首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A key issue in the study of the carbon cycle is constraining the stocks and fluxes in and between C‐reservoirs. Among these, the role and importance of fossil organic carbon (FOC) release by weathering of outcropping sedimentary rocks on continental surfaces is still debated and remains poorly constrained. Our work focuses on FOC fluxes due to chemical and mechanical weathering of marls in two experimental watersheds with typical badlands geomorphology (Draix watersheds, Laval and Moulin, Alpes de Haute Provence, France). Organic matter from bedrock, soil litter and riverine particles are characterized by Rock‐Eval 6 pyrolysis. FOC fluxes due to mechanical weathering are then estimated by monitoring the annual particulate solid exports at the outlets of the watersheds (1985–2005 period). FOC fluxes from chemical weathering were calculated using Ca2+ concentrations in dissolved loads (year 2002) to assess the amount of FOC released by the dissolution of the carbonate matrix. Results show that FOC delivery is mainly driven by mechanical weathering, with a yield ranging from 30 to 59 t km‐2 yr‐1 in the Moulin (0.08 km2) and Laval (0.86 km2) catchments, respectively, (1985–2005 average). The release of FOC attributed to chemical weathering was 2.2 to 4.2 t km‐2 for the year 2002. These high FOC fluxes from badlands are similar to those observed in tectonically active mountain catchments. At a regional scale, badland outcropping within the Durance watershed does not exceed 0.25% in area of the Rhône catchment, but could annually deliver 12 000 t yr‐1 of FOC. This flux could correspond to 27% of the total particulate organic carbon (POC) load exported by the Rhône River to the Mediterranean Sea. At a global scale, our findings suggest that erosion of badlands may contribute significantly to the transfer of FOC from continental surfaces to depositional environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Ten large volume water samples were taken from the Rhône River (Switzerland-France) in November, 1989 for recovery of total suspended sediment by continuous flow centrifugation. the samples were freeze-dried and analysed for particle size, organic carbon, total nitrogen, and carbonate. for comparative purposes, four bed sediments collected in July, 1989 are also described. the Rhône can be subdivided into three sections on the basis of the origins of the water. the first section is the Upper Rhône River draining into Lake Geneva. Waters are derived from glaciers, with low temperature and conductivity and high turbidity. Suspended sediment is coarse, has a bimodal distribution, and is low in both organic matter and carbonate. the second reach is from Lake Geneva to the confluence with the Saône at Lyon and has warmer water with higher conductivity and very low turbidity. Suspended sediment is higher in organic matter, with high carbonate originating from the lake. the final section is from Lyon to Arles, with warmer water and higher conductivity and turbidity due to modification by the Saône. Sediment is rich in organic matter, which May, account for an observed decline in oxygen in the river waters downstream from Lyon. Carbonate in these sediments also decreases due to increased turbidity from the Saône. Suspended sediments other than from the Upper Rhône show a remarkable consistency in grain size, predominantly in the fine silts (mode 9-11 μm). This consistency indicates a high degree of suitability for geochemical analysis. Bed sediments were bimodal throughout, with a dominant coarse population in two out of the four samples. Grain size statistical parameters could be easily explained by application of the theory of mixing of two major populations in the sand size (bed traction load) and the fine silt/clay size (suspended sediment load).  相似文献   

3.
The ‘Morte du Sauget’, a typical oxbow-lake in process of eutrophication and encroachment, is located in the alluvial plain of the French Upper Rhône River. Studies during 1983 have shown that, although the ‘Morte du Sauget’ is seasonally inundated by the Rhône, the impact of flooding is only temporary and is minimized by the biological activity of the waters and sediments of this system.  相似文献   

4.
The concentrations of PCBs and DDT at the surface of sediments of rivers in the Canton of Geneva were examined. Concentration variations observed along the rivers are discussed. In the case of the Rhône River, recent pollution at the surface of sediments is compared with that of aged underlying layers.  相似文献   

5.
The 20 km2 Galabre catchment belongs to the French network of critical zone observatories (OZCAR; Gaillardet et al., Vadose Zone Journal, 2018, 17(1), 1–24). It is representative of the sedimentary lithology and meteorological forcing found in Mediterranean and mountainous areas. Due to the presence of highly erodible and sloping badlands on various lithologies, the site was instrumented in 2007 to understand the dynamics of suspended sediments (SS) in such areas. Two meteorological stations including measurements of air temperature, wind speed and direction, air moisture, rainfall intensity, raindrop size and velocity distribution were installed both in the upper and lower part of the catchment. At the catchment outlet, a gauging station records the water level, temperature and turbidity (10 min time-step). Stream water samples are collected automatically to estimate SS concentration-turbidity relationships, allowing quantification of SS fluxes with known uncertainty. The sediment samples are further characterized by measuring their particle size distributions and by applying a low-cost sediment fingerprinting approach using spectrocolorimetric tracers. Thus, the contributions of badlands located on different lithologies to total SS flux are quantified at a high temporal resolution, providing the opportunity to better analyse the links between meteorological forcing variability and watershed hydrosedimentary response. The set of measurements was extended to the dissolved phase in 2017. Both stream water electrical conductivity and major ion concentrations are measured each week and every 3 h during storm events. This extension of measurements to the dissolved phase will allow progress in understanding both the origin of the water during the events and the partitioning between particulate and dissolved fluxes of solutes in the critical zone. All data sets are available at https://doi.osug.fr/public/DRAIXBLEONE_GAL/index.html .  相似文献   

6.
To investigate the effects of anthropogenic activity, namely, land use change and reservoir construction, on particulate organic carbon (POC) transport, we collected monthly water samples during September 2007 to August 2009 from the Longchuanjiang River to understand seasonal variations in the concentrations of organic carbon species and their sources and the yield of organic and inorganic carbon from the catchment in the Upper Yangtze basin. The contents of riverine POC, total organic carbon and total suspended sediment (TSS) changed synchronously with water discharge, whereas the contents of dissolved organic carbon had a small variation. The POC concentration in the suspended sediment decreased non‐linearly with increasing TSS concentration. Higher molar C/N ratio of particulate organic matter (average 77) revealed that POC was dominated by terrestrially derived organic matter in the high flows and urban wastewaters in the low flows. The TSS transported by this river was 2.7 × 105 t/yr in 2008. The specific fluxes of total organic carbon and dissolved inorganic carbon (DIC) were 5.6 and 6 t/km2/yr, respectively, with more than 90% in the high flow period. A high carbon yield in the catchment of the upper Yangtze was due to human‐induced land use alterations and urban wastes. Consistent with most rivers in the monsoon climate regions, the dissolved organic carbon–POC ratio of the export flux was low (0.41). Twenty‐two percent (0.9 t/km2/yr) of POC out of 4 t/km2/yr was from autochthonous production and 78% (3.1 t/km2/yr) from allochthonous production. The annual sediment load and hence the organic carbon flux have been affected by environmental alterations of physical, chemical and hydrological conditions in the past 50 years, demonstrating the impacts of human disturbances on the global and local carbon cycling. Finally, we addressed that organic carbon flux should be reassessed using adequate samples (i.e. at least two times in low‐flow month, four times in high‐flow month and one time per day during the flood period), daily water discharge and sediment loads and appropriate estimate method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km~2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr~(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr~(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr~(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr~(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr~(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr~(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr~(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr~(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr~(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr~(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr~(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr~(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr~(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr~(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.  相似文献   

8.
Specific features of the hydrological regime of the Rhône River and the nearshore zone of its mouth are discussed. The processes of seawater intrusion into the delta branches are described. The information on the history of the delta evolution and development is presented along with the reconstruction of the Holocene evolution of the Rhône Delta and analysis of formation peculiarities of the present-day delta. Channel processes in the Rhône Delta and the dynamics of the delta coastline are described; characteristics of the deep-water fan are discussed, and the data on sediment balance are given.  相似文献   

9.
Carbon transported by rivers is an important component of the global carbon cycle. Here, we report on organic carbon transport along the third largest river in China, the Songhua River, and its major tributaries. Water samples were collected seasonally or more frequently to determine dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations and C/N and stable carbon isotopic ratios. Principal component analysis and multiple regression analysis of these data, in combination with hydrological records for the past 50 years, were used to determine the major factors influencing the riverine carbon fluxes. Results indicate that the organic carbon in the Songhua River basin is derived mainly from terrestrial sources. In the 2008–2009 hydrological year, the mean concentrations of DOC and POC were 5.87 and 2.36 mg/L, and the estimated fluxes of the DOC and POC were 0.30 and 0.14 t·km?2·year?1, respectively. The riverine POC and DOC concentrations were higher in subcatchments with more cropland, but the area‐specific fluxes were lower, owing to decreased discharge. We found that hydrological characteristics and land‐use type (whether forest or cropland) were the most important factors influencing carbon transport in this system. Agricultural activity, particularly irrigation, is the principal cause of changes in water discharge and carbon export. Over the last 50 years, the conversion of forest to cropland has reduced riverine carbon exports mainly through an associated decrease in discharge following increased extraction of water for irrigation.  相似文献   

10.
Six stations along the Rhône River from the Rhône Glacier to Lake Geneva were sampled by continuous flow centrifuge for recovery of suspended sediment. The samples were taken four times in the year in both 1982 and 1983. In addition, the mouth of the river was sampled in a like manner every two weeks during 1982 until August 1983. Concentration of sediment and composition did not vary as a function of depth or location across the river. Concentrations varied in time and as a function of flow and samples showed both increasing concentration in suspension and an increase in the proportion of finer particles moving downstream from source to mouth. Only slight variations in texture could be observed down the river as a function of time and appeared to relate to freezing and melting of the Rhône and other headwater glaciers as the primary sediment source. Little variation was observed annually in the texture and composition of the sediment at the river mouth despite large changes in concentration between the high flow summer and low flow winter discharges. These findings are consistent with a well-mixed system in which the suspended sediments are directly related to the primary supply of material from the glaciers.  相似文献   

11.
Evaluating the role of fluvial transfer of terrestrial organic carbon (OC) and subsequent burial in the global carbon cycle requires the sources and fluxes of fluvial OC to be assessed, which remains poorly constrained in the Huanghe (Yellow River). Here, we report the elemental, stable isotopic, and radiocarbon activity of particulate organic carbon (POC) sampled at the outlet of Huanghe in 2012–2013. We show that the Huanghe riverine POC can be explained by binary mixing of fossil (POCfossil) and non‐fossil (POCnon‐fossil) components, the former may reach ~40% of the total POC. The Huanghe POCnon‐fossil is mostly sourced from C3 plants, with a mean residence time of c. 2200 years. The current human‐controlled hydrological regime strongly influenced the POC sources, transport modes, and fluxes. In 2012–2013, the Huanghe delivered 0.73 Tg (1 Tg = 1012 g) of POC to the sea, and about 28% of the annual POC flux occurred within a short human induced flood event. Globally, the Huanghe should be one of the largest rivers in the transfer and re‐burial of fossil OC. However, the fate of Huanghe fossil OC is still unconstrained and needs to be further investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Total organic carbon fluxes of the Red River system (Vietnam)   总被引:1,自引:0,他引:1       下载免费PDF全文
Riverine transport of organic carbon from terrestrial ecosystems to the oceans plays an important role in the global carbon cycle. The Red River is located in Southeast Asia where river discharge, sediment loads and fluxes of elements (carbon, nitrogen and phosphorus) associated with suspended solids have been dramatically altered over past decades as a result of reservoir impoundment and land use, population, and climate change. Dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations were measured monthly at four stations of the Red River system from January 2008 to December 2010. The results reveal that POC changed synchronically with total suspended solids (TSS) concentration and with the river discharge, whereas no clear trend was observed for DOC concentration. The mean value of total organic carbon (TOC = DOC + POC) flux in the delta of the Red River was 31.5 × 1013 ± 4.0 × 1013 MgC.yr?1 (range 27.9–35.8 × 1013 MgC.yr?1 which leads to a specific TOC flux of 2012 ± 255 kgC.km?2.yr?1 during this 2008–2010 period. About 80% of the TOC flux was transferred to the estuary during the rainy season as a consequence of the higher river water discharge. The high mean value of the POC:Chl‐a ratio (1585 ± 870 mgC.mgChl‐a?1) and the moderate C:N ratio (7.3 ± 0.1) in the water column system suggest that organic carbon in the Red River system is mainly derived from erosion and soil leaching in the basin. The effect of two new dam impoundments in the Red River was also observable with lower TOC fluxes in 2010 compared with 2008. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
A total of 1008 samples were collected from the eight major riverine runoff outlets in the Pearl River Delta (PRD) during 2005-2006 to estimate the fluxes of total organic carbon (TOC) to the coastal ocean off South China. The average dissolved organic carbon (DOC) concentration was 1.67 mg/L with a range of 1.38-2.13 mg/L. Concentrations of particulate organic carbon (POC) ranged from 2.66-4.12% of total suspended particulate matter (SPM). The fluxes of TOC and SPM from the PRD via the eight outlets were 9.2 x 10(5) and 2.5 x 10(7)tons/yr, respectively. Temporal variations in POC and DOC were observed at all outlets due to the large variability in runoff levels because of the seasonality of rainfall, and the riverine discharge amount was an important factor controlling TOC flux. The net contribution of organic carbon from the PRD to the coastal ocean represented approximately 0.1-0.2% of total organic carbon transported by rivers worldwide.  相似文献   

14.
The sedimentology of the floor of the Amvrakikos Gulf, a river influenced, semi-enclosed relatively shallow-silled embayment, lying along the northeastern Hellenic coast of the Ionian Sea (eastern Mediterranean Sea), is investigated with respect to its origin (terrigenous and/or biogenic), the prevailing oceanographic conditions and human interference. Nearshore (water depths approximately <10 m) sediments, especially along the northern margin of the Gulf, consist mostly of biogenic sands, as the result of water exchange between the freshwater lagoonal waters and the surface waters of the Gulf. An exception to this is the mouth area of the Arachthos River, which is dominated by the terrigenous riverine sediment influx. The offshore (water depths >10 m) bottom surficial sediments are fine-grained (silty and clayey) of terrigenous origin (>70%); this is attributed to the inter-seasonal, strong two-layer stratification of the water column in the Gulf which restricts benthic productivity by inhibiting the downward flux of surface eutrophic waters and the development of nearbed disoxic conditions in water depths >40 m. River damming has reduced also the riverine terrigenous sediment supply; this is more profound in the case of the Arachthos River where not only the deltaic evolution has been affected, but also the textural character of the seabed sediments of the mouth area has been altered; this is expected to influence the benthic communities of prodeltaic surficial sediment.  相似文献   

15.
The extensive blanket peatlands of the UK uplands account for almost half of total national terrestrial carbon storage. However, much of the blanket peat is severely eroded so that the contemporary role of the peatland system in carbon sequestration is compromised by losses of organic carbon in dissolved (DOC) and particulate (POC) form in the fluvial system. This paper presents the first detailed assessment of dissolved and organic carbon losses from a severely eroded headwater peatland (River Ashop, South Pennines, UK). Total annual fluvial organic carbon losses range from 29–106 Mg C km,‐2 decreasing from the headwaters to the main catchment outlet. In contrast to less eroded systems fluvial organic carbon flux is dominated by POC. POC:DOC ratios decrease from values of 4 in the headwaters to close to unity at the catchment outlet. These results demonstrate the importance of eroding headwater sites as sources of POC to the fluvial system. Comparison with a range of catchment characteristics reveals that drainage density is the best predictor of POC:DOC but there is scatter in the relation in the headwaters. Steep declines in specific POC yield from headwater catchments are consistent with storage of POC within the fluvial system. Key to the significance of fluvial carbon flux in greenhouse gas budgets is understanding the fate of fluvial carbon. Further work on the fate of POC and the role of floodplains in fluvial carbon cycling is urgently required. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Solute and runoff fluxes from two adjacent alpine streams (one glacial and one non‐glacial) were investigated to determine how the inorganic solute chemistry of runoff responded to seasonal and interannual changes in runoff sources and volume, and to differences in physical catchment properties. Intercatchment differences in solute composition were primarily controlled by differences in catchment geology and the presence of soils, whereas differences in total solute fluxes were largely dependent on specific discharge. The glacial stream catchment had higher chemical denudation rates due to the high rates of flushing (higher specific discharge). The non‐glacial Bow River had higher overall concentrations of solutes despite the greater prevalence of more resistant lithologies in this catchment. This is likely the result of both longer average water–rock contact times, and a greater supply of protons from organic soils and/or pyrite oxidation. Increases in snowpack depth/snowmelt runoff reduced the retention of nitrate in the Bow River catchment (i.e. increased nitrate export), probably by reducing net biological uptake, or by reducing the proportion of runoff that had contact with biologically active soil horizons that tend to remove nitrate. The two streams exhibited opposite solute flux responses to climate perturbations over three melt seasons (1998, 1999, and 2000). The 1998 El Niño event resulted in an unusually thin winter snowpack, and increased runoff and solute fluxes from the glacial catchment, but decreased fluxes from the Bow River catchment. Solute fluxes in the Bow River increased proportionally to discharge, indicating that increased snowmelt runoff in this catchment resulted in a proportional increase in weathering rates. In contrast, the proportional variation in solute flux in the glacial stream was only ∼70–80% of the variation in water flux. This suggests that increased ablation of glacier ice and the development of subglacial channels during the 1998 El Niño year apparently reduced the average water–rock contact time in the glacial catchment relative to seasons when the subglacial drainage system was primarily distributed in character. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The ongoing regression of sea ice cover is expected to significantly affect the fate of organic carbon over the Arctic continental shelves. Long-term moored sediment traps were deployed in 2005–2006 in the Beaufort Sea, Northern Baffin Bay and the Laptev Sea to compare the annual variability of POC fluxes and to evaluate the factors regulating the annual cycle of carbon export over these continental shelves. Annual POC fluxes at 200 m ranged from 1.6 to 5.9 g C m−2 yr−1 with the highest export in Northern Baffin Bay and the lowest export over the Mackenzie Shelf in the Beaufort Sea. Each annual cycle exhibited an increase in POC export a few weeks before, during, or immediately following sea ice melt, but showed different patterns over the remainder of the cycle. Enhanced primary production, discharge of the Lena River, and resuspension events contributed to periods of elevated POC export over the Laptev Sea slope. High POC fluxes in Northern Baffin Bay reflected periods of elevated primary production in the North Water polynya. In the Beaufort Sea sediment resuspension contributed to most of the large export events. Our results suggest that the outer shelf of the Laptev Sea will likely sustain the largest increase in POC export in the next few years due to the large reduction in ice cover and the possible increase in the Lena River discharge. The large differences in forcing among the regions investigated reinforce the importance of monitoring POC fluxes in the different oceanographic regimes that characterize the Arctic shelves to assess the response of the Arctic Ocean carbon cycle to interannual variability and climate change.  相似文献   

18.
Spatial and temporal variability of hydrological responses affecting surface water dissolved organic carbon (DOC) concentrations are important for determining upscaling patterns of DOC export within larger catchments. Annual and intra‐annual variations in DOC concentrations and fluxes were assessed over 2 years at 12 sites (3·40–1837 km2) within the River Dee basin in NE Scotland. Mean annual DOC fluxes, primarily correlated with catchment soil coverage, ranged from 3·41 to 9·48 g m?2 yr?1. Periods of seasonal (summer–autumn and winter–spring) DOC concentrations (production) were delineated and related to discharge. Although antecedent temperature mainly determined the timing of switchover between periods of high DOC in the summer‐autumn and low DOC in winter‐spring, inter‐annual variability of export within the same season was largely dependent on its associated water flux. DOC fluxes ranged from 1·39 to 4·80 g m?2 season?1 during summer–autumn and 1·43 to 4·15 g m?2 season?1 in winter–spring.Relationships between DOC areal fluxes and catchment scale indicated that mainstem fluxes reflect the averaging of highly heterogeneous inputs from contrasting headwater catchments, leading to convergent DOC fluxes at catchment sizes of ca 100 km2. However, during summer–autumn periods, in contrast to winter–spring, longitudinal mainstem DOC fluxes continue to decrease, most likely because of increasing biological processes. This highlights the importance of considering seasonal as well as annual changes in DOC fluxes with catchment scale. This study increases our understanding of the temporal variability of DOC upscaling patterns reflecting cumulative changes across different catchment scales and aids modelling of carbon budgets at different stages of riverine systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Sediment trap experiments were carried out three times from 1999 to 2000, in the western part of the Seto Inland Sea (Suo-Sound), Japan. We investigated both the particulate flux and the composition of chemical substances in the sediment trap samples. Based on the results, we discuss the origin of particulate organic carbon (POC) collected by the sediment traps in a coastal area. Moreover, we purposed to estimate the flux of the portion of the POC that is derived from phytoplankton photosynthesis. The fluxes of POC varied between 677 and 3424 mgC m(-2) d(-1). Significant positive correlations between POC and aluminum (Al) fluxes suggested that these components show almost the same behaviour. The mean value of the Al flux was about eight times higher than that of Al burial rates on the sediment surface. Therefore, it seems that the POC flux observed with the sediment traps was considerably overestimated. Moreover, judging from the fact that Al is a typical terriginous element, it seems that most of the POC collected in the sediment traps derived from the re-suspended surface sediment or sediment transported laterally from shallow flanks such as intertidal mudflats. The fluxes of chlorophyll a (Chl a) were independent of the POC fluxes, and a relatively consistent correlation was found between Chl a abundance in the water column and the Chl a flux. Moreover, surface sediment Chl a content was approximately 100 times lower than that of suspended matter. Therefore, resuspension and terriginous contributions to Chl a collected in sediment traps are likely to be negligible. The POC content in the trap samples varied between 22.4 and 70.7 mg g(-1) dry weight. The variations of POC contents were positively correlated with the Chl a contents: POC(mg g(-1))=76.5 x Chl a(mg g(-1)) + 26.0 (r=0.95, p<0.01, n=9). This result shows that POC contents strongly corresponded with phytoplankton and their debris. It was also considered that the fraction of POC derived from phytoplankton primary production could be estimated as Chl a content times a certain factor. In this study, we estimated the flux of the portion of the POC originating from phytoplankton production by multiplying the Chl a fluxes by 76.5 (the mean POC:Chl a ratio in the trap samples). These values varied between 308 and 758 mgC m(-2) d(-1), and accounted for 35.1+/-21.2% of total POC flux. Although the amount of POC that originates from phytoplankton photosynthesis was a small portion of total POC flux, it seems to be a large portion of potential primary production in the water column.  相似文献   

20.
Dam construction in the 1960s to 1980s significantly modified sediment supply from the Kenyan uplands to the lower Tana River. To assess the effect on suspended sediment fluxes of the Tana River, we monitored the sediment load at high temporal resolution for 1 year and complemented our data with historical information. The relationship between sediment concentration and water discharge was complex: at the onset of the wet season, discharge peaks resulted in high sediment concentrations and counterclockwise hysteresis, while towards the end of the wet season, a sediment exhaustion effect led to low concentrations despite the high discharge. The total sediment flux at Garissa (c. 250 km downstream of the lowermost dam) between June 2012 and June 2013 was 8.8 Mt yr‐1. Comparison of current with historical fluxes indicated that dam construction had not greatly affected the annual sediment flux. We suggest that autogenic processes, namely river bed dynamics and bank erosion, mobilized large quantities of sediments stored in the alluvial plain downstream of the dams. Observations supporting the importance of autogenic processes included the absence of measurable activities of the fall‐out radionuclides 7Be and 137Cs in the suspended sediment, the rapid lateral migration of the river course, and the seasonal changes in river cross‐section. Given the large stock of sediment in the alluvial valley of the Tana River, it may take centuries before the effect of damming shows up as a quantitative reduction in the sediment flux at Garissa. Many models relate the sediment load of rivers to catchment characteristics, thereby implicitly assuming that alterations in the catchment induce changes in the sediment load. Our research confirms that the response of an alluvial river to external disturbances such as land use or climate change is often indirect or non‐existent as autogenic processes overwhelm the changes in the input signal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号