首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Pressure–volume measurements have been performed for CaSiO3 perovskite to 108 GPa at 300 K using NaCl and argon pressure-transmitting media, and energy dispersive X-ray diffraction (EDXD) in a diamond-anvil cell (DAC). By determining a parameter that is the product of the elastic anisotropy, S, and the uniaxial stress component, t, for each data point, we define the stress condition of the sample. For different points at the same pressure in a temperature-quenched sample, the St value can differ by as much as a factor of 5, indicating heterogeneity in the stress condition. This may be responsible for the large scatter of earlier PV measurements in the DAC which in general used a large diameter X-ray beam. Also, the St value provides insight into the elastic anisotropy, S, of CaSiO3 perovskite and platinum. The sign of S (positive) for CaSiO3 perovskite agrees with first principles calculations but the magnitude may be inconsistent. A new compression curve at 300 K was obtained for CaSiO3 perovskite by using those data points which represent the most nearly hydrostatic conditions. It is observed that the data points with high St values yield larger volumes than the points with small St values at a given pressure. By selecting the data points having low St values (St≤0.005), combining with lower pressure large volume press (LVP) measurements and fitting to third order Birch–Murnaghan equation of state (EOS), we find that CaSiO3 perovskite is more compressible (V0=45.58±0.05 Å3, KT0=236±4 GPa, and KT0′=3.9±0.2 GPa) than suggested by previous studies. The density and bulk modulus of CaSiO3 perovskite at lower mantle pressures and 300 K are 1–3% greater and 5–15% smaller, respectively, than found in previous studies. This study demonstrates that defining the stress state of the sample is crucial to obtain an accurate 300 K compression curve for unquenchable high-pressure phases.  相似文献   

2.
The elastic moduli of ScAlO3 perovskite, a very close structural analogue for MgSiO3 perovskite, have been measured between 300 and 600 K using high precision ultrasonic interferometry in an internally heated gas-charged pressure vessel. This new capability for high temperature measurement of elastic wave speeds has been demonstrated on polycrystalline alumina. The temperature derivatives of elastic moduli of Al2O3 measured in this study agree within 15% with expectations based on published single-crystal data. For ScAlO3 perovskite, the value of (∂KS/∂T)P is −0.033 GPa K−1 and (∂G/∂T)P is −0.015 GPa K−1. The relative magnitudes of these derivatives agree with the observation in Duffy and Anderson [Duffy, T.S., Anderson, D.L., 1989. Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res. 94, 1895–1912.] that |(∂KS/∂T)P| is typically about twice |(∂G/∂T)P|. The value of (∂KS/∂T)P for ScAlO3 is intermediate between those inferred less directly from V(P,T) studies of Fe-free and Fe- and Al-bearing MgSiO3 perovskites [Wang, Y., Weidner, D.J., Liebermann, R.C., Zhao, Y., 1994. PVT equation of state of (Mg,Fe)SiO3 perovskite: constraints on composition of the lower mantle. Phys. Earth Planet. Inter. 83, 13–40; Mao, H.K., Hemley, R.J., Shu, J., Chen, L., Jephcoat, A.P., Wu, Y., Bassett, W.A., 1991. Effect of pressure, temperature and composition on the lattice parameters and density of (Mg,Fe) SiO3 perovskite to 30 GPa. J. Geophys. Res. 91, 8069–8079; Zhang, Weidner, D., 1999. Thermal equation of state of aluminum-enriched silicate perovskite. Science 284, 782–784]. The value of |(∂G/∂T)|P for ScAlO3 is similar to those of most other mantle silicate phases but lower than the recent determination for MgSiO3 perovskite [Sinelnikov, Y., Chen, G., Neuville, D.R., Vaughan, M.T., Liebermann, R.C., 1998. Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800K and lower mantle composition. Science 281, 677–679].

Combining the results from the previous studies and current measurements on ScAlO3 perovskite, we extracted the parameters (q and γ0) needed to fully specify its Mie–Grüneisen–Debye equation-of-state. In this study, we have demonstrated that acoustic measurements of KS(T), unlike V(P,T) data, tightly constrain the value of q. It is concluded that ScAlO3 has ‘normal’ γ0 (1.3) and high q (3.6). The high value of q indicates that ScAlO3 has very strong intrinsic temperature dependence of the bulk modulus; similar behaviour has been observed in measurements on Fe- and Al-bearing silicate perovskites (Mao et al., 1991; Zhang and Weidner, 1999).  相似文献   


3.
The new data presented here from a 10–24°N segment of the North Mid-Atlantic Ridge show that this segment is the most depleted of the 10–70°N ridge section. They also show the existence of: (1) a geochemical gradient from the 14°N anomaly to 17°10′N; (2) a very depleted mantle source (the lowest Sr isotopic ratios found so far in the North Atlantic); and (3) a geochemical limit located at about 17°10′N without any obvious relation with any structural feature. The 15°20′N fracture zone does not show any relationship with respect to this gradient. The basalts located north of 17°10′N have very homogeneous features, which allow their characteristics to be averaged (i.e., 87Sr/86Sr= 0.70238 ± 0.00004, (Nb/Zr)N = 0.28 ± 0.1) and they are defined as normal mid-ocean ridge basalts. The basaltic glasses located south of 17°10′N present a wide spectrum of isotopic compositions and extended rare earth element patterns (from depleted to enriched). Despite this, they have a constant K/Nb of 233 ± 9 (1sM, n = 18) whereas this ratio is 344 ± 29 north of 17°10′N. These observations illustrate the strong coherence of behaviour between K and Nb (Ta) during the petrogenic processes involved in the generation of these mid-ocean ridge basalts and also their fractionation during previous mantle processes. Possible interpretations of mixing processes are discussed and sources at the ridge segment scale are favoured. However, when looking in detail, local heterogeneities are still common and can even be traced back off-axis to 115 my.

Placed in the context of the North Atlantic Ridge from 10° to 70°N, the Sr isotopic ratios reveal the Azores superstructure (23–50°N), whereas the trace element ratios (La/Sm-Nb/Zr) trace the second-order structures (33–40°N, 42–48°N) superimposed on the superstructure. This study illustrates the complementarity of information given by certain well chosen trace element ratios on the one hand and by isotopic ratios on the other. Since there is evidence of decoupling between isotopic ratios and/or trace element ratios, it introduces the notion of complementary “chemical memory” as recorded by a given type of trace element ratio or a given type of isotopic ratio  相似文献   


4.
In situ X-ray diffraction measurements on a calcium aluminosilicate (CAS) phase have been carried out using a laser-heated diamond anvil cell up to a pressure of 44 GPa, employing a synchrotron radiation source. CAS is the major mineral formed from sediments subducted into the Earth's mantle. The sample was heated using a YAG laser after each pressure increment to relax the deviatoric stress in the sample. X-ray diffraction measurements were carried out at T = 300 K using an angle-dispersive technique. The pressure was calculated using an internal platinum metal pressure calibrant. The Birch–Murnaghan equation of state for the CAS phase obtained from the experimental unit cell parameters showed a density of ρ0 = 3.888 g/cm3 and a bulk modulus of K0 = 229 ± 9 GPa for K0 = 4.7 ± 0.7. When the first pressure derivative of the bulk modulus was fixed at K0 = 4, then the value of K0 = 239 ± 2 GPa. From the experimental compressibility, the density of the CAS phase was observed to be lower than the density of co-existing Al-bearing stishovite, calcium perovskite, calcium ferrite-type phases, and (Fe,Al)-bearing Mg-perovskite in subducted sediments in the lower mantle. Therefore, the density of subducted sediments in the lower mantle decreases with increasing mineral proportion of the CAS phase.  相似文献   

5.
The influence of a driving static shear stress on the liquefaction resistance of medium dense granular soils is investigated. A laboratory study of the behavior of five sands (percentage of silt varying between 2 and 42%, and D50 varying between 0.55 and 0.09 mm) was undertaken. These five sands were sampled from the foundations of two dams in Quebec (Canada). Sixty cyclic direct simple shear (DSS) tests were performed with and without a driving static shear stress. Relative densities Dr varied between 60 and 70%, and static shear stress ratios =τst/σvc varied between 0.2 and 0.6. The presence of static shear stress increased the cyclic strength of these soils. A relation between and K() factor giving the effect of preshearing on cyclic shear resistance is obtained. The mechanical competence is examined as a function of D50 and percentage of fines. The observed dilatancy yielded rather cyclic mobility than liquefaction.  相似文献   

6.
REE diffusion in calcite   总被引:6,自引:0,他引:6  
Chemical diffusion of four rare-earth elements (La, Nd, Dy and Yb) has been measured in natural calcite under anhydrous conditions, using rare-earth carbonate powders as the source of diffusants. Experiments were run in sealed silica capsules along with finely ground calcite to ensure stability of the single-crystal samples during diffusion anneals. Rutherford backscattering spectroscopy (RBS) was used to measure diffusion profiles. The following Arrhenius relations were obtained over the temperature range 600–850°C: DLa =2.6×10−14 exp(−147±14 kJ mol−1/RT) m2 s−1, DNd =2.4×10−14 exp(−150±13 kJ mol−1/RT) m2 s−1, DDy =2.9×10−14 exp(−145±25 kJ mol−1/RT) m2 s−1, DYb =3.9×10−12 exp(−186±23 kJ mol−1/RT) m2 s−1. In contrast to previous findings for refractory silicates (e.g. zircon), differences in transport rates among the REE are not pronounced over the range of temperature conditions investigated in this study. Diffusion of the REE is significantly slower than diffusion of the divalent cations Sr and Pb and slower than transport of Ca and C at temperatures above 650°C. Fine-scale zoning and isotopic and REE chemical signatures may be retained in calcites under many conditions if diffusion is the dominant process affecting alteration.  相似文献   

7.
Gehlenite (Ca2Al2SiO7) has been found to transform to a new phase at pressures greater than 100 kbar and at about 1000°C, using a diamond-anvil pressure cell coupled with laser heating. The atoms of the new phase appear to be arranged in a perovskite-related structure similar to that described for Na2Ti3O7. The structure probably consists of layers of (Al2SiO7)4−, which are built up from blocks of edge-sharing (Al, Si)O6 octahedra and these blocks are joined by common octahedra corners. A small cubic unit cell with a = 3.719 ± 0.004 Å indexes completely the strong lines of the powder diffraction pattern, and a superlattice with a = 14.88 ± 0.02 Å satisfies all the observed weak lines in addition to the strong ones. However, the cell may be pseudocubic. The small cell contains a half of the gehlenite formula while the large cell contains 32 gehlenite formulae. Hence the molar volume for the new phase of Ca2Al2SiO7 is calculated to be 61.96 ± 0.20 cm3 at atmospheric pressure and room temperature. The new sodium titanate-type structure is probably more closely packed than an ordinary perovskite-type structure in which all octahedral corners are shared. This view is strongly supported by the very great density of this new phase, which is about 8% denser than the equivalent mixture of CaAl2O4 (calcium ferrite type) plus CaSiO3 (cubic perovskite type). The new phase is probably the most closely packed silicate known. Mg2SiO4 (spinel) was found to transform to an assemblage containing MgSiO3 (perovskite) plus MgO (periclase) at P-T conditions equivalent to the upper part of the lower mantle. By reacting with MgO, the perovskite modification of both MgSiO3 and MgSiO3 · xAl2O3 may adopt the sodium titanate structure at the still greater depths of the lower mantle. If the sodium titanate structures of Mg2(Al2Si)O7 and Mg2(MgSi2)O7 are present in the deep part of the lower mantle, MgO does not exist as a separate phase at the mantle-core boundary. This might be an obstacle to the possibility of dissolving these oxides (specifically the FeO component) in the molten Fe in the outer core as suggested by geophysical and geochemical studies of the earth's interior. The mechanism for developing the chemical plumes in the deep mantle proposed by Anderson does not appear to be consistent with studies of phase transformations in Ca-Al-rich compounds as outlined in this paper.  相似文献   

8.
New measurements of high field magnetisation (Is), remanence (Is), and coercive force (Hc) are presented between 4 and 300 K for x = 0.4, 0.5, 0.6 and 0.8 (Fe3−xTixO4). For x = 0.4 a pronounced minimum is found at T100 K and for X = 0.5 and 0.6 broad minima occur around T200 K, apparently coinciding with the temperature for K10. The magnetic properties below T60 K ar complex and were found to be significantly changed by cooling in the presence of a high magnetic field. With no applied field during cooling, a distinct decrease in Is is observed for T60 K, at which temperature there is a peak in the value of Irs. The effe cooling is to eliminate the sharp decrease in Is, reduce Hc and to increase Irs below 60 K to a value the peak value, giving essentially a square hysteresis loop. The results are interpreted in terms of a form of crystallographic phase transition coupled to the magnetisation direction, possibly by the magnetostriction. Square hysteresis loops in ferrites have been explained by the presence of Jahn-Teller ions and, in the present case, the low temperature of the observed effect may be a consequence of the weak Fe2+ Jahn-Teller ion coupled to other effects such as spin-lattice coupling.

Details of this work can be found in Schmidbauer, E. and Readman, P.W., 1982. Low temperature magnetic properties of Ti-rich Fe---Ti spinels. J. Magn. Magn. Mat., 27: 114–118. A paper reporting further work on Fe2.4Ti0.6O0.4 is in preparation.  相似文献   


9.
Values of bulk modulus (K), shear modulus (G) and mechanical quality factor (Q) have been determined for polycrystalline samples across the CaTiO3 (CST0)–SrTiO3 (CST100) solid solution by resonant ultrasound spectroscopy. Because of similarities with low frequency elastic and anelastic anomalies due to twin wall motion reported in previous studies, a working hypothesis is developed in which dissipation processes are interpreted in terms of twin wall displacements. At high temperatures in CST50 the stability field of the I4/mcm structure is marked by the disappearance of all resonance peaks (superattenuation). This is attributed to anelastic domain wall sliding. At room temperature the I4/mcm phase of CST70 and CST80 has values of G which are lower than those of cubic or orthorhombic phases, and a concomitant drop in Q is interpreted as implying that the domain wall pinning process reported elsewhere to occur below 400–450 K is only partial. A similar drop in G and Q was found in CST95 below the transition at 238 K. The I4/mcm ↔ Pbcm transition in CST70 at 230 K is marked by an abrupt increase in Q, suggesting that mobile twins in crystals with the I4/mcm structure become effectively immobile in antiferroelectric crystals with the Pbcm structure. The I4/mcm ↔ Pnma transition in CST50 is marked by a similarly abrupt increase in Q, consistent with twin walls becoming effectively immobile also in crystals with the Pnma structure. A fall in Q below 800 K in CST0, however, could imply that a degree of twin wall mobility might develop in Pnma crystals if the tetragonal spontaneous strain departs significantly from zero. The remarkable attenuation behaviour of crystals with the I4/mcm structure at the relatively low stress conditions which apply during resonances of a parallelepiped with edge dimensions of 2–4 mm, is consistent with the view that a characteristic signature for tetragonal CaSiO3 in the Earth's lower mantle should be a marked attenuation of seismic waves.  相似文献   

10.
Benthic foraminiferal magnesium/calcium ratios were determined on one hundred and forty core-top samples from the Atlantic Ocean, the Norwegian Sea, the Indian Ocean, the Arabian Sea and the Pacific Ocean, mostly at sites with bottom water temperatures below 5 °C. Mg/Ca ratios are consistently lower, by  0.2 mmol/mol, in samples cleaned using oxidative and reductive steps than using oxidative cleaning. Differences between Cibicidoides species have been identified: Mg/Ca of Cibicidoides robertsonianus > Cibicidoides kullenbergi > Cibicidoides wuellerstorfi. Comparison with bottom water temperatures support observations of lowered Mg/Ca of C. wuellerstorfi at temperature below  3 °C compared with values predicted by published calibrations and from other Cibicidoides species. Hydrographic data shows that carbonate ion saturation (Δ[CO32−]) decreases rapidly below this temperature. An empirical sensitivity of Δ[CO32−] on Mg/Ca has been established for C. wuellerstorfi of 0.0086 ± 0.0006 mmol/mol/μmol/kg. A novel application using modern temperatures and Last Glacial Maximum temperatures derived via pore fluid modelling supports a carbonate ion saturation state effect on Mg incorporation. This may significantly affect calculated δ18Oseawater obtained from foraminiferal δ18O and Mg/Ca temperature.  相似文献   

11.
低渗透砂岩储层孔隙结构复杂,储层有效性识别及饱和度准确计算难度较大.笔者以东营凹陷南坡沙四段(Es4)低渗透砂岩为研究对象,根据压汞、物性、薄片及核磁等资料,将研究区孔隙结构分为三大类、五小类.在岩样孔隙结构分类基础上,明确了孔隙结构类型与岩电参数之间存在确定的关系,而核磁共振T2谱定量特征参数在一定程度上能够表征孔隙结构类型及其细节信息,通过提取T2谱中T2几何平均值(T2g)、T2均值(T2)、峰度(KG)、可动流体分量(Smf)及区间孔隙分量等孔隙结构参数,建立了基于核磁T2谱特征参数的孔隙结构识别图版,显示核磁T2谱孔隙结构参数对不同类型的储层有较好的识别效果,进而探讨核磁孔隙结构参数和岩电参数之间的关系,结果表明,T2谱峰度值与孔隙胶结指数(m)值相关性较高,进一步确定了岩电参数m的核磁计算公式.最终,将该套方法应用于研究区井筒剖面中,有效地提高了饱和度计算精度,也为东营凹陷南坡低渗透砂岩油藏储量估算与高效开发提供了依据.  相似文献   

12.
Results are presented of laboratory resonant column and cyclic triaxial tests on specimens of two compacted soils (a sandy–silty clay and a sand–gravel mixture), planned to be used in the core and the shells, respectively, of a proposed earthfill dam. The values of low-amplitude shear modulus of the clayey material were found to increase with increasing confining pressure and decreasing water content, with deviations of ±20% from the predictions of the “Hardin equation”. On the other hand, the low-amplitude damping ratio was found to be at least four times higher than the values corresponding to natural undisturbed cohesive soils. The proposed G/G0γc curve for the compacted cohesive soil was found to be independent of confining pressure and small variations of the water content on either side of the optimum value and showed a remarkable agreement with recently published similar curves for natural cohesive soils. For the case of the sand–gravel mixture, normalized G/G0γc and Dγc curves are proposed, based on recently published results for gravelly soils and the limited data of the present study. The liquefaction resistance of the saturated sand–gravel mixture was found to be strongly dependent on its relative density, especially for high values of cyclic stress ratio. A relative density of at least 55% was found to be necessary to assure safety against earthquake-induced liquefaction of the material. The results presented herein may be used (directly or as guide) in the seismic analysis of (new or existing) earth dams constructed from similar soil materials and in addition they provide insight into the dynamic behavior of compacted soils.  相似文献   

13.
A phase transition in pure CaSiO3 perovskite was investigated at 27 to 72 GPa and 300 to 819 K by in-situ X-ray diffraction experiments in an externally-heated diamond-anvil cell. The results show that CaSiO3 perovskite takes a tetragonal form at 300 K and undergoes phase transition to a cubic structure above 490–580 K in a pressure range studied here. The transition boundary is strongly temperature-dependent with a slightly positive dT / dP slope of 1.1 (± 1.3) K/GPa. It is known that the transition temperature depends on Al2O3 content dissolved in CaSiO3 perovskite [Kurashina et al., Phys. Earth Planet. Inter. 145 (2004) 67–74]. The phase transition in CaSiO3(+ 3 wt.% Al2O3) perovskite therefore could occur in a cold subducted mid-oceanic ridge basalt (MORB) crust at about 1200 K in the upper- to mid-lower mantle. This phase transition is possibly ferroelastic-type and may cause large seismic anomalies in a wide depth range.  相似文献   

14.
15.
Shape analysis of Pacific seamounts   总被引:2,自引:0,他引:2  
Shape statistics have been compiled from 85 profiles of well-surveyed Pacific seamounts in the height range 140–3800 m. A flat-topped cone was fit to each seamount's cross-sectional profile maintaining the slopes of the sides as closely as possible. On each profile a basal widthdb, a summit widthdt, and a maximum heighth, were measured. The height-to-basal-radius ratio isξh is estimated by the ratio2hdb and flatnessf by the ratiodtdb. Slope angleφ = arctan(ε) is estimated fromε =2h(db − dt). Summit height and basal radius are found to be highly correlated (r = 0.93). The 85-point sample mean of the height-to-basal-radius ratio isξh = 0.21 ± 0.08 implying that a seamount's summit height is typically one fifth its basal radius. Despite the high correlation, individual points show some scatter, and there may be groupings into different morphological types. For example, all but one of the seamounts with summit heights above 1000 m have values ofξh that are larger than the sample mean. The 85-point sample mean of flatness isf = 0.31 ± 0.18. Data points show a large scatter with values off varying between 0 (a pointy cone) and 0.69 (a flat-topped cone). A histogram representation of flatness, however, indicates that certain values off may be more common than others: the histogram shows a bimodal distribution with maxima occurring at values off in the ranges 0.10–0.20 and 0.35–0.50. Moreover, there is some evidence that the mean flatness decreases with summit height so that the preferred shape of a large-sized seamount may be a pointy cone. Slope angle has an 85-point sample mean ofφ = 18 ± 6°; individual values ofφ vary between 5° and 36°. In addition to having a lower than average mean flatness seamounts with heights above 2600 m also have a lower than average mean slope angle (15°). To determine which variables account for most of the observed variation in the seamount shapes, a multivariate principal component analysis was performed on the data using five shape variables (summit height, basal radius, summit radius, flatness, and slope). The analysis indicates that most of the variation is described by two variables: flatness and summit height.  相似文献   

16.
Oyster tissues may be affected by the concentration of ions in the water (i.e. salinity) and by contaminants such as petroleum hydrocarbons and heavy metals. Oyster populations from three coastal lagoons (Mecoacan, Camen and Machona) in the Mexican state of Tabasco, in the southern Gulf of Mexico, were sampled for pollution studies during June, September and November 1992 and May 1993. No statistically significant relationships were found between the concentration of contaminants in the body tissues of organisms and their shell length, soft tissue weight and particulate matter; however, a significant correlation was found between condition index and salinity (r = −0.72). Generally, the lowest weights, shell lengths and indices of condition were found in Mecoacan. The concentrations of cadmium and zinc were inversely related to salinity (r = −0.52 and r = −0.32, respectively), so a riverine input is suspected. On average, 63% of the individual oysters showed histopathological lesions, which can be related to salinity and to the concentrations of cadmium and the unresolved fraction of hydrocarbons (UCM). The response of each of the tissues analysed was different. The percentage of individuals with damage in the digestive diverticulum increased linearly with UCM (r = 0.71), but in a saturation-response fashion (Y = B0B0/(1 + XB1) r = 0.66) with cadmium. The percentage of individuals with damage in the gills increased linearly with weight (r = 0.68), cadmium (r = 0.60) and UCM (r = 0.60). The lesions in the connective tissue decreased linearly (r = −0.82) with salinity, but increased in a saturation-response way (r = 0.83) with cadmium. Finally, the percentage of individuals with lesions in the digestive tube decreased linearly with salinity (r = −0.59). Only the damage to the gills and digestive diverticula were dependent on gonadal maturity, while damage to the connective tissue was dependent on the sex of the individual.  相似文献   

17.
Four species of marine calcifying algae, the coccolithophores Calcidiscus leptoporus, Helicosphaera carteri, Syracosphaera pulchra and Umbilicosphaera foliosa were grown in laboratory cultures under temperatures varying between 14 and 23 °C, and one species, C. leptoporus, under varying [CO32−], ranging from 105 to 219 μmol/kg. Calcium isotope compositions of the coccoliths resemble in both absolute fractionation and temperature sensitivity previous calibrations of marine calcifying species e.g. Emiliania huxleyi (coccolithophores) and Orbulina universa (planktonic foraminifera) as well as inorganically precipitated CaCO3, but also reveal small species specific differences. In contrast to inorganically precipitated calcite, but similar to E. huxleyi and O. universa, the carbonate ion concentration of the medium has no statistically significant influence on the Ca isotope fractionation of C. leptoporus coccoliths; however, combined data of E. huxleyi and C. leptoporus indicate that the observed trends might be related to changes of the calcite saturation state of the medium. Since coccoliths constitute a significant portion of the global oceanic CaCO3 export production, the Ca isotope fractionation in these biogenic structures is important for defining the isotopic composition of the Ca sink of the ocean, one of the key parameters for modelling changes to the marine Ca budget over time. For the present ocean our results are in general agreement with the previously postulated and applied mean value of the oceanic Ca sink (Δsed) of about − 1.3‰, but the observed inter- and intra-species differences point to possible changes in Δsed through earth history, due to changing physico-chemical conditions of the ocean and shifts in floral and faunal assemblages.  相似文献   

18.
We have developed techniques to determine238U,234U and232Th concentrations in seawater by isotope dilution mass spectrometry. U measurements are made using a233U236U double spike to correct for instrumental fractionation. Measurements on uranium standards demonstrate that234U/238U ratios can be measured accurately and reproducibly.234U/238U can be measured routinely to ± 5‰ (2σ) for a sample of 5 × 109 atoms of234U (3 × 10−8 g of total U, 10 ml of seawater). Data acquisition time is 1 hour. The small sample size, high precision and short data acquisition time are superior to-counting techniques.238U is measured to ± 2‰ (2σ) for a sample of 8 × 1012 atoms of238U ( 3 × 10−9 g of U, 1 ml of seawater).232Th is measured to ± 20‰ with 3 × 1011232Th atoms (10−10 g232Th, 1 1 of seawater). This small sample size will greatly facilitate investigation of the232Th concentration in the oceans. Using these techniques, we have measured238U,234U and232Th in vertical profiles of unfiltered, acidified seawater from the Atlantic and238U and234U in vertical profiles from the Pacific. Determinations of234U/238U at depths ranging from 0 to 4900 m in the Atlantic (7°44′N, 40°43′W) and the Pacific (14°41′N, 160°01′W) Oceans are the same within experimental error (± 5‰,2σ). The average of these234U/238U measurements is 144 ± 2‰ (2σ) higher than the equilibrium ratio of 5.472 × 10−5. U concentrations, normalized to 35‰ salinity, range from 3.162 to 3.281 ng/g, a range of 3.8%. The average concentration of the Pacific samples (31°4′N, 159°1′W) is 1% higher than that of the Atlantic (7°44′N, 40°43′W and 31°49′N, 64°6′W).232Th concentrations from an Atlantic profile range from 0.092 to 0.145 pg/g. The observed constancy of the234U/238U ratio is consistent with the predicted range of234U/238U using a simple two-☐ model and the residence time of deep water in the ocean determined from14C. The variation in salinity-normalized U concentrations suggests that U may be much more reactive in the marine environment than previously thought.  相似文献   

19.
The lack of temporal resolution and accurate chronology of Southern Ocean marine cores has hampered comparison of glacial millennial-scale oscillations between the Southern Ocean, Antarctic ice and other records from both hemispheres. In this study, glacial climate variability is investigated over the last 50 ka using a multi-proxy approach. A precise chrono-stratigraphy was developed on the high-sedimentation rate core MD94-103 (Indian Southern Ocean, 45°35′S 86°31′E, 3560 m water depth) by geomagnetic synchronization between the later core and NAPIS75, and 14C dates. High-resolution time-series of δ18O in planktonic foraminifera Globigerina bulloides and Neogloboquadrina pachyderma, and sea surface temperatures (SSTs) estimated from the alkenone UK37 index and foraminifera assemblages have been generated. Temporal evolution of the two temperature proxy records is notably different during the last glacial period. While foraminifera data indicate a consistent cooling towards the last glacial maximum, anomalous warm glacial alkenone temperatures suggest a strong advection of warm “detrital” alkenones by surface waters of the Agulhas current. Superimposed to this general trend, during Heinrich events, foraminiferal SSTs point to warmer surface waters, while concurrent alkenone SSTs exhibit apparent coolings probably caused by enhanced local alkenone production. By analogy to modern observations, possible influence of ENSO-like conditions on the subantarctic Southern Ocean SSTs is discussed.  相似文献   

20.
Burrowing behaviour is adaptive and allows clams to escape predation; yet the effects of potentially toxic metals on such behaviour have not been adequately investigated. In natural marine sediment contaminated with copper the time for littleneck clams (Protothaca staminea) to achieve complete burial was recorded. Above a threshold of 5.8 μg g−1 Cu added to dry sediment, the time for 50% of the clams to burrow (ET50) increased logarithmically with increasing sediment copper concentration according to:
logET50 = 0.15 (CU) - 1.37 (n = 4, r2 = 0.98)
where ET50=time in hours for 50% of clams to burrow and Cu=μg g−1 Cu in dry sediment. Previously exposed clams had both a lower threshold to Cu and a longer reburrowing time (ET50). Clams exposed to sediment mixed with Chelex-100®-sorbed copper showed no significant change in burrowing time. Bioassays based on claim burrowing behaviour can measure both bioeffectiveness of sediment-sorbed metals and a sublethal effect with ecological meaning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号