首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 640 毫秒
1.
磁层亚暴的发生与近磁尾(约6~8 RE)电流片中断和中磁尾(约20~30 RE)磁场重联密切相关,而极光的极向扩展、电流片中断和磁尾重联的时序过程对于认识亚暴的触发机制至关重要. 本文利用位于中磁尾的CLUSTER卫星,同步轨道附近LANL-01、LANL-97卫星,近磁尾POLAR和 极区IMAGE卫星的观测,分析了单个亚暴事例.结果表明,在此事件中,中磁尾磁场重联起始比近尾电流片中断早3 min发生,电流片中断发生4 min后,IMAGE卫星观测到极光增亮,同时AE指数突然增大,亚暴膨胀相起始. 观测结果与亚暴中性线模型较为吻合.  相似文献   

2.
本文主要应用THEMIS卫星的磁场和等离子体流观测数据,分析了2008年1月5日08∶51~08∶57 UT亚暴膨胀相期间磁尾的一个近地重联事件.在亚暴膨胀相期间,地面的全天空成像仪清楚地记录到了极光的极向扩展,THEMIS的P5卫星在地球同步轨道附近观测到了磁场的偶极化现象.在亚暴膨胀相末期的08∶51~08∶57 UT期间,P3(XGSM~-9.12RE) 和P4 (XGSM ~-9.40RE) 同时观测到了一对方向相反的高速等离子体流.这对方向相反的高速等离子体流是由磁尾的重联现象所引起.重联的位置被估计位于XGSM ~-9.12RE 和XGSM~-9.40RE之间较小的空间范围内.并且,在重联位置的两侧,重联的Hall效应被P3和P4两颗卫星观测到.因此,这一磁尾重联事件发生在距离地球非常近的空间范围内.  相似文献   

3.
卫星观测证实了磁尾等离子体团与亚暴活动的相关性,除了具有北-南双极特征的尾向传播等离子体团外,还发现地向传播等离子体团,它们表现为南-北双极中性片事件和南-北双极瓣区讯号. 资料分析表明:南-北双极讯号的出现几率远低于北-南双极讯号,并且南-北双极事件主要发生于行星际磁场北向和地磁宁静条件,它们往往与小的孤立的地磁亚暴相关. 本文根据地磁宁静时期(IMF Bz北向且By≥Bz)越尾电场Ey分量的分布特点,对地向传播等离子体团作模拟研究. 两类算例的数值结果展示了通量绳磁结构及具有复杂闭合磁力线位形的等离子体团的基本特征,上述特征与尾向传播的等离子体团类似,与IMP 8卫星关于地向传播南-北中性片事件的观测特征大致相符. 数值结果还展示了与Schindler示意图相类似的磁力线拓扑位形,在一定程度上为南-北事件出现几率低作出了解释;并且揭示了磁尾中性片内越尾磁场分量By对磁重联发展的抑制作用. 本文的模拟研究说明:无论磁尾处于活动时期(IMF Bz为南向),还是宁静时期(IMF Bz为北向且By≥Bz),磁场重联均是磁尾等离子体加速和加热的通用机制.  相似文献   

4.
亚暴事件中磁尾多重等离子体团的数值研究(Ⅰ)   总被引:1,自引:0,他引:1       下载免费PDF全文
GEOTAIL卫星于1994年1月15日亚暴期间,在深磁尾(x=96RE)观测到多重等离子体团及与之相对应的高能离子爆,作者以宁静磁尾平衡位形为初态,考虑介质的可压缩性,数值研究亚暴期间磁尾动力学过程.计算结果展现了等离子体团间歇性形成及其运动发展过程.体现了强亚暴事件中储存于碰尾的能量,通过多重等离子体团的排放而逐渐释放的进程.数值结果还表明:持续施加于边界上的晨昏电场及由此引发的驱动重联是导致等离子体团准周期形成的主要因素.此外,作者还考察尾瓣内任一点磁场强度及其分量随时间的演化,它与行进压缩区(TCRs)的观测特征基本相符.  相似文献   

5.
基于可压缩磁流体动力学模型,数值研究了由太阳风引起的局部驱动力对地球远磁尾中磁场重联的影响.结果表明,在远磁尾等离子体片中将发生强迫磁场重联,并形成磁岛和等离子体团.形成磁岛的特征时间很大于流动撕裂模不稳定性引起磁岛非线性饱和的特征时间.磁岛宽度随着磁Reynolds数S的增大而减小,随着尾瓣中等离子体压力与磁压之比值β_∞的降低而减小.认为太阳风引起的局部驱动力对地球远磁尾等离子体片中磁场重联的影响,可能不如流动撕裂模不稳定性那样显著.  相似文献   

6.
本文根据OMNI、TC-2卫星、LANL系列卫星、Cluster星簇卫星(C1-C4)以及加拿大的8个中高纬地磁台站的观测数据,研究了2005年8月24日强磁暴(SYM-Hmin~ -179 nT)主相期间的强亚暴(ALmin~ -4046 nT)事件特征.该强磁暴在大振幅(IMF Bz min~ -55.57 nT)、短持续时间(~90 min)的行星际磁场条件下产生,有明显的磁暴急始(SSC),强度较大且持续时间较短.发生在磁暴主相期间的亚暴发展的主要特征如下:亚暴增长相期间,C1-C4卫星先后穿越中心等离子体片;亚暴膨胀相触发后,在近地磁尾(X~-6RE)可观测到磁场偶极化现象;等离子体无色散注入区在亚暴onset开始后迅速沿经向扩展,但被限制在有限的经度范围;磁纬60°附近,Pi2地磁脉动振幅超过了100 nT.膨胀相开始后,在中、高磁纬地磁台站可观测到负湾扰,近地磁尾可观测到Pi2空间脉动,中磁尾区域可观测到尾向流、磁重联以及O+/H+数密度比值在亚暴onset之后增大等现象.分析表明该强磁暴主相期间的强亚暴现象发生时序是自内向外:X~-6RE处TC-2观测到磁场偶极化(~09:42:30 UT),同步轨道卫星LANL1994-084观测到等离子体无色散注入(~09:44:30 UT),X~-17.8RE处C1观测到磁场重联(~09:45:30 UT),由此推断该亚暴事件很可能是近地磁尾不稳定性触发产生,其发生区域距离地球很近.  相似文献   

7.
探测一号卫星在近地磁尾观测到的尾向流统计特性   总被引:3,自引:0,他引:3       下载免费PDF全文
在磁静和亚暴期间,TC 1卫星在近地磁尾,包括晨昏两侧和夜侧的尾瓣、等离子体片边界层和等离子体片区域都观测到大量来自电离层的尾向流事件.尾向流在赤道面附近最强,在夜侧较晨昏两侧强;尾向流有从晨昏两侧向夜侧运动的趋势;尾向流随距地球距离增加而逐渐增强.与来自中磁尾的地向流相比,近地磁尾近赤道区域来自电离层的尾向流具有低温高密特性.2004年7月1日至2004年10月31日期间TC 1卫星在近地磁尾(7RE~13RE之间,RE为地球半径)观测到持续时间超过3 min的尾向流共516起.对这516起尾向流的统计研究结果显示:(1)尾向流在从等离子体片边界层向等离子体片的运动过程中流速会逐渐减弱、密度逐渐增高,温度有逐渐下降的趋势;(2)对尾向流平行温度和垂直温度的分析显示不同等离子体区域的尾向流都有较明显的各向异性;(3)在从等离子体片边界层向等离子体片的运动过程中,尾向流逐渐趋向各向同性.  相似文献   

8.
K-H不稳定性在多电流片系统磁场重联中的效应   总被引:1,自引:0,他引:1       下载免费PDF全文
张洪  沈超 《地球物理学报》1997,40(4):445-452
等离子体系统中存在两个或多个电流片时,电流片中发生的不稳定性可能会相互作用.行星际磁场北向时,背阳面碰层顶电流片与磁尾等离子体片之间可能发生相互作用,高纬边界层强烈的流场剪切可能促进磁场重联,产生磁层亚暴.本文运用二维可压缩磁流体模拟研究具有强流场剪切的多个电流片系统中磁场重联的演化.结果表明,Kelvin-Helmholtz不稳定性使多电流片系统的磁场重联过程明显加快;相邻电流片之间的距离越近,两者相互作用越强,重联增长率越大;在三电流片系统中,超Alfven速度强流场导致外侧两个电流片中出现强烈的磁场重联,并引发中心电流片的磁场重联.行星际磁场北向时,也可能发生磁层亚暴.  相似文献   

9.
IMF北向时磁层顶重联的模拟研究   总被引:1,自引:0,他引:1  
本文基于自己开发的全球三维磁层模型,模拟研究了IMF(Interplanetary Magnetic Field)北向时磁层顶重联及磁尾结构.结果发现磁层顶附近存在两种典型的重联过程:一是高纬极尖区IMF与地球磁场的重联,这与空间观测证据和前人的模拟结果是一致的;二是重联后一端在太阳风中另一端与地球相连的磁力线在向磁尾运动中,会发生弯曲、拖曳,在磁尾晨昏侧低纬区域可与尾瓣开放磁力线满足重联条件而再次发生重联.我们认为前一重联会使磁尾等离子片产生与IMF时钟角方向相反的旋转;而后者可重新形成闭合磁力线,可能是LLBL(Low Latitude Boundary Layer)形成的重要原因.  相似文献   

10.
亚暴事件中磁尾多重等离子体团的数值研究(Ⅱ)   总被引:1,自引:0,他引:1       下载免费PDF全文
以宁静磁尾平衡解为初态,本文考虑介质的可压缩性,对GEOTAIL卫星于亚暴事件中,观测到多重等离子体团与高能离子爆相对应之特征作模拟研究.数值结果表明:重复形成的等离子体团是高温、高密度区,揭示了等离子体团与高能离子爆──对应的动力学原因.本文的模拟结果还表明:大尺度等离子体团的地向运动,与X中性点的尾向迁移及地向流动增强相对应,而上述现象与驱动入流沿着边界的分布形态(即电场E的分布)有关.  相似文献   

11.
以宁静磁尾平衡解为初态,本文考虑介质的可压缩性,对GEOTAIL卫星于亚暴事件中,观测到多重等离子体团与高能离子爆相对应之特征作模拟研究.数值结果表明:重复形成的等离子体团是高温、高密度区,揭示了等离子体团与高能离子爆──对应的动力学原因.本文的模拟结果还表明:大尺度等离子体团的地向运动,与X中性点的尾向迁移及地向流动增强相对应,而上述现象与驱动入流沿着边界的分布形态(即电场E的分布)有关.  相似文献   

12.
利用Cluster星簇sc3卫星2001年10月1日09:46~09:50UT时段磁场和等离子数据,探测到近尾尾向传播的两个磁通量绳,时间间隔为26 s.通量绳结构的尾侧存在高速地向流,地侧有高速的尾向流.同时观测到了尾向流的重联X线源区和地向流的重联出流区,直接地观测到了近尾无碰撞多重X线重联.  相似文献   

13.
地球磁尾中重联产生的磁流通管的运动   总被引:1,自引:1,他引:0       下载免费PDF全文
本文通过MHD理论研究了细磁流通管在二维静止平衡介质中的运动.用地球磁尾中的一维细丝来表示流通管,通过数值模拟可以得到细丝随时间变化的一些性质.重联产生的细丝磁场比周围磁场偶极性更强,运动时表现出了很强的地向流.结果还显示了阿尔芬波、慢激波等MHD波从磁层的赤道面传播到地球电离层上并部分地反射回来.细丝在电离层上的足点的赤道向运动滞后于赤道面上的地向运动.虽然在模拟中细丝的初始等离子体压强低于周围压强,但是当它开始迅速向地球方向运动时,它的等离子体压强很快上升到与周围压强相当,甚至有时候大于周围压强的值.  相似文献   

14.
Auroral events that occurred on January 24, 1986 in central Canada were recorded by an all-sky TV imager. During these events, auroral breakup was confined to a region between two foot points of neighboring geosynchronous satellites, GOES5 and GOES6. We examined field line signatures at satellite locations in unique station distributions and concluded that field line observation indicated plasma motion in the equatorial plane. The plasma motion showed an earthward compression combined with bifurcation (duskward or dawnward displacement in dusk/dawn sectors). In addition, we were able to infer an elliptical circulation of plasmas in the equatorial plane at Pi2 periods. Appearance in opposite rotation beside the auroral region indicated excitation of surface waves. We were able to show that auroral breakups occurred at a meridian of bifurcation. We suggest that a high plasma pressure region occurring tailward of geosynchronous altitudes may drive those plasma motions.  相似文献   

15.
The dynamic behaviour of the northern polar cap area is studied employing Northern Hemisphere electric potential patterns derived by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. The rate of change in area of the polar cap, which can be defined as the region of magnetospheric field lines open to the interplanetary magnetic field (IMF), has been calculated during two intervals when the IMF had an approximately constant southward component (1100- 2200 UT, 20 March 1990 and 1300–2100 UT, 21 March 1990). The estimates of the polar cap area are based on the approximation of the polar cap boundary by the flow reversal boundary. The change in the polar cap area is then compared to the predicted expansion rate based on a simple application of Faraday’s Law. Furthermore, timings of magnetospheric substorms are also related to changes in the polar cap area. Once the convection electric field reconfigures following a southward turning of the IMF, the growth rate of the observed polar cap boundary is consistent with that predicted by Faraday’s Law. A delay of typically 20 min to 50 min is observed between a substorm expansion phase onset and a reduction in the polar cap area. Such a delay is consistent with a synthesis between the near Earth neutral line and current disruption models of magnetospheric substorms in which the dipolarisation in the magnetotail may act as a trigger for reconnection. These delays may represent a propagation time between near geosynchronous orbit dipolarisation and subsequent reconnection further down tail. We estimate, from these delays, that the neutral X line occurs between \sim35RE and \sim75RE downstream in the tail.  相似文献   

16.
本文研究了地球磁尾等离子体片边界层内由离子束流和等离子体密度梯度联合作用产生的静电不稳定性.模型等离子体由向尾流动的冷离子束流、向地球流动的暖离子束流和背景暖电子组成,等离子体密度是非均匀的,等离子体β(热压强与磁压强之比值)很小,电子等离子体频率与电子退旋频率之比。ωee》1.结果表明,斜传播的静电快、慢离子束流-密度漂移模能够被激发。  相似文献   

17.
TC-1在近磁尾观测到地向流的偏转   总被引:1,自引:0,他引:1       下载免费PDF全文
使用TC-1卫星在2004年到2007年磁尾探测数据,将以往高速流的研究拓宽到较低的速度,统计分析其从-13.4RE到-5RE地心距离内的空间演化.研究发现:(1)在向着地球运动的过程中,地向流发生率在日地连线附近减小,但在晨昏两翼的发生率增加,且在黄昏侧的发生率最高;这表明地向流在运动到近地时向着晨昏两翼偏转.(2)越靠近地球,流速V和Vx越小,Vy和Vz的变化幅度较小并且具有明显的晨昏不对称性;所以地向流在近地运动过程中,不仅在晨昏方向上偏转,而且在南北方向上偏转.(3)地向流期间,等离子体密度整体偏小;但是随地心距离的减小,密度整体上逐步增加.(4)平行和垂直于磁场的流速具有明显的晨昏不对称性.在黎明侧的平行流速比黄昏侧大,在黄昏侧的垂直流速比黎明侧大.鉴于较大的垂直流速易触发与电流中断关系密切的不稳定性,我们推测电流中断更容易出现在黄昏侧.(5)除个别位置处的热压和磁压相当外,磁压在总压中一直占据主导地位.日地连线附近的总压较大,晨昏两翼处的总压相对较小;从而在晨昏向上产生较大的压力梯度,导致地向流在晨昏两翼偏转和发生率增大.在晨昏两翼,距离地球较近的位置处观测到了较小的压力;而在日地连线附近,距离地球较远的位置才可以观测到较小的压力;压力分布的这个统计特征说明过去事例研究中电流中断出现在不同的位置可能是由近地磁尾的压力分布造成的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号