首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
研究现今地壳运动和强震机理的一种方法   总被引:5,自引:2,他引:5       下载免费PDF全文
本文阐述了地壳形变与密度变化耦合运动的基本理论,分析了地壳形变与密度变化耦合运动引起的重力时间变化.断层位错运动是地壳形变与密度变化耦合运动的特殊形式.利用重复重力观测数据,选用稳健算法反演研究了1985-2002年滇西地震实验场主要断裂运动的时间分布和强震响应特征,获得了不同类型强震孕育过程图像.  相似文献   

2.
不同产状断层错动的地表重力变化和形变   总被引:7,自引:2,他引:5       下载免费PDF全文
根据点源位错引起的地表重力变化和形变的理论公式,应用数值算法求得半无限空间任意产状断层位错在地表的重力变化和形变.计算结果表明,产状和位错方式是决定断层的地表重力和形变效应的基本因素.铲式断层活动的地表重力和形变效应与矩形断层相比有显著差异.断层位错引起的重力变化、垂直形变、视垂直形变的图象特征相似.根据重力变化和形变的特殊图象特征,有可能从观测资料中提取断层活动引起的重力变化和形变信息,判识和估计发震断层的几何学和运动学特征.   相似文献   

3.
唐山及大同—阳高地震大地形变与重力前兆综合研究   总被引:1,自引:0,他引:1  
本文概述了近年来利用大地形变及重力复测资料研究唐山及大同-阳高地震的丰富成果,对这2闪地震震前大地形变及重力前兆综合研究认为,震中区震前呈现闭锁状态,断层蠕滑及深部物质的运移是震前的显著标志;地震成因的组合模式可以较好地解释唐主大同-阳高地震的机制,跟踪监测形变场,重力场及断层活动时空演化特征,是利用大地形变及重力测量手段进行地震预报的基本出发点。  相似文献   

4.
应用芦山MS7.0地震震中附近跨断层及连续形变观测资料, 分析了芦山地震前不同阶段地形变变化的特点, 讨论了震中附近区域异常时空演化过程. 结果表明: ① 自2013年1月起, 沿鲜水河断裂带一些跨断层基线观测到显著的加速转折变化, 沿安宁河、 则木河断裂带个别场地的跨断层水准基线, 2010年以来出现的巨幅异常等是突出的场兆变化; 沿龙门山断裂带一些水准观测在汶川MS8.0地震后持续的调整变化具有近震源区变形特征. ② 鲜水河、 龙门山和安宁河3条主要断裂围成的三叉口地区, 地倾斜、 应变、 重力及断层水准和蠕变观测临震前均未有显著的异常变化, GPS水平、 垂直位移年速率最小, 该地区是形变变化或形变异常分布的“空区”. ③ 在对近场与远场多种连续形变数据通过傅里叶变换提取年周期成分后发现, 临震前2—3年近震源区域的地倾斜、 重力年变化幅度不是增大, 而是减小. 芦山MS7.0地震前观测到的形变前兆现象特征与汶川MS8.0地震等震前的前兆现象较为接近. 因此, 芦山地震前近震源区及外围形变异常分布特征不是个别的现象.   相似文献   

5.
芦山MS7.0级地震前的形变空区特征研究   总被引:3,自引:2,他引:1  
上世纪70年代以来,国内外基本形成了以监测震中附近断层预滑动进行地震预测的研究思路,但近些年来,一些大地震前近震源区域的形变变化却引起了巨大的争议.本文应用芦山地震震中附近跨断层及连续形变观测资料,分析了震前不同阶段地形变变化的特点,讨论了震中附近区域异常时空演化过程.分析结果表明,沿鲜水河断裂带一些跨断层基线、安宁河及则木河断裂带个别场地的跨断层水准基线出现的显著异常变化,这些异常出现在远离芦山地震震中的区域上;在近震源区域,在龙门山断裂带南段的一些断层水准变化量极小,在鲜水河、龙门山和安宁河3条主要断裂围成的三叉口地区,倾斜、应变、重力及断层水准和蠕变观测临震前未有显著的异常变化,该区是形变变化或形变异常分布的“空区”.本文也与汶川地震前形变异常分布进行了对比,认为震前形变“空区”现象可能是强震前的一种共性特征.  相似文献   

6.
基于USGS公布滑动分布模型,本文利用用地壳分层模型,考虑到自重及黏弹特性,采用数值模拟的方法,对尼泊尔M_W7.9大地震同震及黏弹松弛效应引起的震后形变场及重力变化进行模拟计算,并与发震断层地表投影面附近区域实测同震GPS水平形变数据对比,结果显示:(1)同震形变场及重力变化均显示该次地震主要表现为逆冲型,且主要形变及重力变化主要发生在发震断层地表投影区域,离断层越远区域,形变量及重力变化值越小;(2)震后形变量及重力变化均增大,且影响范围逐渐增大,其中,垂直形变变化趋势与重力变化相反,表明地表高程变化与重力变化具密切的联系;(3)模拟同震结果与实测同震水平形变结果比较符合,少数台站点差异较大,但运动趋势与实测结果基本一致,一定程度上验证了模拟同震及震后形变量及重力变化的可靠性.  相似文献   

7.
汶川大地震震后重力变化和形变的黏弹分层模拟   总被引:5,自引:0,他引:5  
基于有限矩形位错理论及陈运泰等、JiChen等通过地震波反演的断层模型,结合研究区地壳——上地幔平均波速分层结构,利用PSGRN/PSCMP软件模拟计算了黏弹分层半空间中汶川地震(Ms8.0)产生的同震及其震后地表形变和重力变化,同时给出了震后形变和重力变化的年变化率.模拟结果表明,同震形变和重力变化显示出发震断层倾滑逆冲兼具右旋走滑综合特征;其变化主要发生于断层在地表的投影区附近,震后地表重力变化和形变量均不断增大,影响的范围也不断扩张;震后50a间近场年均形变量可达10mm,年均重力变化量可达2times;10-8m/s2,而远场年均形变量一般低于2mm,年均重力变化量一般低于0.4times;10-8m/s2;形变和重力变化在震后200a内变化较为显著,变化率逐渐减小,水平位移在400a后基本稳定不变,垂直位移、重力变化和大地水准面变化在800a后基本稳定不变.   相似文献   

8.
唐山及大同-阳高地震大地形变与重力前兆综合研究   总被引:1,自引:0,他引:1  
本大概还了近年来利用大地形变及重力复测资料研究唐山及大同-阳高地震的丰富成果,对这2次地震震前大地形变及重力前兆综合研究认为:震中区震前呈现闭锁状态;断层蠕滑及深部物质的运移,是震前的显著标志;地震成因的组合模式可以较好地解释唐山及大同一阳高地震的机制;跟踪监测形变场、重力场及断层活动时空演化特性,是利用大地形变及重力测量手段进行地震预测的基本出发点。  相似文献   

9.
马丽  吴兵 《地震工程学报》1988,10(4):96-108
本文汇集了1970—1985年中国的高精度重复重力测网和固体潮台站的重力变化资料,分析了在6个测网和5个测点周围的11个M≥5.0地震与重力变化的关系,并且探讨了重力场随时间变化的可能机制和特征。作者认为,在重力测点附近一定范围内如果发生中强以上地震,那么会伴随地震出现一定量的重力变化,重力变化的时间与震级M和震中距L以及余震面积S或震源体积V之间有一定的依赖关系。伴随地震出现的重力变化除由地壳形变引起外,主要可能是地下物质密度变化所引起。不同类型的地震特征可以用重力和形变资料来佐证。  相似文献   

10.
鲜水河断裂带跨断层形变测量及其地震学意义   总被引:9,自引:1,他引:9       下载免费PDF全文
吕弋培  李铁明 《地震地质》1997,19(4):46-340
通过对鲜水河断裂带多年跨断层形变测量资料的分析,揭示出鲜水河断裂带不同部位的形变特征,断裂带破裂区表现为较高速率的蠕滑运动,其运动速率又以极震区为中心向两侧衰减,“闭锁区”则具有运动停滞的特点,并有明显的分段性。断层形变的特殊形态还与地震有一定的关系,如每当形变出现“V”(或倒“V”)字型时,会有中小地震对应;断层扭动反向与变化也与地震有关  相似文献   

11.
葛培基 《地震学报》1983,5(2):226-233
在四川鲜水河断裂带上的炉霍和道孚两地,分别于1973年和1981年发生了7.9级和6.9级地震,本文根据该断裂带上六处跨地震主破裂面和跨断层短水准、短基线场的多年形变测量资料,分析了断层活动特征与地震孕育和发生的关系,并对运用跨断层形变测最手段与地震预报作了粗浅的探讨.   相似文献   

12.
本文利用考虑黏弹性地壳结构和精确震源参数的震后形变模型,计算了玛尼、昆仑山口西、汶川地震所形成的同震和震后形变场的变化过程与特征,结果显示玛尼地震的震后形变场有利于昆仑山口西地震的能量积累,玛尼地震与昆仑山口西地震的震后形变场对汶川地震的作用不明显,而这三次地震总的震后形变场在玉树断裂带附近形成了一个明显带有左旋性质的...  相似文献   

13.
景泰5.9级地震的断层形变异常及中短期预报   总被引:10,自引:0,他引:10       下载免费PDF全文
初步研究了2000年6月6日甘肃景泰5.9级地震蕴育过程中近源区及外围地区断层形变异常的时空分布特征:震前断层形变异常分布范围广、异常形态复杂,断层形变(应变)类信息指标图象异常区明显.不同地域断层形变异常形态及幅度存在显著差异,与异常所处的构造部位密切相关:海原断裂带西段出现的,,相断层形变异常,显示了近源区断层运动由准线性走向非线性的过程,与断层形变(应变)类信息指标高值异常区相配合,反映蕴震区应变积累程度高;而构造汇聚部位的六盘山断裂带等远场区较大幅度的突跳尖点异常,并不反映所在地的应变积累,而可能是蕴震过程区域构造应力场增强的一个标志.在此基础上,结合对景泰5.9级地震中短期预报经验教训的初步总结,研究和探讨了断层形变异常在震情判定中的应用.   相似文献   

14.
The Youshashan Fault lies in the south flank of Yingxiongling anticline, southwestern margin of Qaidam Basin. The Yingxiongling anticline is one of the most active neotectonics, situated at the front of folds expanding southward in the Qaidam Basin. Research on the paleoseimology and Late Quaternary slip rate of this fault is important for hazard assessment and understanding tectonic deformation in this area. We excavated a 27-m-long trench across the Youshashan fault where a pressure bridge formed on the Holocene alluvial fans, measured a profile of the fold scarp created by the fault west of the Youshashan mountain, and collected several samples of finer sands for luminescence dating. Analysis of these data shows that(1) The Youshashan Fault is a Holocene active feature. The fold scarp in the basin indicates that this fault has been active along a same surface trace since at least mid-late Pleistocene. At least two paleoseismic events are revealed by trenching, both occurred in Holocene. The latest event Ⅱ in the trench happened after 500a. The current information fails to confidently support that it is the 1977 Mangya M6.4 earthquake, but cannot excludes the possibility of it is related to this earthquake. The other event Ⅰ occurred about between 1 000a to 4 000a. Erosion after the event Ⅰ prevents us to constrain the event age and to identify more events further. (2)The vertical slip rate of the Youshashan fault is about(0.38±0.06)mm/a since mid-late Pleistocene. Comparing with relative speeds of GPS sites across the Yingxiongling anticline suggests that the Youshashan fault is an important structure which is accommodating crustal shortening in this region.  相似文献   

15.
赵国光  张超 《地震学报》1981,3(3):217-230
为了建立断层蠕动与其周围地壳形变的关系, 本文给出了线性粘弹性半空间中任意倾角的断层滑动引起的准静态位移场的完整的解析表达式.其中, 滑动时间函数的形式是根据经验拟定的, 而介质被视为广义开尔文体或麦克思韦体.通过数值计算讨论了介质的流变性对位移场的影响.根据1976年唐山地震前后在地震区取得的短期观测资料的分析, 论证了唐山主震前夕在极震区地壳上部曾发生过前兆蠕动, 而且主震后断层仍继续滑动, 但其速率呈指数型衰减.估算了符合观测数据的断层滑动参数, 并对这些结果的意义作了简要的讨论.   相似文献   

16.
The seismogenic structure of the Lushan earthquake has remained in suspensed until now. Several faults or tectonics, including basal slipping zone, unknown blind thrust fault and piedmont buried fault, etc, are all considered as the possible seismogenic structure. This paper tries to make some new insights into this unsolved problem. Firstly, based on the data collected from the dynamic seismic stations located on the southern segment of the Longmenshan fault deployed by the Institute of Earthquake Science from 2008 to 2009 and the result of the aftershock relocation and the location of the known faults on the surface, we analyze and interpret the deep structures. Secondly, based on the terrace deformation across the main earthquake zone obtained from the dirrerential GPS meaturement of topography along the Qingyijiang River, combining with the geological interpretation of the high resolution remote sensing image and the regional geological data, we analyze the surface tectonic deformation. Furthermore, we combined the data of the deep structure and the surface deformation above to construct tectonic deformation model and research the seismogenic structure of the Lushan earthquake. Preliminarily, we think that the deformation model of the Lushan earthquake is different from that of the northern thrust segment ruptured in the Wenchuan earthquake due to the dip angle of the fault plane. On the southern segment, the main deformation is the compression of the footwall due to the nearly vertical fault plane of the frontal fault, and the new active thrust faults formed in the footwall. While on the northern segment, the main deformation is the thrusting of the hanging wall due to the less steep fault plane of the central fault. An active anticline formed on the hanging wall of the new active thrust fault, and the terrace surface on this anticline have deformed evidently since the Quaterary, and the latest activity of this anticline caused the Lushan earthquake, so the newly formed active thrust fault is probably the seismogenic structure of the Lushan earthquake. Huge displacement or tectonic deformation has been accumulated on the fault segment curved towards southeast from the Daxi country to the Taiping town during a long time, and the release of the strain and the tectonic movement all concentrate on this fault segment. The Lushan earthquake is just one event during the whole process of tectonic evolution, and the newly formed active thrust faults in the footwall may still cause similar earthquake in the future.  相似文献   

17.
青海可可西里地区是青藏高原腹地,自有仪器记录以来,共发生Ms≥6.0级地震8次,是海省中强地震的主要发震场所之一。本文根据对青海可可西里地区活动断裂的野外考察,较为详细地研究了该区五条活动断裂的几何形态、空间分布及动力学特征。对该区地震活动与构造应力场的关系进行了探讨。结果表明:青海可可西里地区的活动断裂为继承性全新世活动断裂,多发育着史前和现代地震破裂形变带,是该区的主要发震断裂。其中乌兰乌拉湖─岗齐曲活动断裂带是现代地震的主要发震断裂,地表出露有1988年4月5日唐古拉Ms=7.0级地震的破裂形变带,长达9公里。通过对可可西里地区的野外考察,未发现国外报道的1973年7月16日青海可可西里地区火山活动的事实。  相似文献   

18.
2021年5月21日晚21时48分,云南省大理州漾濞县(震中:25.67°N,99.87°E)发生M_S6.4地震,震源深度8 km。为快速获得此次地震同震形变场及断层几何参数,研究该次地震的发震构造等,文章基于震前、震后的sentinel-1A卫星升降轨SAR数据进行二轨法差分雷达干涉测量(DInSAR),并基于Okada弹性半空间位错模型反演断层几何参数。研究结果如下:(1)此次地震造成的同震形变场长约19 km,宽约20 km;(2)升轨雷达视线向最大形变约为8.2 cm,降轨雷达视线向最大形变约为8.7 cm;(3)地震断层走向为313.7°,倾角为87°,滑动角为175°,为右旋走滑型断层,最大滑动量为0.79 m,反演得出的地震矩为1.48×10~(18) N·m,矩震级为M_W6.1。在川滇块体向南挤出的构造背景下,块体西边界的维西—乔后断裂、红河断裂发生右旋走滑,本次地震便是维西—乔后断裂南段分支断裂右旋走滑活动的体现。  相似文献   

19.
盲断裂、褶皱地震与新疆1906年玛纳斯地震   总被引:31,自引:18,他引:31       下载免费PDF全文
1906年玛纳斯7.7级地震时沿准噶尔南缘断裂产生的地表破坏是由非构造成因的振动和重力效应而形成的。天山山前第二排逆断裂和褶皱带是这次地震的发震构造,沿带已发现了长约130km的断续的地表破裂和最新隆起带。所以1906年玛纳斯地震是沿北天山主逆断裂带发生在深部的一次盲断裂地震。地表变形主要以褶皱隆起为主,是一次典型的“褶皱地震  相似文献   

20.
Based on GPS velocity during 1999-2007, GPS baseline time series on large scale during 1999-2008 and cross-fault leveling data during 1985-2008, the paper makes some analysis and discussion to study and summarize the movement, tectonic deformation and strain accumulation evolution characteristics of the Longmenshan fault and the surrounding area before the MS8.0 Wenchuan earthquake, as well as the possible physical mechanism late in the seismic cycle of the Wenchuan earthquake. Multiple results indicate that:GPS velocity profiles show that obvious continuous deformation across the eastern Qinghai-Tibetan Plateau before the earthquake was distributed across a zone at least 500km wide, while there was little deformation in Sichuan Basin and Longmenshan fault zone, which means that the eastern Qinghai-Tibetan Plateau provides energy accumulation for locked Longmenshan fault zone continuously. GPS strain rates show that the east-west compression deformation was larger in the northwest of the mid-northern segment of the Longmenshan fault zone, and deformation amplitude decreased gradually from far field to near fault zone, and there was little deformation in fault zone. The east-west compression deformation was significant surrounding the southwestern segment of the Longmenshan fault zone, and strain accumulation rate was larger than that of mid-northern segment. Fault locking indicates nearly whole Longmenshan fault was locked before the earthquake except the source of the earthquake which was weakly locked, and a 20km width patch in southwestern segment between 12km to 22.5km depth was in creeping state. GPS baseline time series in northeast direction on large scale became compressive generally from 2005 in the North-South Seismic Belt, which reflects that relative compression deformation enhances. The cross-fault leveling data show that annual vertical change rate and deformation trend accumulation rate in the Longmenshan fault zone were little, which indicates that vertical activity near the fault was very weak and the fault was tightly locked. According to analyses of GPS and cross-fault leveling data before the Wenchuan earthquake, we consider that the Longmenshan fault is tightly locked from the surface to the deep, and the horizontal and vertical deformation are weak surrounding the fault in relatively small-scale crustal deformation. The process of weak deformation may be slow, and weak deformation area may be larger when large earthquake is coming. Continuous and slow compression deformation across eastern Qinghai-Tibetan Plateau before the earthquake provides dynamic support for strain accumulation in the Longmenshan fault zone in relative large-scale crustal deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号