of long‐term enclosed S. bungeana community can be divided into two stages: 1980–1996, the forward succession stage, when the species diversity and biomass reach the peak (33.7 species/m2 and 1349.41 g/m2, respectively); 1997–2007, the slow succession stage, when the gradually thickening of litter layer (litter depth reaches 3–5 cm) directly causes the reduction of species diversity and biomass to 19.1 species/m2 and 863.19 g/m2, respectively. While under the cutting and rotational grazing methods, grassland succession can be divided into four stages: 1st–5th year, the continuing growth stage; 6th–9th year, the vigorous competing stage; 10th–15th year, the aggregation growth stage of constructive species with biomass reaching the peak (1444.19 g/m2); and 16th–23rd year, stable growth stage of constructive species, which form sub‐climax and are eventually dominated by S. bungeana, with the species diversity and biomass of 25–27 species/m2 and 956.76–1165.35 g/m2, respectively. The constructive species suddenly change in the 24th year, and the population of S. grandis increases rapidly to 21 m?2 accounting for 25% of the total plant population. Long‐term enclosure leads to decreased species diversity and biomass and is not beneficial for grassland renewing. The species diversity and biomass of degraded grassland continuously decrease to 10 species/m2 and 392.1 g/m2 due to long‐term artificial failure and transitionally grazing, leading to harden soil with slow rainfall infiltration, where plants can only sustain life under the drought condition. Therefore, reasonable cutting and rotational grazing are the methods of choice for the gradual increase of species diversity and promotion of the natural renewal and forward succession of the grassland on Loess Plateau. These results provide reliable information for the diversity dynamic change as better indictors of soil quality and sustainable utilization mode.  相似文献   

17.
Marine sediment may contain both settled phytoplankton and benthic microalgae (BMA). In river-dominated, shallow continental shelf systems, spatial, and temporal heterogeneity in sediment type and water-column characteristics (e.g., turbidity and primary productivity) may promote spatial variation in the relative contribution of these two sources to the sediment organic matter pool available to benthic consumers. Here we use photosynthetic pigment analysis and microscopic examination of sediment microalgae to investigate how the biomass, composition, and degradation state of sediment-associated microalgae vary along the Louisiana (USA) inner shelf, a region strongly influenced by the Mississippi River. Three sandy shoals and surrounding muddy sediments with depths ranging from 4 to 20 m were sampled in April, August, and October 2007. Pigment composition suggested that sediment microalgae were primarily diatoms at all locations. We found no significant differences in sediment chlorophyll a concentrations (8–77 mg m−2) at the shoal and off-shoal stations. Epipelic pennate diatoms (considered indicative of BMA) made up a significantly greater proportion of sediment diatoms at sandy (50–98%) compared to more silty off-shoal stations (16–56%). The percentage of centric diatoms (indicators of settled phytoplankton) in the sediment was highest in August. Sediment total pheopigment concentrations on sandy stations (<20 mg m−2) were significantly lower than concentrations at nearby muddy stations (>40 mg m−2), suggesting differences in sediment microalgal degradation state. These observations suggest that BMA predominate in shallow sandy sediments and that phytodetritus predominates at muddy stations. Our results also suggest that the relative proportion of phytodetritus in the benthos was highest where phytoplankton biomass in the overlying water was greatest, independent of sediment type. The high biomass of BMA found on shoals suggests that benthic primary production on sandy sediments represents a potentially significant local source of sediment microalgal carbon that may be utilized by benthic consumers in continental shelf food webs.  相似文献   

18.
Nutrient and Oxygen Balance of a Highly Polluted Treated Sewage Channel with Special Regard to the Submerged Macrophytes The changes of the concentrations of inorganic nitrogen compounds, orthophosphate, and oxygen were measured in the flowing wave along the flowing stretch of the Berlin treated sewage channel Wuhle monthly over a period of two years (1993/94) to estimate the nutrient and oxygen balances. This treated sewage channel is rich in nutrients and densely covered with submerged macrophytes. During the period of investigation in 1993 (1994), the effluent of the sewage treatment plant Falkenberg, which is lacking in adjustable nitrification and denitrification. contained in average 16.1 (12.7) mg/L of NH-N, 13.7 (9.4) mg/L of NO3?-N. 0.94 (0.69) mg/L of NO-N. and 0.36 (0.26) mg/L of PO-P. Due to the neglectable influence of other processes like nutrient uptake by submerged macrophytes and algae, desorption of ammonia or dilution, the changes of the concentrations of the inorganic nitrogen compounds are mainly influenced by nitrification and denitrification. The nitrification is mainly done by sessile nitrifiers in the treated sewage channel Wuhle. The nitrification rates. calculated from the decrease of the ammonium concentrations, were between 0.5 and 20 g/(m2d) related to the flowing stretch area. The ammonium concentrations decreased along the flowing stretch in average by 20 to 44%. The highest nitrification rates could be found at the stretches with a dense colonization with submerged macrophytes and a good oxygen supply due to low water depth and high flowing velocities. The denitrification rates, calculated from the decrease of the total of the concentrations of the inorganic nitrogen compounds, were between 0.5 and 23 g/(m2d) related to the flowing stretch area. The total loss of nitrogen due to denitrification was between 10 and 20% along the flowing stretch of the treated sewage channel Wuhle. This corresponds to a total amount of up to 530 kg nitrogen per day. The main part of the phosphorus occured as orthophosphate in concentrations between 0.04 and 0.87 mg/L of PO-P in the effluent of the treatment sewage plant Falkenberg. The orthophosphate concentration changed along the flowing stretch mostly in such a manner that it were at the same level at the end of the flowing stretch at the mouth into the river Spree. The self-purification capacity of the channel does not lead to a relevant reduction of the very high nutrient load under the present conditions. The rates of the photosynthetic production (P) and the community respiration (R) were calculated from the rates of the total changes of oxygen with regard to the physical aeration. The rates of the photosynthetic production were between 0 and 33 g/(m2d), the rates of the community respiration between 15 and 75 g/(m2d). Therewith, the Wuhle treatment sewage channel belongs to the very productive waters. A positive balance (P > R) could only be measured on two segments in May. The rates of oxygen production depend on the ratio width to depth of the water. It is possible that the positive influence of the submerged macrophytes on the oxygen balance also at higher biomasses than 250 g/m2 (as dry weight) predominates at the segments with a favourable ratio. The portion of the oxygen input through diffusion along the flowing stretch and at the weirs was 30%, respectively, that of the photosynthic production 40% in summer. The rates of community respiration decreased along the flowing stretch by 50 to 90%. The nitrification had the main portion of the oxygen depletion in the Wuhle treated sewage channel with 60…80%. Despite the high biomass, the respiration of the submerged macrophytes had only a small portion of the total oxygen depletion. Nevertheless, the submerged macrophytes contributed to the nearly total oxygen depletion at the most densely covered segment 2 at night. The decrease of the content of particular organic material and the ammonia concentrations at the effluent of the sewage treatment plant, a diminishing of the biomass of submerged macrophytes by shading, and the widening of a few flowing stretches are demanded for the improvement of the oxygen balance of the Wuhle treated sewage channel.  相似文献   

19.
《Continental Shelf Research》2006,26(17-18):2260-2280
On October 3, 2002 Hurricane Lili made landfall on a previously studied region of the inner Louisiana shelf as a Category 2 storm with winds over 160 km/h. A week after the hurricane, major impacts of the storm were not evident in the water column except for the lower than expected inshore salinities (∼12 psu) for this time of year, which was characterized by low river discharge. Turbidity profiles were typical of those measured during previous investigations with suspended sediment concentrations >75 mg/L at inshore stations and <50 mg/L in surface waters and offshore. The implication is that the sediments resuspended during the hurricane settled soon after the storm passage. Water column particulate organic carbon (POC) concentrations ranged from 0.1 to over 2.0 mg/L, with the highest concentrations measured near the seabed and in the inshore portions of the study area. Suspended particles were characterized by low organic matter content (%POC of 0.5–2 wt%), low chlorophyll:POC ratios (Chl:POC<4 mg/g) and moderately elevated POC:particulate nitrogen ratios (POC:PN of 10–14 mol/mol), all suggesting their source was locally resuspended seabed sediment rather than from algal biomass or land-derived vascular plant detritus.Post hurricane sediment deposition throughout the study area resulted in a storm layer that ranged from <0.5 to 20 cm in thickness. In most locations sediment accumulation ranged from 3 to 10 cm. The storm deposits were generally composed of silty clays with a coarser, somewhat sandy 1–2 cm basal layer. Surface sediments from the storm layer were characterized by relatively high mineral surface areas (SA of 30–50 m2/g) and elevated OC contents (%OC of 1.0–2.0%). The dispersal of fine sediments following the hurricane resulted in marked changes in the SA and %OC values of surface sediments from offshore locations, which prior to the storm contained coarser, organic-poor particles (SA of 5–15 m2/g and %OC of 0.2–0.6%). The OC:SA and OC:N ratios of storm layer sediments ranged from 0.4 to 0.6 mg OC/m2 and from 10 to 12 mol/mol, respectively, and were comparable to those measured in surface sediments prior to the hurricane. Such similarities in the composition of the organic matter reinforce the idea that the source of the storm deposits was the finer fraction of resuspended seabed sediments, with little evidence for inputs from local land-derived sources or autochthonous algal production. Overall, the magnitude of sediment and organic matter deposition on the seabed after the storm greatly exceeded the annual inputs from the Atchafalaya River and coastal primary production. The combined effects of hurricane-driven erosion and post-storm deposition represent a major perturbation to the benthic community of the region, which is already subject to these types of disturbances due to the combined effects of peaks in river discharge and the passage of storm fronts.  相似文献   

20.
The lake without any outlet (11 ha, 55000 m3, zmax 2,25 m) has a weak thermal stratification with maximum surface temperatures of 32.5 °C. The annual variation of temperature and depth of visibility is unimodal, with the maxima or minima in August. Phytoplankton consists mainly of Cyanophyceae. The primary production determined by the light-dark bottle technique (oxygen method) varies in the annual variation between 0.3… 0.5 g m?2 d?1 C (winter) and 3.4… 4.6 g m?2 d?1 C (summer); as the annual means of 1975 and 1976 there were found 1.9 and 2.4 g m?2 d?1 C, resp., gross production at a utilization of 0.42… 2.85% of the radiation energy. The chemism is a well-buffered hydrogen-carbonate water (pH 8.1… 9.0) with 74… 90 mg/1 Na and 20.5… 31.5 mg/1 K and with a good nutrient supply (20… 40 μg/1 PO4—P and 100… 240 μg/1 NO3—N) at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号